导数微积分公式
- 格式:docx
- 大小:18.52 KB
- 文档页数:7
常用微积分式导数公式微积分是数学的一个重要分支,用于研究函数的变化规律。
在微积分中,导数是一个重要概念,用于描述函数在特定点的变化率。
下面是常用微积分式中的一些导数公式:1.基本导数公式:- 常数的导数是0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = n*x^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(ln(x)) = 1/x。
2.三角函数的导数公式:- 正弦函数的导数:d/dx(sin(x)) = cos(x)。
- 余弦函数的导数:d/dx(cos(x)) = -sin(x)。
- 正切函数的导数:d/dx(tan(x)) = sec^2(x)。
- 余切函数的导数:d/dx(cot(x)) = -csc^2(x)。
- sec函数的导数:d/dx(sec(x)) = sec(x) * tan(x)。
- csc函数的导数:d/dx(csc(x)) = -csc(x) * cot(x)。
3.反三角函数的导数公式:- 反正弦函数的导数:d/dx(arcsin(x)) = 1 / sqrt(1 - x^2)。
- 反余弦函数的导数:d/dx(arccos(x)) = -1 / sqrt(1 - x^2)。
- 反正切函数的导数:d/dx(arctan(x)) = 1 / (1 + x^2)。
- 反余切函数的导数:d/dx(arccot(x)) = -1 / (1 + x^2)。
- 反sec函数的导数:d/dx(arcsec(x)) = 1 / (,x, * sqrt(x^2- 1))。
- 反csc函数的导数:d/dx(arccsc(x)) = -1 / (,x, * sqrt(x^2 - 1))。
4.复合函数的导数公式:- 若y = f(g(x)),则y对x的导数为dy/dx = f'(g(x)) * g'(x)。
5.对数微分法则:- 若y = log_b(x),则dy/dx = 1 / (x * ln(b))。
常用微积分式导数公式微积分是数学中的一个重要分支,它研究函数的变化率和积分等。
函数的导数是微积分中的重要概念之一,它表示函数在其中一点上的变化率,也可以理解为函数曲线上其中一点的切线斜率。
式导数是求函数的导数的过程,是微积分中的基本运算之一、下面是常用的微积分式导数公式。
1.一元函数的导数公式:- 常数函数的导数为0:d(c) / dx = 0,其中c为常数。
- 幂函数的导数:d(x^n) / dx = nx^(n-1),其中n为实数,x为自变量。
- 指数函数的导数:d(e^x) / dx = e^x,其中e为自然对数的底数。
- 对数函数的导数:d(ln(x)) / dx = 1 / x,其中ln表示自然对数。
-三角函数的导数:- d(sin(x)) / dx = cos(x)- d(cos(x)) / dx = -sin(x)- d(tan(x)) / dx = sec^2(x)- d(cot(x)) / dx = -csc^2(x)- d(sec(x)) / dx = sec(x) * tan(x)- d(csc(x)) / dx = -csc(x) * cot(x)2.复合函数的导数规则:- 链式法则:若y = f(u)和u = g(x)都是可导函数,则d(y) / dx= d(y) / du * d(u) / dx。
- 乘积法则:若y = u * v,则d(y) / dx = u * d(v) / dx + v *d(u) / dx。
- 商规则:若y = u / v,则d(y) / dx = (v * d(u) / dx - u *d(v) / dx) / v^23.高阶导数公式:- 若y = f(x)是可导函数,则它的n阶导数可以表示为d^n(y) /dx^n。
- 幂函数的n阶导数:d^n(x^n) / dx^n = n!,其中n!表示n的阶乘。
- 指数函数的n阶导数:d^n(e^x) / dx^n = e^x,其中e为自然对数的底数。
导数微积分公式大全导数是微积分中非常重要的概念,它表示函数在其中一点的变化率。
为了计算导数,我们需要使用一系列的微积分公式。
下面是一份包含最常用的导数公式的清单:1.基本导数公式:-常数函数:如果f(x)=c,则f'(x)=0,其中c是一个常数。
- 幂函数:如果f(x) = x^n,则f'(x) = nx^(n-1),其中n是一个实数。
-指数函数:如果f(x)=e^x,则f'(x)=e^x。
- 对数函数:如果f(x) = ln(x),则f'(x) = 1/x。
- 正弦函数:如果f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数:如果f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数:如果f(x) = tan(x),则f'(x) = sec^2(x)。
2.基本运算规则:- 常数乘法规则:如果f(x)和g(x)都是可导函数,且c是常数,则(cf(x))' = c(f'(x))。
-加法规则:如果f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)。
-乘法规则:如果f(x)和g(x)都是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
-除法规则:如果f(x)和g(x)都是可导函数,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^23.链式法则:-如果h(x)=f(g(x)),其中f和g都是可导函数,则h'(x)=f'(g(x))g'(x)。
4.反函数法则:- 如果y = f(x)是可导函数,且在x处有非零的导数,则它的反函数x = f^(-1)(y)的导数为(dx/dy) = 1/(dy/dx)。
5.高阶导数:-如果f(x)的导数f'(x)存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x),依此类推。
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
导数微分不定积分公式一、导数1.定义导数是函数在其中一点的变化率,表示函数在该点的切线斜率。
对于函数$f(x)$,在点$x=a$处的导数表示为$f'(a)$或$\frac{{df}}{{dx}}\bigg,_{x=a}$。
导数的几何意义是函数图像在该点处的切线斜率。
2.基本导数公式常见函数的导数公式如下:常值函数的导数为零:$\frac{{d}}{{dx}}(C) = 0$,其中$C$为常数。
幂函数的导数:$\frac{{d}}{{dx}}(x^n) = nx^{n-1}$,其中$n$是实数。
指数函数的导数:$\frac{{d}}{{dx}}(a^x) = a^x \ln{a}$,其中$a>0$。
对数函数的导数:$\frac{{d}}{{dx}}(\log_a{x}) = \frac{{1}}{{x \ln{a}}}$,其中$a>0$且$a\neq 1$。
三角函数的导数:$\frac{{d}}{{dx}}(\sin{x}) = \cos{x}$$\frac{{d}}{{dx}}(\cos{x}) = -\sin{x}$$\frac{{d}}{{dx}}(\tan{x}) = \sec^2{x}$$\frac{{d}}{{dx}}(\cot{x}) = -\csc^2{x}$$\frac{{d}}{{dx}}(\sec{x}) = \sec{x}\tan{x}$$\frac{{d}}{{dx}}(\csc{x}) = -\csc{x}\cot{x}$二、微分1.定义微分表示函数在其中一点附近的变化情况,主要有全微分和偏微分两种。
全微分:对于函数$z=f(x,y)$,在点$(x_0,y_0)$处全微分表示为$dz=\frac{{\partial z}}{{\partial x}}dx+\frac{{\partialz}}{{\partial y}}dy$,其中$\frac{{\partial z}}{{\partial x}}$和$\frac{{\partial z}}{{\partial y}}$分别表示对于$x$和$y$的偏微分。
导数微分积分公式大全导数微分公式:1.常数函数的导数:f(x)=C,则f'(x)=0。
2. 幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1)。
3. 指数函数的导数:f(x) = a^x,则f'(x) = a^x * ln(a)。
4. 对数函数的导数:f(x) = ln(x),则f'(x) = 1/x。
5.三角函数的导数:- 正弦函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),则f'(x) = sec^2(x)。
6.反三角函数的导数:- 反正弦函数的导数:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
- 反余弦函数的导数:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
- 反正切函数的导数:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
7.当两个函数相加时,其导数为两个函数的导数之和。
8.当两个函数相乘时,其导数为一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以一个函数。
9.当一个函数的导数与一个常数相乘时,其导数等于常数乘以函数的导数。
10.当一个函数的导数与一个指数函数的底数e相乘时,其导数等于函数的导数。
积分公式:1. 幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。
2.三角函数的积分:- 正弦函数的积分:∫sin(x) dx = -cos(x) + C。
- 余弦函数的积分:∫cos(x) dx = sin(x) + C。
- 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。
3.反三角函数的积分:- 反正弦函数的积分:∫arcsin(x) dx = x * arcsin(x) + √(1-x^2) + C。
微积分的全部公式微积分是数学的一个重要分支,研究函数的变化规律和各种变化量之间的关系。
微积分的公式是研究微积分的基础,下面将介绍一些微积分的重要公式。
1. 导数的定义公式:导数可以理解为函数在某一点上的变化率,用数学符号表示为f'(x)或者dy/dx。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x)是函数,h是无穷小的增量。
2. 导数的基本公式:导数具有一些基本的运算规则,包括常数因子法则、求和法则、乘积法则和商法则。
这些公式可以简化对函数的导数计算。
- 常数因子法则:如果f(x)是一个函数,k是一个常数,则有(d/dx)(k*f(x)) = k*(d/dx)f(x)- 求和法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)+g(x)) = (d/dx)f(x) + (d/dx)g(x)- 乘积法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)*g(x)) = f(x)*(d/dx)g(x) + g(x)*(d/dx)f(x)- 商法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)/g(x)) = [g(x)*(d/dx)f(x) - f(x)*(d/dx)g(x)] / [g(x)]^23. 积分的定义公式:积分可以理解为函数在区间上的累积和,用数学符号表示为∫f(x)dx。
积分的定义公式为:∫f(x)dx = F(x) + C其中,F(x)是函数f(x)的原函数,C是常数。
4. 积分的基本公式:积分也具有一些基本的运算规则,包括常数法则、线性法则、分部积分法和换元积分法。
这些公式可以简化对函数的积分计算。
- 常数法则:∫k*f(x)dx = k*∫f(x)dx,其中k是一个常数- 线性法则:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx- 分部积分法:∫f(x)*g(x)dx = f(x)*∫g(x)dx - ∫[f'(x)*∫g(x)dx]dx- 换元积分法:如果u = g(x)是一个可导函数,则有∫f(g(x))g'(x)dx = ∫f(u)du5. 泰勒级数公式:泰勒级数是用一组多项式逼近函数的方法,可以将复杂的函数近似表示为多项式的形式。
常用微积分式导数公式微积分是数学中重要的分支,它涉及到诸多的概念和公式。
其中导数是微积分的基本概念之一,它描述了函数的变化率。
在实际应用中,导数常常用于求解最优化问题、解微分方程、描述曲线的性质等等。
下面将介绍一些常用的微积分导数公式。
一、基本函数的导数公式:1.常数函数导数公式:如果c是一个常数,那么对于常数函数f(x)=c,它的导数为f'(x)=0。
2. 幂函数导数公式:对于幂函数f(x) = x^n,其中n是任意实数,它的导数为f'(x) = nx^(n-1)。
3. 指数函数导数公式:对于指数函数f(x) = a^x,其中a是一个正实数且a≠1,它的导数为f'(x) = a^x * ln(a)。
4. 对数函数导数公式:对于自然对数函数f(x) = ln(x),其中x>0,它的导数为f'(x) = 1/x。
5.三角函数导数公式:- 正弦函数的导数公式:f'(x) = cos(x)- 余弦函数的导数公式:f'(x) = -sin(x)- 正切函数的导数公式:f'(x) = sec^2(x)- 余切函数的导数公式:f'(x) = -csc^2(x)-反正弦函数的导数公式:f'(x)=1/√(1-x^2)-反余弦函数的导数公式:f'(x)=-1/√(1-x^2)-反正切函数的导数公式:f'(x)=1/(1+x^2)-反余切函数的导数公式:f'(x)=-1/(1+x^2)二、基本运算法则:1. 变量替换法则:如果y=f(u),且u=g(x)是可导函数,那么由链式法则可得dy/dx = (dy/du)*(du/dx)。
2.和、差、积法则:-和差法则:[f(x)±g(x)]'=f'(x)±g'(x)-积法则:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)3.乘幂法则:[f(x)^n]'=n*f'(x)*f(x)^(n-1)。
微积分的基本公式微积分是数学中的一个分支,主要研究连续变化的对象,如函数、曲线和曲面等。
微积分的基本公式是应用广泛且重要的数学工具,包括导数、积分、微分方程等。
下面将对微积分的基本公式进行详细介绍。
一、导数导数是微积分中的基本概念之一,用于描述函数在其中一点上的变化率。
导数的定义如下:对于函数y = f(x),其在特定点x处的导数表示为f'(x)或dy/dx,定义为函数曲线在该点处的切线斜率。
导数的几何意义是函数曲线在其中一点的切线斜率的极限值。
导数的基本公式包括:1.常数导数公式:如果f(x)=k,其中k是常数,则f'(x)=0。
2. 幂函数导数公式:对于f(x) = x^n,其中n是实数,则f'(x) = nx^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,其中e是自然对数的底,则f'(x)=e^x。
4. 对数函数导数公式:对于f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。
5. 三角函数导数公式:对于f(x) = sin(x),则f'(x) = cos(x);对于f(x) = cos(x),则f'(x) = -sin(x)。
二、积分积分是微积分中的另一个基本概念,用于计算曲线下面的面积或者曲线长度。
积分的定义如下:对于函数y = f(x),其在区间[a, b]上的积分表示为∫f(x)dx,定义为区间[a, b]上函数曲线与x轴之间的面积。
积分的基本公式包括:1. 不定积分公式:如果F(x)是f(x)的一个原函数,则∫f(x)dx =F(x) + C,其中C是常数。
这是积分的基本公式,也称为不定积分。
2. 定积分公式:如果f(x)是在区间[a, b]上连续函数,且F(x)是其原函数,则∫[a, b]f(x)dx = F(b) - F(a),其中F(a)表示F(x)在点a处的值,F(b)表示F(x)在点b处的值。
微积分的公式引言微积分是数学中的一个重要分支,研究函数的变化规律和求解与变化相关的问题。
在微积分的学习中,有一些经典的公式是我们必须掌握和熟练运用的。
本文将介绍微积分中常见的几个重要公式,并通过例子进行说明。
导数的定义和运算法则定义函数f(x)在点x=a处的导数定义为:f'(a) = lim┬(Δx→0)(f(a+Δx)−f(a))/Δx导数的运算法则•常数法则d/dx (c) = 0其中c为常数。
•幂法则d/dx(x^n) = n * x^(n-1)其中n为自然数。
•乘法法则d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)常用微积分公式极限公式•极限的四则运算法则lim┬(x→a)(f(x)±g(x)) = lim┬(x→a)f(x) ± lim┬(x→a)g(x)lim┬(x→a)(f(x)g(x)) = lim┬(x→a)f(x) * lim┬(x→a)g(x)•无穷小与无穷大的关系lim┬(x→∞)(f(x)) = ∞,当且仅当lim┬(x→∞)(1/f (x)) = 0lim┬(x→∞)(f(x)) = a,当且仅当lim┬(x→∞)(1/f(x)) = 1/a求和公式•等差数列求和公式∑┬(k=1)(n)k = n(n+1)/2积分公式•基本积分公式∫(f(x) + g(x))dx = ∫(f(x))dx + ∫(g(x))dx ∫(k * f(x))dx = k * ∫(f(x))dx其中k为常数。
•微元法∫(f(x))dx = F(x) + C其中F(x)为函数f(x)的一个原函数,C为常数。
应用示例示例1:求函数的导数已知函数f(x) = 2x^2 + 3x - 1,求f'(x)。
解: 根据幂法则,对于函数f(x) = 2x^2 + 3x - 1,我们可以先对每一项求导,再相加得到f'(x)。
导数与微积分公式导数是微积分中的重要概念,它描述了函数在其中一点上的变化率,也可以理解为函数曲线在该点处的斜率。
微积分公式则是导数与积分的数学公式,它们反映了函数在整个定义域上的性质和关系。
本篇文章将介绍导数的定义及其性质,以及常见的微积分公式。
一、导数的定义及性质导数的定义:对于给定函数f(x),若存在一个常数a,当x趋近于a 时,函数变化的速率趋近于其中一确定值,则称f(x)在a点可导,并将这个确定值称为f(x)在a点的导数,记作f'(a),即f'(a) = lim┬(h→0)〖[f(a+h)-f(a)]/h 〗其中h表示自变量x的增量。
导数的几何意义:导数可以理解为函数曲线在其中一点上的切线的斜率。
当导数为正时,函数在该点处上升;当导数为零时,函数在该点处取极值;当导数为负时,函数在该点处下降。
导数的性质:导数具有一些重要的基本性质,包括线性性、可导函数的和、差、积、商的导数计算等。
下面是其中几个重要的性质:1. 线性性质:若f(x)和g(x)在x=a点可导,则(cf(x)+dg(x))' = cf'(a) + dg'(a),其中c为常数。
2.和与差的求导:(f(x)+g(x))'=f'(x)+g'(x),(f(x)-g(x))'=f'(x)-g'(x)。
3. 常数倍的导数:(cf(x))' = cf'(x),其中c为常数。
4.积的求导:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
5.商的求导:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/[g(x)]^2,(当g(x)≠0时)。
微积分公式是微积分中经常使用的重要公式,它们是导数与积分的数学关系。
下面将介绍几个常见且重要的微积分公式。
1.关于导数的公式:(1)幂函数的导数:对于函数y=x^n,其中n为常数,则它的导数为dy/dx = nx^(n-1)。
导数微分不定积分公式一、导数导数是微积分中的重要概念,表示函数在特定点上的变化率。
假设函数y=f(x),其中x是自变量,y是因变量,那么函数在其中一点x=a处的导数表示为f'(a)或$\frac{dy}{dx}$。
导数的定义可以通过极限来表示:$$f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h是一个无穷小的增量。
导数有以下几个基本规则:1. 常数规则:如果f(x)是一个常数,那么它的导数等于零,即$\frac{d}{dx}(c) = 0$。
2. 幂函数规则:对于幂函数f(x) = $x^n$,其中n是任意实数,它的导数是f'(x) = $nx^{(n-1)}$。
3. 指数函数规则:对于指数函数f(x) = $a^x$,其中a是常数且大于零,它的导数是f'(x) = $a^x\ln(a)$。
4. 对数函数规则:对于对数函数f(x) = $\log_a{x}$,其中a是常数且大于零且不等于1,它的导数是f'(x) = $\frac{1}{x\ln(a)}$。
5.和差规则:设f(x)和g(x)是可导函数,那么它们的和(差)f(x)±g(x)的导数是f'(x)±g'(x)。
6. 积法则:设f(x)和g(x)是可导函数,那么它们的积fg的导数是f'(x)g(x)+f(x)g'(x)。
7. 商法则:设f(x)和g(x)是可导函数,且g(x)不等于零,那么它们的商$\frac{f(x)}{g(x)}$的导数是$\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。
此外,还有复合函数的导数、隐函数的导数等规则,它们的求导公式可以根据基本规则和链式法则来推导。
二、微分微分是导数的一个重要应用,它描述了函数局部变化的情况。
微分有两种方式表示,一种是微分形式,另一种是微分方程形式。
微积分常用公式及运算法则1.基本导函数:(1)常数函数导数公式:若f(x)=C,其中C是常数,则f'(x)=0。
(2) 幂函数导数公式:若f(x) = x^n,其中n是常数,则f'(x) = nx^(n-1)。
(3) 指数函数导数公式:若f(x) = a^x,其中a是正常数且a≠1,则f'(x) = a^x * ln(a)。
(4) 对数函数导数公式:若f(x) = log_a(x),其中a是正常数且a≠1,则f'(x) = 1 / (x * ln(a))。
(5)三角函数导数公式:- sin函数导数:(sinx)' = cosx。
- cos函数导数:(cosx)' = -sinx。
- tan函数导数:(tanx)' = sec^2(x)。
- cot函数导数:(cotx)' = -csc^2(x)。
- sec函数导数:(secx)' = secx * tanx。
- csc函数导数:(cscx)' = -cscx * cotx。
(6)反三角函数导数公式:- arcsin函数导数:(arcsinx)' = 1 / sqrt(1 - x^2)。
- arccos函数导数:(arccosx)' = -1 / sqrt(1 - x^2)。
- arctan函数导数:(arctanx)' = 1 / (1 + x^2)。
- arccot函数导数:(arccotx)' = -1 / (1 + x^2)。
- arcsec函数导数:(arcsecx)' = 1 / (x * sqrt(x^2 - 1)),其中,x, > 1- arccsc函数导数:(arccscx)' = -1 / (x * sqrt(x^2 - 1)),其中,x, > 1(1)常数乘法法则:若f(x)=C*g(x),其中C是常数,则f'(x)=C*g'(x)。
导数公式微分公式和积分公式一、导数公式1.基本导数公式:(1)常数函数的导数为0:(c)'=0(2) 幂函数的导数:(x^n)'=nx^(n-1)(3) 指数函数的导数:(a^x)'=a^xlna (其中a>0,a≠1)(4) 对数函数的导数:(log_ax)'=1/(xlna) (其中a>0,a≠1)(5) 正弦函数和余弦函数的导数:(sinx)'=cosx,(cosx)'=-sinx(6) 正切函数的导数:(tanx)'=sec^2x(7) 反正弦函数、反余弦函数和反正切函数的导数:(arcsinx)'=1/√(1-x^2),(arccosx)'=-1/√(1-x^2),(arctanx)'=1/(1+x^2)2.导数的四则运算:(1)和差的导数:(f+g)'=f'+g',(f-g)'=f'-g'(2) 函数与常数的乘积的导数:(cf)'=cf'(3) 积的导数:(fg)'=f'g+fg'(4) 商的导数:(f/g)'=(f'g-fg')/g^2 (其中g≠0)(5)复合函数的导数:(f(g(x)))'=f'(g(x))g'(x)二、微分公式微分可以看作函数在其中一点上对自变量的微小变化与函数值的微小变化之间的比率。
微分公式是导数概念的一个应用,常用于近似计算。
1.一阶微分公式:(1) 一个变量的微分:df=f'(x)dx(2) 两个变量的微分:df=f_xdx+f_ydy (其中f_x和f_y分别是函数f关于x和y的偏导数)2.高阶微分公式:(1) 一个变量的n阶微分:d^n f/dx^n(2) 两个变量的混合n阶微分:d^n f/dx^mdy^n-m (其中m+n为n阶)三、积分公式积分是微分的逆运算,可将一个函数的导数还原为原函数,同时也可以用于计算曲线下的面积、体积等。
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
导数、微分、积分公式总结
导数】
(1)( u ±v) = u ±J
(2) ( u v ) '= u'v+ u v'(记忆方法:U V + u v,分别在
(3)( c u) '= c u'(把常数提前)
(4 )1 ——I = ---------------
v2
关于微分】
左边:d 打头
右边:dx 置后再去掉导数符号 '即可
【微分】
设函数u= u ( x),v= V (x)皆可微,则有:
1) d( u ±
V ) = du ± dV
2) d( u V )= du V + u dV
厂u、du -V— u
dv
3) dI ——I = ——————
J V丿V2
( 5)复合函数(由外至里的“链式法则”) dy
--- =f ' ( u) •(<)
dx
其中y = f ( u), u = © ' (x)
( 6)反函数的导数:
1
[f _(y)]'= -------------
f'( x)
其中,f ' (x)工0
【导数】注:【】里面是次方的意思
( 1 )常数的导数:
( c) = 0
(2 ) x的a次幂:
“V上加')
1】
ax
3) 指数类:
x】x】
lna
x】x】
4) 对数类:
log ——log e 其中 a z 1)
xlna
lnx)
x
(5)正弦余弦类:
(sinx) '= cosx
(cosx) '= —sinx
【微分】
注:【】里面是次方的意思
(1 )常数的微分:
dC = 0
(2) x的a次幂:
【a 【a — 1】
d x = ax dx
3)指数类:
【x】【x】
da = a
(其中a > 0 , az 1)
lnad
【x】【x】
de =e dx
4)对数类:
1
dlog x = ------ log e = -------- d x 其中a > 0 , a z 1)
x a xlna
dlnx
x
5)正弦余弦类:
dsinx = cosxdx dcosx = —sinxdx
导数】
6)其他三角函数:
(tanx) '= --------- = sec2x
cos2x
1
(cotx )'= ————— = —csc2x
sin2x
(secx) '= secx •anx
(cscx) '= —cscx cotx
7 )反三角函数:
1
(arcsinx) ' = -------------- (—1 < x < 1)
/
V 1 — x2
1
(arccosx) '= ————————(—1 < x <1)
/
V 1—x2
1
( arctanx ) '= —————
1 +x2
1
( arccotx ) '= ——————
1 +x2
微分】
6)其他三角函数:
1
dtanx = ———— = sec2xdx
cos2x
dcotx
-csc2xdx
sin2x
dsecx = secx •anxdx
dcscx = —cscx cotx dx
7)反三角函数:
1
darcsinx = ------------ dx (—1 < x < 1)
/
V 1 — x2
1
darccosx = ————————dx (—1 < x <1)
/
V 1—x2
1
darctanx = —————dx
1+x2
1
darccotx = ——————dx
1+x2
导数的应用(一) ——中值定理
特殊形式
【拉格朗日中值定理】 ----------- 【罗尔定理】
【拉格朗日中值定理】
如果函数y = f (x)满足:
(1 )在闭区间〔a , b〕上连续;
(2)在开区间(a , b) 上可导。
_则:在(a , b)内至少存在一点 (a < E< b ),使得
f(b)—f(a)
f' ( B = --------------
b —a
【罗尔定理】
如果函数y = f (x)满足:
(1 )在闭区间〔a , b〕上连续;
(2)在开区间(a , b) 上可导;
(3)在区间端点的函数值相等,即
f(a)= f(b)。
_则:在(a , b )内至少存在一点 (a < Ev b ),使得f' ( B = 0
导数的应用(二)——求单调性、极值(辅助作图)【单调性】
(1)如果x €(a , b)时,恒有f' (x )>0 , 则f (x)在(a , b)内单调增加;
(2)如果x €(a , b)时,恒有f' (x )<0 , 则f (x)在(a , b)内单调减少。
【极值】
若函数f (x)在点x?处可导,且f (x)在x?处取得极值,则f'
(x?)= 0。
导数的应用(三)——曲线的凹向与拐点(辅助作图)【凹向】
设函数y = f (x)在区间(a ,b)内具有二阶导数,
(1)若当x€(a ,b )时,恒有f〃(x )>0 ,
则曲线y = f (x)在区间(a,b)内上凹;
(2)若当x€(a,b )时,恒有f〃(x )<0,
则曲线y = f (x)在区间(a,b)内下凹。
【拐点】
曲线上凹与下凹的分界点。
第一类:常数的积分
/ Odx = C
/dx = x + C (1 的积分)
/ kdx = kx + C
第二类:x的a次幂的积分
【d 1 【a+ 1】
/ x dx = x + C ( a 胡)
a+1
第三类:倒数的积分【注意:绝对值】
1
/x = ln|x| + C (x 工0)
x
第四类:指数的积分
【x】 1 【x】
/a dx = ---------- a + C (a >0 ,a 工1)
lna
【x】【x】
/e dx = e +C
第五类:三角函数的积分
/sinxdx = -cosx +C
/cosxdx = sinx +C
/tanxdx = —ln|cosx| + C 【选记】
/cotxdx = ln|sinx| + C 【选记】
/ sec2xdx = tanx + C
/ csc2xdx = —cotx + C
第六类:结果为反三角函数
1
/ ------- x = arcsinx + C = —arccosx + C?
/
V 1 — x2
1
/ ------- x = arctanx + C = —arccotx + C?
1 +x2。