第六章_遥感图像分割.
- 格式:ppt
- 大小:643.50 KB
- 文档页数:15
第六章图像分类遥感图像分类就是利用计算机对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,将图像中每个像元按照某种规则或算法划分为不同的类别,然后获得客观的地物信息的过程。
一般的分类方法可分为两种:监督分类与非监督分类。
将多源数据应用于图像分类中,发展了基于专家知识的决策树分类。
4.1 非监督分类非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭数据(遥感影像地物的光谱特征的分布规律),即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性。
其类别的属性是通过分类结束后目视判读或实地调查确定的。
主要有两方法:ISODATA分类与K-Means 分类。
4.1.1 ISODATA分类ISODATA是一种遥感图像非监督分类法。
全称“迭代自组织数据分析技术”(Iterative Self-Organizing Data Analysis Technique)。
ISODATA使用最小光谱距离方程产生聚类,此方法以随机的类中心作为初始类别的“种子”,依据某个判别规则进行自动迭代聚类的过程。
在两次迭代的之间对上一次迭代的聚类结果进行统计分析,根据统计参数对已有类别进行取消、分裂、合并处理,并继续进行下一次迭代,直至超过最大迭代次数或者满足分类参数(阈值),完成分类过程。
操作步骤如下:(1)在主菜单中,选择File→Open Image File,打开待分类图像;(2)在主菜单中,选择Classification→Unsupervised→ISOData;(3)在Classification Input File选择分类的图像文件;(4)在ISODATA Parameters窗口中设置分类参数以及输出路径和文件名(图4-1);图4-1 ISODATA分类参数设置Mumber of Classes:Min,max:类别数量范围,一般输入最小数量不能小于最终分类数量,最大数量为最终分类数量的23倍;Maximum Iterations:最大迭代次数,迭代次数越大,得到的结果越精确,运算时间也越长;Change Threshold:变换阈值,当每一类的变化像元小于阈值时,结束迭代过程;Minimun # Pixel in Class:一类所需的最小像元数,如果某一类中的像元数小于最少像元数,则将其中的像元归并到距离最近的类型中;Maximum Class Stdv:最大分类标准差,以像素值为单位,如果某一类的标准差比该阈值大,则将该类分成两类;Minimum Class Distance:类别均值之间的最小距离,以像素值为单位,如果类均值之间的距离小于该值,则类别将被合并;Maximum # Merge Pairs:最大的合并类别;Maximum Stdev From Mean:距离类别均值的最大标准差,为可选项。
遥感图像分类与分割算法研究随着遥感技术的不断发展和普及,遥感图像的应用也越来越广泛。
而对遥感图像进行分类和分割是遥感应用中的重要研究方向。
本文将从算法角度入手,介绍遥感图像分类与分割算法的研究现状和未来方向。
一、遥感图像分类算法遥感图像分类是将图像中的像素或区域划分为不同的类别,用来获取地物信息的关键技术。
传统的分类算法如最小距离分类、最大似然分类和决策树分类等,依赖于高质量的样本数据和特征提取方法。
然而,对于大面积、高维度的遥感图像,传统算法的分类效果受到一定限制。
近年来,深度学习的兴起为遥感图像分类带来更好的解决方案。
深度学习通过多层非线性变换实现高级别、抽象的特征表示,可以有效地降低了特征维度。
深度学习的代表性算法,如卷积神经网络(CNN)、循环神经网络(RNN)和深度置信网络(DBN)等,已经在遥感图像分类中得到广泛应用,成为了新的研究方向。
二、遥感图像分割算法遥感图像分割是将图像中的像素或区域划分为不同的集合,从而实现对地物的精确提取。
传统的分割算法如基于灰度、基于边缘、基于区域和基于模型等,都有着各自的特点和适用情况。
然而,对于遥感图像这种大面积、高分辨率、多波段的数据,传统算法受到了很大的挑战。
相比之下,基于深度学习的分割算法具有更好的效果和鲁棒性。
近期出现的网络结构,如全卷积网络(FCN)、带空洞卷积的全卷积网络(DeepLab)和U-Net 等,已经成为遥感图像分割的主流算法。
这些算法采用卷积神经网络和反卷积操作进行像素级别的分类,可以实现较高的分割精度和鲁棒性。
三、未来展望遥感图像分类与分割算法都面临着一些挑战。
在分类方面,深度学习算法对数据量和质量的要求较高,且模型训练和推理速度较慢,需要更加有效的方法来提高效率。
在分割方面,多尺度信息的融合、分类不平衡问题和超分辨率等问题都需要进一步研究。
未来,可以尝试将遥感图像分类和分割进行联合研究,实现更加全面、深入地地物信息提取。
另外,结合时空数据和多源数据,进一步增强数据的丰富性和准确性,也是未来研究的重要方向。
利用测绘数据进行遥感图像分割的方法遥感图像分割是遥感技术的重要应用之一,通过将遥感图像划分为不同的区域,可以更好地分析和理解地表特征。
而测绘数据的应用,可以为遥感图像分割提供更精确的地理信息和辅助分割算法。
本文将探讨利用测绘数据进行遥感图像分割的方法。
首先,测绘数据可以为遥感图像分割提供高精度的地理坐标信息。
在进行遥感图像分割时,地理坐标是一个重要的参考,它可以用于确定各个像素点在地球表面的位置,从而更准确地划分不同的区域。
测绘数据提供的地理坐标信息可以与遥感图像相结合,将像素点位置与地理特征相对应,从而实现更精确的图像分割。
其次,测绘数据可以为遥感图像分割提供地物分类信息。
遥感图像分割的目的是将图像划分为具有相似地物特征的区域,而测绘数据中常包含各种地物分类信息,如建筑物、植被、水体等分布情况。
这些地物分类信息可以用于选择合适的分割算法,并为算法参数的确定提供依据,从而提高分割结果的准确性和可靠性。
此外,测绘数据还可以为遥感图像分割提供辅助信息。
例如,测绘数据可以包含地形数据、高程数据等,这些信息可以与遥感图像中的纹理、亮度等特征相结合,从而更好地划分不同区域。
特别是在山区、沿海等地形复杂的区域,测绘数据的应用可以提升分割结果的准确性。
在实际的遥感图像分割中,可以采用多种方法利用测绘数据。
一种方法是基于像素级的遥感图像分割。
从测绘数据中提取地理坐标信息,将其与遥感图像进行像素级对应,然后根据像素级的属性特征,采用像素级的分割算法进行图像分割。
这种方法可以适用于较为简单的地物分类和分割任务。
另一种方法是基于对象级的遥感图像分割。
对象级的分割是指将图像中的像素分成不同的对象或区域。
通过利用测绘数据提供的地物分类和辅助信息,可以对遥感图像中的不同地物进行分割,然后将相似的像素组合成对象。
这种方法可以更好地保持对象的完整性和连续性,适用于复杂地物分类和分割任务。
除了上述方法,还可以结合其他地理信息系统(GIS)技术进行遥感图像分割。
测绘技术遥感图像分割方法总结测绘技术在遥感图像分割方法中的应用已经成为了现代测绘领域中的重要研究方向。
遥感图像分割的目的是将图像中不同的目标或区域进行区分和提取,以便进行后续的分析和处理。
而测绘技术则可以提供更加精确和准确的信息,帮助我们更好地完成图像分割的任务。
一种常见的遥感图像分割方法是基于像素的分割方法。
这种方法以图像的像素为基本单位,根据像素的灰度值进行分类。
根据像素的灰度值进行分类的基本原理是,不同的目标在遥感图像中通常会表现出不同的灰度特征。
通过分析和比较像素的灰度值,我们可以将具有相似灰度特征的像素划分到同一个类别中。
这种方法简单直观,容易实现,但是在处理复杂遥感图像时存在一定的局限性。
为了克服基于像素的分割方法的局限性,研究人员提出了基于区域的分割方法。
这种方法将相邻的像素组成一个连续的区域,通过分析区域的特征来实现图像分割。
基于区域的分割方法可以利用像素间的空间关系和灰度特征,更好地保持目标的连续性和一致性。
通过将像素分组形成区域,然后对区域进行合并或拆分,可以得到更加准确和稳定的分割结果。
而测绘技术可以提供对区域边界的测量和分析,帮助我们更好地确定区域的边界和特征。
此外,还有一种常用的遥感图像分割方法是基于多尺度的分割方法。
这种方法利用多个尺度下的图像信息来进行分割,以获取更全面和准确的目标信息。
首先,对图像进行多尺度的分解或滤波处理,然后在每个尺度上进行分割。
最后,将各个尺度上的分割结果进行融合,得到最终的分割结果。
测绘技术可以提供对多尺度图像的测量和分析,帮助我们更好地理解和处理不同尺度图像下的目标信息。
除了基于像素、区域和多尺度的分割方法外,还有一些其他的遥感图像分割方法,如基于边缘的分割方法、基于深度学习的分割方法等。
这些方法在不同的应用场景下具有一定的优势和适用性。
测绘技术可以为这些方法提供辅助信息和辅助分析,提高分割结果的准确性和可靠性。
综上所述,测绘技术在遥感图像分割方法中起到了重要的作用。
基于分水岭算法的遥感图像分割方法研究遥感图像分割是遥感图像处理中的一项重要任务,它的目的是将图像中的不同区域分割成具有相似特征的子区域。
这项工作在农业、环境监测、城市规划等领域有着重要的应用价值。
分水岭算法是一种常用的图像分割方法,它基于图像中的灰度梯度信息来实现分割。
本文将围绕基于分水岭算法的遥感图像分割方法展开研究,探讨其原理、实现过程以及应用效果。
一、分水岭算法原理及应用分水岭算法最初来源于地质学中的地下水分割理论,后来被引入到图像处理领域中。
它的原理是将图像看作地形地貌,图像中的亮度信息对应地形的高度,然后利用不同区域之间的梯度信息来确定分割线,实现图像的分割。
在遥感图像处理中,分水岭算法被广泛应用于不同类型的地物分割,包括植被、水域、建筑等。
分水岭算法的基本思路是从图像中的局部最小点(或者称为浸没点)出发,构建出一系列的水域,然后根据这些水域的相互关系来确定整个图像的分割线。
在遥感图像中,这些局部最小点往往对应着不同的地物或者地物边界,因此通过分水岭算法可以实现对图像中不同地物的精确分割。
分水岭算法还可以应用于图像的边缘检测、纹理分割等领域。
基于分水岭算法的遥感图像分割方法一般包括以下几个步骤:预处理、特征提取、分水岭算法实现和结果后处理。
在预处理阶段,需要对原始遥感图像进行几何校正、大气校正等操作,以保证图像的质量和准确性。
接下来进行特征提取,一般采用像元级的特征提取方法,包括灰度、颜色、纹理等特征。
然后利用这些特征信息构建图像的梯度信息,为后续的分水岭算法做准备。
分水岭算法的实现一般使用连通区域分割算法(Watershed segmentation algorithm),它是一种基于梯度信息的像素聚类算法,能够根据图像的梯度分布实现对图像的分割。
在算法实现过程中需要注意对梯度信息进行分析和处理,以保证分割结果的准确性和可靠性。
最后对得到的分割结果进行后处理,包括去除小面积的噪声点、填补分割线等操作,以得到最终的分割图像。
基于分水岭算法的遥感图像分割方法研究随着遥感技术的快速发展,遥感图像的分析和处理成为了一项非常热门的研究领域。
遥感图像的分割在很多领域都有其重要的应用,如地质勘探、农业监测、环境保护等。
目前,遥感图像分割的方法很多,其中基于分水岭算法的方法是一种常用的方法。
本文将介绍基于分水岭算法的遥感图像分割方法的研究。
一、基本原理分水岭算法是一种基于区域生长的图像分割方法,其基本原理是将图像看成一个三维的表示体,其中两个维度表示图像平面上的位置,第三个维度表示像素的亮度值。
在这个三维表示体中,局部极小值点之间的连通性分隔开来,并将其映射到原始图像中,从而得到图像分割的结果。
二、算法步骤分水岭算法的主要步骤包括图像预处理、计算梯度、标记区域和分水岭模拟四个部分。
在图像预处理步骤中,首先将原始遥感图像进行平滑,去除图像中的噪声和其他不规则因素。
可以使用高斯平滑滤波器实现这一步骤。
在计算梯度步骤中,将平滑后的图像进行梯度计算,即得到像素在x方向和y方向的梯度值。
这个步骤的目的是为了找出图像中的边界和梯度峰值点。
在标记区域步骤中,通过使用局部最小值法或阈值法将图像进行标记。
将局部极小值点及其相邻的点标记为前景,其余点标记为不确定区域或背景。
在分水岭模拟步骤中,将标记后的图像看成一个三维表示体,用集水线的概念将每个局部极小值点相邻的点进行连通,即将这些点看成一片区域,将梯度值较小的区域看成是背景,梯度值较大的区域看成是前景,不确定区域则被划分为分水岭。
将每个分水岭点看成是集水盆,将图像看成是一种来自不同区域的水流,最后模拟出水流汇聚的集水盆,从而得到图像分割结果。
三、实验结果本文使用的实验数据为Landsat 8卫星遥感图像,分别使用了分水岭算法和常用的K-means聚类算法进行图像分割,并比较了两种算法的结果。
从实验结果中可以看出,基于分水岭算法的图像分割方法可以将整个遥感图像分成多个具有代表性的区域,每个区域都具有较小的方差和较大的距离,从而可以更好地区分不同的地物。
基于图论的遥感图像分割算法分析摘要:遥感图像处理技术目前已经广泛的应用于军事以及农业等众多领域。
遥感图像中的目标物如果进行分割,那么就可以得到更多的目标物信息,并且可以为进一步的处理奠定良好基础,比如说对于目标物的跟踪、分析以及识别等。
本文对图像分割的标准进行了介绍,并且对基于图论的交互式遥感图像分割法进行了详细的分析。
关键词:图论;遥感图像分割算法;图像分割中图分类号:tp391.41 文献标识码:a 文章编号:1007-9599 (2012) 17-0000-021 引言遥感图像分割就是把感兴趣的区域(也就是目标区域)从遥感图像中分割出来,目前图像分割是进行图像处理的一个重要环节,同时遥感图像处理技术也是对信息进行获取的重要渠道,因此遥感图像分割技术也具有相当重要的意义。
现今遥感图像分割的算法比较多,最近流行起来的是基于图论的遥感图像分割算法,他采用的是图的分割理论[1],虽然还需要对此进行进一步的研究,但是已经在军事和农业等众多领域进行广泛应用。
2 图像分割的评价标准把图像的图像点映射成为是图的顶点,以此来构造出一个加权图,然后进行相应的分割,这就是基于图论的图像分割方法。
但是这种方法中所构造出的加权图的顶点的规模相当的大,导致分割的实时性也就比较差。
但是遥感图像分割技术具有很强的实践性和实用性,所以其实时性也就成为了对图像分割的评价标准之一。
另外遥感图像分割技术是对所分割出的目标区域进行分析,研究出其较为详细的内容,所以会所能够对其目标物额进行准确的分割是对其进行研究的基础,精确度也就成为对图像分割进行评价的标准之一[2]。
3 基于图论的交互式遥感图像分割法我们已经知道图像分割技术采用的是图的分割理论,那么基于图论的图像分割方法也是把图像的像素点当成是图的顶点,以此构造出一个无向加权图,然后对其相似度矩阵的特征向量进行求解。
但是这些直接用图像像素所构造出来的图的尺寸比较大,那么需要求解的特征值以及特征向量的运算量也就都比较大。
遥感数字图像处理教程_图像分割
图像分割是指将一幅图像分成若干个具有一定语义的区域的过程。
在
遥感图像处理中,图像分割是一项重要的任务,可以用来提取地表覆盖类型、检测目标等。
图像分割方法有很多种,常见的包括基于阈值、基于边缘、基于区域
和基于特征的方法。
基于阈值的图像分割是最简单的方法之一,通过设定一个阈值,将图
像中灰度值高于或低于该阈值的像素分为不同的区域。
这种方法适用于目
标与背景之间的灰度差异明显的情况。
基于边缘的图像分割是通过检测图像中的边缘来进行分割的。
常见的
边缘检测算法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像
中不同区域的边界分开。
基于区域的图像分割是将图像划分为具有一定连通性和一致性的区域。
该方法首先通过像素之间的相似性来合并区域,然后再根据区域的属性进
行进一步的合并和细分。
基于特征的图像分割是利用图像中的一些特征来进行分割,如颜色、
纹理、形状等。
通过提取图像中的特征并使用合适的分类算法,可以将图
像分割为具有不同特征的区域。
图像分割在遥感图像处理中有着广泛的应用,例如提取森林、湖泊等
地表覆盖类型,检测城市建筑、道路等目标,以及监测农作物、污染等环
境指标。
基于深度学习的遥感图像分类与分割算法研究深度学习技术在遥感图像分类与分割领域中具有广泛的应用前景。
遥感图像是通过遥感技术获取的大范围、高分辨率的地球表面图像,包含丰富的地物信息。
遥感图像的分类与分割对于地质勘探、环境监测、农业发展等领域具有重要作用。
本文将研究基于深度学习的遥感图像分类与分割算法,以提高遥感图像处理的精度和效率。
一、引言遥感图像是通过卫星、飞机等高空平台获取的图像,具有地理信息的广覆盖性和高分辨率特点。
传统的遥感图像分类与分割方法主要依赖于手工设计的特征提取算法,对于不同类型的遥感图像需要进行特征工程的设计。
然而,特征工程具有主观性和局限性,不能很好地适应各种不同的遥感图像场景。
深度学习技术具有自动学习和特征表示的能力,可以更好地适应复杂的遥感图像特征。
因此,基于深度学习的遥感图像分类与分割方法受到越来越多的关注。
二、深度学习在遥感图像分类与分割中的应用1. 卷积神经网络(CNN)在遥感图像分类中的应用卷积神经网络是深度学习中最常用的网络结构之一,具有良好的特征提取和分类能力。
在遥感图像分类中,CNN可以通过多层卷积和池化操作提取图像中的空间信息和语义信息,并通过全连接层进行分类预测。
通过训练大量的标注数据,CNN可以学习到遥感图像的特征表示,从而实现高精度的分类。
2. 循环神经网络(RNN)在遥感图像分割中的应用循环神经网络是一种能够处理序列数据的神经网络模型,对于遥感图像的像素级别分割具有优秀的性能。
通过引入长短期记忆(LSTM)单元,RNN可以学习到遥感图像中像素之间的空间相关性,从而实现精确的像素级别分割。
RNN在处理遥感图像时,可以考虑到像素的上下文信息,提高了分割算法的精度。
三、基于深度学习的遥感图像分类与分割算法研究1. 深度卷积神经网络(DCNN)算法深度卷积神经网络是一种具有多层卷积层和池化层的网络结构,可以通过多层的卷积和池化操作提取遥感图像中的特征。
DCNN算法通过端到端的训练方式,可以自动学习遥感图像的特征表示,并通过全连接层实现图像的分类。
高光谱遥感图像分割方法研究与比较评估摘要:高光谱遥感图像的分割是一项重要的研究领域,它在环境监测、农业管理、城市规划等各个领域有着广泛的应用。
本文对高光谱遥感图像分割方法进行了综述和比较评估,包括基于像素、基于区域和基于深度学习的方法。
通过对比各种方法在不同图像数据集上的分割效果和计算效率,可以为高光谱遥感图像分割的选择提供参考依据。
1. 介绍高光谱遥感图像是一种能够提供丰富光谱信息的遥感图像,它包含了大量的光谱波段,可以提供比传统彩色图像更详细的信息。
高光谱遥感图像的分割是将图像中的不同目标或区域进行划分和分类的过程,在遥感图像处理中具有重要的应用价值。
近年来,随着高光谱遥感技术的发展,各种分割方法也得到了广泛的研究和应用。
2. 高光谱遥感图像分割方法2.1 基于像素的方法基于像素的方法是最常见和最基础的高光谱遥感图像分割方法。
这种方法将每个像素点视为一个独立的样本,并根据像素的光谱特征进行分类。
常见的基于像素的分割方法包括阈值分割、K-means聚类和支持向量机等。
这些方法简单、快速,但在处理具有复杂空间结构的高光谱图像时效果较差。
2.2 基于区域的方法基于区域的方法将高光谱图像划分为一系列连续的区域,然后利用区域间的相似性进行分类。
这种方法能够克服基于像素的方法处理复杂空间结构的局限性,但对区域边界的准确性要求较高。
常见的基于区域的分割方法包括区域生长、区域合并和图割方法等。
2.3 基于深度学习的方法深度学习在图像分割领域取得了显著的成果,对于高光谱遥感图像分割同样适用。
基于深度学习的方法通过神经网络实现对高光谱图像的特征学习和分类识别。
常见的基于深度学习的分割方法包括卷积神经网络(CNN)和全卷积神经网络(FCN)等。
这些方法具有较高的分割精度,但计算复杂度较高。
3. 比较评估为了更好地选择合适的高光谱遥感图像分割方法,本文在多个常用的数据集上对不同方法进行了比较评估。
首先,我们选择了一组高光谱遥感图像数据,包括不同地物类别和复杂的空间分布。
基于深度学习的遥感图像分类与分割遥感图像分类与分割是遥感技术在实际应用中的重要领域之一。
随着深度学习技术的快速发展,基于深度学习的遥感图像分类与分割方法也取得了显著的进展。
本文将介绍基于深度学习的遥感图像分类与分割的概念和方法,并探讨其在遥感图像处理领域的应用前景。
一、概述遥感图像分类与分割是将遥感图像分为不同的类别,并将同类像素聚集成连续的区域的过程。
与传统的遥感图像处理方法相比,基于深度学习的方法具有更高的准确率和鲁棒性。
深度学习是一种模拟人脑神经网络的机器学习方法,可以通过大量的数据进行训练,从而获得更好的图像分类和分割结果。
二、基于深度学习的遥感图像分类方法基于深度学习的遥感图像分类方法主要包括卷积神经网络(CNN)和循环神经网络(RNN)。
CNN可以有效地提取图像的空间特征,通过多层卷积和池化操作,逐渐减小图像的尺寸并增加特征映射的数量,最终得到丰富的特征表示。
RNN则可以对图像中的时序信息进行建模,适用于时间序列的遥感图像分类任务。
在遥感图像分类中,常用的深度学习模型有VGGNet、ResNet和Inception等。
这些模型由于其架构的优势,在图像分类问题上取得了很好的效果。
此外,还可以通过迁移学习的方法,将在大规模自然图像数据集上训练的深度学习模型应用于遥感图像分类任务。
迁移学习可以充分利用已有模型的特征提取能力,减少训练时间和样本数量的需求,同时提高分类准确率。
三、基于深度学习的遥感图像分割方法基于深度学习的遥感图像分割方法主要包括全卷积网络(FCN)、U-Net和SegNet等。
这些方法采用了编码器-解码器结构,可以有效地捕捉图像的空间信息,并生成像素级别的分割结果。
FCN是最早被提出并广泛应用于图像分割的模型之一,它将传统的全连接层替换为卷积层,保留了图像的空间信息。
U-Net模型则在FCN的基础上添加了跳跃连接,可以更好地保留图像的细节信息,适用于小目标的分割任务。
SegNet模型则添加了对应的解码器网络,用于还原图像分辨率。