ICP测试及样品前处理解析
- 格式:ppt
- 大小:1018.50 KB
- 文档页数:33
用ICP-MS测定土壤重金属的注意事项ICP-MS是一种常见的用于测定土壤中重金属含量的分析技术,具有高灵敏度和高分辨率的特点。
在进行土壤重金属含量测定时,需要注意一系列问题,以确保测定结果的准确性和可靠性。
本文将从样品处理、仪器操作和数据处理等方面介绍ICP-MS测定土壤重金属的注意事项。
一、样品处理1. 样品采集在进行土壤重金属含量分析前,首先需要进行样品采集。
采集土壤样品时应注意避免使用金属容器或工具,以防止外部金属元素的污染。
应在不同的采集点采集足够数量的样品,并进行混合取样,以减小采样误差。
2. 样品前处理土壤样品在进行ICP-MS分析前需要进行前处理,包括样品干燥、研磨和筛分等步骤。
在进行样品前处理时,应尽量避免使用含有重金属元素的试剂或容器,以防止外源污染。
在进行样品前处理时需注意严格控制样品的质量和数量,以确保分析结果的准确性和可靠性。
二、仪器操作1. 仪器准备在进行ICP-MS分析前,需要对仪器进行准备和校准。
在进行仪器准备时,应注意检查ICP-MS仪器的各项参数和性能是否正常,包括等离子体稳定性、离子透镜电压和射频功率等。
在进行校准时,应使用标准品进行仪器校准,以确保分析结果的准确性和可靠性。
2. 仪器操作在进行ICP-MS分析时,需注意严格控制实验条件,包括等离子体稳定性、流速和温度等。
需注意对各项参数进行实时监测和调整,以确保分析结果的准确性和可靠性。
在进行样品分析时需注意避免交叉污染和样品稀释,以确保分析结果的准确性和可靠性。
三、数据处理2. 数据解释在进行ICP-MS分析后,需要对分析结果进行解释和评价。
在进行数据解释时,应注意对分析结果进行科学分析和合理解释,包括与相关标准和法规的比较等。
在进行数据解释时需注意根据具体实际情况进行合理评价和建议,以确保分析结果的准确性和可靠性。
ICP-MS的前处理7大法宝(附应用案例)具体到ICP-MS分析的时候,前处理显得就更为重要了,因为它对基体的耐受性要比原子吸收、原子荧光等要差些。
合适的前处理方法不但能保证你的测试结果的准确性,也能减小分析对仪器造成的伤害,同时小析姐也会分享一个我们常见的实验作为案例分享。
下面介绍下一些无机分析的前处理方法。
如下图,这个分类是简单的归纳,有些可能互相包含,但是为了叙述方便暂且如此吧,高手轻拍!一、稀释法很多人可能会说这也叫前处理吗?没错,这是比较省时的前处理,但是如果你说它容易的话说明你确实还处于无机分析的初级阶段。
有的样品可不经复杂的预处理过程,如血清、组织液等本身为液体的样品,在测定其中的金属元素含量时,可用水、稀酸溶液、含表面活性剂(如Triton X-100)或有机溶剂(如正丁醇、乙酸乙酯)的水溶液简单稀释后测定。
二、酸提取用酸溶液直接从样品中提取待测成分,不需完全分解破坏有机物,只需将待测成分定量转移到溶液中,故所用试剂量比较少,处理过程简单,处理条件温和,空白值低且造成待测成分损失或污染的可能性小。
但需注意基体干扰和提取效率是否能达到分析要求。
三、矿物化法无机分析中应用较为广泛的方法,一般习惯叫消化法。
可分为干法和湿法两种。
这种方法基本上消灭了样品中的有机物,故曰矿物化。
因为绝大多数样品都是以有机物的形式存在的,消化的目的是用以破坏和分解样品本身的有机成分,使被检的无机离子分离出来。
湿法消化指在加热条件下,用氧化性强酸、或混合酸,破坏和分解有机物,适用于大多数样品。
常用的酸有硝酸、盐酸、高氯酸以及它们的混合,常用的混酸比例为硝酸+高氯酸=4+1或5+1,特殊行业会用到硫酸和氢氟酸。
但是干法消化对于一些低温元素是不适用的,如铅、镉、汞等,它们在高温下很容易损失。
即便是高温元素,有些也是不适用于干法的,如测定铁元素的时候,样品在灰化过程中铁很有可能转化成四氧化三铁,稀酸打不开,结果往往容易偏低。
1、测定铁矿石硅、磷、锰、砷、锌①称取0.1000g已干燥并磨细的试样于干净、已铺有0.8 g混合熔剂(按无水碳酸钠:硼酸=2:1的比例,分别粉碎后拌匀,存放于干燥器内)的铂金坩埚内,用玻璃棒拌匀,再加0.8g混合熔剂均匀地覆盖试样,盖上坩埚盖。
然后于900 -950℃的马弗炉内熔融12-15min,取出冷却后,放人250 ml高型烧杯(内装80 ml热水)内,边摇动边加人20 ml浓硝酸,置低温电炉上加热至熔块全部溶解后,取下冷却,用水洗出铂金坩埚,溶液移人200 ml容量瓶中,用水稀释至刻度,摇匀。
溶液引入ICP光谱仪分析,记录检测强度或百分含量。
注意事项:ICP - AES关键是制备试样溶液。
铁矿石的化学分析,原已具备较完善的溶样方法,用原化学溶样方法溶解后,直接将溶液(浓度为1 mg/ml)引入ICP光谱仪测定,结果是五个元素的工作曲线均呈良好的线性状态,但发现标样回收率较低,且炬管使用一周便受到严重的污染,雾化器也容易堵塞,分析的准确度无法保证。
溶液稀释5倍(即浓度为0.2 mg/ml )后再分析,发现硅、锰、锌这些离子浓度稍大的元素,其分析精确度有所提高,但离子浓度较低的元素,如磷和砷的分析精确度则较前差,标样回收率低及炬管、雾化器污染现象并无改观。
初步证明原化学溶样方法不能用于ICP光谱仪上。
炬管污染和雾化器容易堵塞及分析精确度低的问题得到了答案:是由于溶解样品加人的碱性熔剂量过大造成的。
碱熔法溶解样品,分解能力强,熔融物浸出比较方便,速度也较快,加大熔剂的用量可加速样品的溶解,对化学分析影响不大。
但导人ICP光谱仪内分析时,由于溶液需通过毛细管般的雾化器,碱熔后钠离子浓度较大时,钠盐容易析出而将雾化器堵塞。
经反复试验熔剂加入量对样品溶解状态的影响,发现熔剂量小于1g时,样品熔得不完全,且熔块溶解时间长,溶液静置后有少量黑色或灰色沉积物。
当熔剂量加至大于2. 5g时,样品虽能完全溶解,且熔块溶解时间短,但雾化器容易堵塞。
分析样品预处理ICP-AES分析的样品预处理Ⅰ概述随着技术的发展ICP-AES分析仪器的普及,商品仪器引进了多种高新技术成果,使ICP仪器向功能更优化、更自动化以及结构紧凑型方向发展,特别是在仪器控制和数据处理上向数字化、网络化方面发展。
原子发射光谱仪器给人们的印象,已从上世纪中期的“庞然大物的大型仪器,发展成小型实用的常规仪器。
从而使ICP-AES分析技术作为理想的元素分析手段,其易用性和通用性表现得更为突出,已成为元素分析的常规手段,检测实验室的必备仪器。
1、ICP-AES分析性能特点等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。
电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。
而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。
这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。
一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。
ICP-AES分析方法便具有这些优异的分析特性:⑴ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。
ICP质量检测标准引言ICP(Inductively Coupled Plasma)是一种常用的化学分析技术,广泛应用于环境、食品、医药等领域的质量检测。
ICP质量检测标准是为了保证ICP分析结果准确可靠而制定的一系列指导规范。
本文将介绍ICP质量检测标准的要求和相关的实施措施。
ICP质量检测标准的目的ICP质量检测标准的最终目的是保证分析结果的准确性和可靠性,为环境保护、食品安全等领域提供可靠的数据支持。
通过规范样品处理、仪器操作、质量控制等方面的要求,确保ICP分析结果的可靠性,避免误差和不确定性的产生。
ICP质量检测标准的要求样品处理在进行ICP质量检测前,需要对样品进行处理,以提取样品中的目标分析物。
样品处理需符合以下要求: 1. 确保样品的代表性:样品选择应符合实际需要,能够有效代表被检测物体的特征。
2. 适当的样品前处理:根据样品的特点和分析要求,选择适当的前处理方法,如酸溶解、加热处理等。
3. 样品处理的可重复性:样品处理方法需要具备良好的可重复性,确保每次处理的样品都能保持一致的分析特性。
仪器操作ICP质量检测需要使用ICP仪器,仪器操作需符合以下要求: 1. 仪器的校准和验证:在每次使用ICP仪器前,需要进行仪器的校准和验证,以确保仪器的准确性和可靠性。
2. 仪器的稳定性:在ICP分析过程中,需要保证仪器的稳定性,避免仪器因各种原因而产生误差。
3.仪器的维护和保养:定期对ICP仪器进行维护和保养,包括清洁和检修,确保仪器的正常工作。
质量控制质量控制是ICP质量检测中至关重要的环节,需要符合以下要求:1. 样品的固定含量:在ICP分析中引入合适的固定含量样品进行校正和质量控制,确保分析结果的准确性和可靠性。
2. 校准曲线和质控样品的制备:制备合适的校准曲线和质控样品,确保分析过程中的准确校正和质控。
3. 重复性和精密度的控制:对ICP分析过程中的重复性和精密度进行控制,以保证结果的可靠性和可重复性。
ICP样品前处理⽅法1、测定铁矿⽯硅、磷、锰、砷、锌①称取0.1000g已⼲燥并磨细的试样于⼲净、已铺有0.8 g混合熔剂(按⽆⽔碳酸钠:硼酸=2:1的⽐例,分别粉碎后拌匀,存放于⼲燥器内)的铂⾦坩埚内,⽤玻璃棒拌匀,再加0.8g混合熔剂均匀地覆盖试样,盖上坩埚盖。
然后于900 -950℃的马弗炉内熔融12-15min,取出冷却后,放⼈250 ml⾼型烧杯(内装80 ml热⽔)内,边摇动边加⼈20 ml浓硝酸,置低温电炉上加热⾄熔块全部溶解后,取下冷却,⽤⽔洗出铂⾦坩埚,溶液移⼈200 ml容量瓶中,⽤⽔稀释⾄刻度,摇匀。
溶液引⼊ICP光谱仪分析,记录检测强度或百分含量。
注意事项:ICP - AES关键是制备试样溶液。
铁矿⽯的化学分析,原已具备较完善的溶样⽅法,⽤原化学溶样⽅法溶解后,直接将溶液(浓度为1 mg/ml)引⼊ICP光谱仪测定,结果是五个元素的⼯作曲线均呈良好的线性状态,但发现标样回收率较低,且炬管使⽤⼀周便受到严重的污染,雾化器也容易堵塞,分析的准确度⽆法保证。
溶液稀释5倍(即浓度为0.2 mg/ml )后再分析,发现硅、锰、锌这些离⼦浓度稍⼤的元素,其分析精确度有所提⾼,但离⼦浓度较低的元素,如磷和砷的分析精确度则较前差,标样回收率低及炬管、雾化器污染现象并⽆改观。
初步证明原化学溶样⽅法不能⽤于ICP光谱仪上。
炬管污染和雾化器容易堵塞及分析精确度低的问题得到了答案:是由于溶解样品加⼈的碱性熔剂量过⼤造成的。
碱熔法溶解样品,分解能⼒强,熔融物浸出⽐较⽅便,速度也较快,加⼤熔剂的⽤量可加速样品的溶解,对化学分析影响不⼤。
但导⼈ICP 光谱仪内分析时,由于溶液需通过⽑细管般的雾化器,碱熔后钠离⼦浓度较⼤时,钠盐容易析出⽽将雾化器堵塞。
经反复试验熔剂加⼊量对样品溶解状态的影响,发现熔剂量⼩于1g时,样品熔得不完全,且熔块溶解时间长,溶液静置后有少量⿊⾊或灰⾊沉积物。
当熔剂量加⾄⼤于2. 5g时,样品虽能完全溶解,且熔块溶解时间短,但雾化器容易堵塞。
ICP-AES分析颗粒物样品中无机元素(1)样品制备①滤膜样品的处理:将有机膜样品剪碎,放入锥形瓶中,加入去离子水润湿,加入15ml HNO3(分析纯)和5ml HClO4(分析纯),在电炉上加热,温度控制在100℃以下。
样品与酸不断反应约1小时后,有白烟冒出,此时高氯酸HClO4开始分解,提高温度加热至酸剩余约3ml时,将锥形瓶取下,冷却后加入少许去离子水,过滤残渣,定容至15ml待测。
过滤后的残渣放回原锥形瓶中,加入30ml 2%KOH溶液煮沸半小时,再过滤后定容至50ml,检测Si含量。
○2粉末样品的处理:准确称取固体粉末样品0.1克左右,一式两份,一份用于酸溶处理,分析除硅以外的元素,最后要滴加HF酸,所以使用聚四氟烧杯作容器;另一份放入镍或铁坩埚,在电炉上加入KOH熔融,然后定容至100ml,测Si含量。
○3膜样品和固体粉末也可以用消解炉溶解,将试样放入25ml消化管中,加入7mlHNO3(分析纯)和3ml HClO4(分析纯)。
将消化炉温度调到100℃加热消化24小时,之后将炉温调到260℃,直至HClO4分解冒白烟。
消化管在消解过程中起到了回流的作用,加热至溶液剩余3ml左右,冷却后定容到15ml,可测定Ti、Al、Mn、Ca、Mg、Na、K、Cu、Zn、Pb、Cr、Ni、Co、Fe、V等,但测Si仍需碱溶。
○4样品制备质控:选择水系沉积物标样GSD-6作为样品制备的质量控制标样,用相同的制备方法处理标样。
○5配制标准溶液:使用光谱纯标准试剂,将标样配成浓度为1mg/ml的储备液。
分析时稀释为浓度10-100mg/l不等的含有待测元素的混合标准溶液。
(2)实验条件①基本参数:功率:1.1KW观察高度:线圈以上16mm冷却气流量:17 L/min载气流量:0.5 L/min②分析线选择:多通道仪器通道已经确定,能够测定的元素其分析线均已确定。
③分析:启动仪器,描迹,建立分析控制表,点燃等离子矩,标准化,分析样品。
《样品前处理技术与ICP-MS联用检测环境中的痕量稀土元素》一、引言随着现代工业和科技的发展,稀土元素在诸多领域的应用日益广泛,包括冶金、石油化工、新能源等。
然而,稀土元素的广泛应用也给环境带来了潜在的风险。
因此,准确、高效地检测环境中的痕量稀土元素,对于环境保护和生态安全具有重要意义。
样品前处理技术和ICP-MS(电感耦合等离子体质谱)联用技术为这一目标提供了有效的手段。
本文将详细介绍样品前处理技术以及ICP-MS联用检测环境中的痕量稀土元素的方法和原理。
二、样品前处理技术样品前处理是分析化学中的一个重要环节,其目的是将复杂样品中的目标组分进行分离、纯化和富集,以便进行后续的检测。
针对稀土元素的检测,样品前处理技术主要包括以下几个方面:1. 样品采集与保存:根据不同的环境类型(如水体、土壤、沉积物等),选择合适的采样方法和工具,确保样品的完整性和代表性。
同时,要遵循正确的采样和保存程序,以防止样品在处理过程中受到污染或发生化学反应。
2. 样品破碎与研磨:将采集的样品进行破碎和研磨,以便后续的化学处理和分离。
破碎和研磨的过程中,应尽量避免使用金属器械,以减少可能引入的污染物。
3. 酸消化与溶解:将破碎后的样品与适量的酸进行消化,使稀土元素以离子形式溶解在溶液中。
常用的酸包括硝酸、盐酸、氢氟酸等。
消化过程中要严格控制温度和时间,以防止溶液蒸发或发生其他化学反应。
4. 分离与纯化:通过离子交换、共沉淀、萃取等方法将稀土元素与其他杂质进行分离和纯化。
这一步骤的目的是提高稀土元素的纯度,降低背景干扰,从而提高检测的准确性。
三、ICP-MS联用技术ICP-MS是一种高灵敏度、高精度的分析技术,可同时检测多种元素。
其基本原理是将样品中的离子通过电感耦合等离子体进行激发和电离,然后根据不同元素的离子质谱特征进行检测。
针对稀土元素的检测,ICP-MS具有以下优点:1. 高灵敏度:ICP-MS可同时检测多种元素,且具有较高的灵敏度,可检测到痕量级别的稀土元素。