1、五点法作图的步骤(精)
- 格式:doc
- 大小:546.50 KB
- 文档页数:4
五点作图法及其应用课程目标 了解函数y=Asin(ωx+φ)的物理意义;能画出函数y=Asin(ωx+φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
课程重点 了解函数y=Asin(ωx+φ)的物理意义;能画出函数y=Asin(ωx+φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;会用三角函数解决一些简单实际问题。
课程难点 了解函数y=Asin(ωx+φ)的物理意义;能画出函数y=Asin(ωx+φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;会用三角函数解决一些简单实际问题。
教学方法建议首先回顾函数y=Asin(ωx+φ)的图象与性质等基础知识。
再通过经典例题的剖析,帮助学生理解基础知识,加深对知识的认识和记忆。
再通过精题精练,使学生形成能力。
在例题和习题的选择上可以根据学生的实际情况进行。
选材程度及数量课堂精讲例题 搭配课堂训练题 课后作业 A 类 ( 3 )道 ( 3 )道 ( 5 )道 B 类 ( 1 )道 ( 1 )道 ( 5 )道 C 类( 1 )道( 1 )道( 2 )道一:考纲解读、有的放矢了解函数y=Asin(ωx+φ)的物理意义;能画出函数y=Asin(ωx+φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
用“五点作图法”作函数y=Asin(ωx+φ)的图象,同时考查三角函数图象的变换和对称性;函数y=Asin(ωx+φ)的周期性、奇偶性、单调性、值域与最值是高考考查的重点;三种题型都可能出现,以容易题、中档题为主。
二: 核心梳理、茅塞顿开1、简谐运动的有关概念 简谐运动图象的解析式振幅 周期频率 相位初相 y=Asin(ωx+φ)(A>0, ω>0)x ∈[0.+∞) AT=2πω12f T ωπ==ωx+φφ2、用五点法画y=Asin(ωx+φ)一个周期内的简图用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如表所示ωx+φ2π π32π 2πxφω- 2πφω-πφω- 32πφω-2πφω-y=Asin(ωx+φ)A-A注:在上表的三行中,找五个点时,首先确定第一行的数据,即先使ωx+φ=0,2π,π,32π,2π然后求出x 的值。
正弦函数、余弦函数的图象[学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.知识点一 正弦曲线正弦函数y =sin x (x ∈R )的图象叫正弦曲线.利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π2,…,2π等角的正弦线.③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象.在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下:只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象.知识点二 余弦曲线余弦函数y =cos x (x ∈R )的图象叫余弦曲线.根据诱导公式sin ⎝⎛⎭⎫x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图).要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象.思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象?答案题型一 “五点法”作图的应用例1 利用“五点法”作出函数y =1-sin x (0≤x ≤2π)的简图. 解 (1)取值列表:(2)描点连线,如图所示:跟踪训练1 作函数y =sin x ,x ∈[0,2π]与函数y =-1+sin x ,x ∈[0,2π]的简图,并研究它们之间的关系. 解 按五个关键点列表:利用正弦函数的性质描点作图:由图象可以发现,把y =sin x ,x ∈[0,2π]的图象向下平移1个单位长度即可得y =-1+sin x ,x ∈[0,2π]的图象.题型二 利用正弦、余弦函数图象求定义域 例2 求函数f (x )=lg sin x +16-x 2的定义域.解 由题意得,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0, 即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图象,如图所示.结合图象可得定义域:x ∈[-4,-π)∪(0,π).跟踪训练2 求函数f (x )=lg cos x +25-x 2的定义域.解 由题意得,x 满足不等式组⎩⎪⎨⎪⎧cos x >025-x 2≥0, 即⎩⎪⎨⎪⎧cos x >0-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得定义域:x ∈⎣⎡⎭⎫-5,-32π∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤32π,5.题型三 利用正弦、余弦函数图象判断零点个数例3 在同一坐标系中,作函数y =sin x 和y =lg x 的图象,根据图象判断出方程sin x =lg x 的解的个数.解 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.跟踪训练3 方程x 2-cos x =0的实数解的个数是 .答案 2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.数形结合思想在三角函数中的应用例4 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图可得k 的取值范围是(1,3).1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴 C .直线y =xD .直线x =π22.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A .(π6,12)B .(π2,1)C .(π,0)D .(2π,0)3.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2= .4.利用“五点法”画出函数y =2-sin x ,x ∈[0,2π]的简图.5.已知0≤x ≤2π,试探索sin x 与cos x 的大小关系.一、选择题1.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )2.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同3.方程sin x =x10的根的个数是( )A .7B .8C .9D .10 4.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )5.如图所示,函数y =cos x |tan x |(0≤x <3π2且x ≠π2)的图象是( )6.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 二、填空题 7.函数y =log 12sin x 的定义域是 . 8.函数y =2cos x +1的定义域是 . 9.函数f (x )=sin x +116-x 2的定义域为 . 10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为 . 三、解答题11.用“五点法”画出函数y =12+sin x ,x ∈[0,2π]的简图.12.根据y =cos x 的图象解不等式: -32≤cos x ≤12,x ∈[0,2π].13.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R .当堂检测答案1.答案 D 2.答案 A 3.答案 3π解析 如图所示, x 1+x 2=2×3π2=3π.4.解 (1)取值列表如下:(2)描点连线,图象如图所示:5.解 用“五点法”作出y =sin x ,y =cos x (0≤x ≤2π)的简图.由图象可知①当x =π4或x =5π4时,sin x =cos x ;②当π4<x <5π4时,sin x >cos x ;③当0≤x <π4或5π4<x ≤2π时,sin x <cos x .课时精炼答案一、选择题 1.答案 D 2.答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同.3.答案 A解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.4.答案 D 解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或32π≤x ≤2π,0,π2<x <32π.显然只有D 合适.5.答案 C解析 当0≤x <π2时,y =cos x ·|tan x |=sin x ;当π2<x ≤π时,y =cos x ·|tan x |=-sin x ; 当π<x <3π2时,y =cos x ·|tan x |=sin x ,故其图象为C. 6.答案 D解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π,∴S 阴影部分=S 矩形OABC =2×2π=4π. 二、填空题7.答案 {x |2k π<x <2k π+π,k ∈Z }解析 由log 12sin x ≥0知0<sin x ≤1,由正弦函数图象知2k π<x <2k π+π,k ∈Z .8.答案 ⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z .9.答案 (-4,-π]∪[0,π]解析 ⎩⎪⎨⎪⎧ sin x ≥0,16-x 2>0⇒⎩⎪⎨⎪⎧2k π≤x ≤2k π+π,-4<x <4 ⇒-4<x ≤-π或0≤x ≤π. 10.答案 ⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈⎣⎡⎦⎤π4,5π4. 三、解答题11.解 (1)取值列表如下:(2)描点、连线,如图所示.12.解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为 {x |π3≤x ≤5π6或7π6≤x ≤5π3}.实用文档文案大全 13.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧ sin x (x ≥0),-sin x (x <0). 其图象如图所示,。