磨料磨损综述
- 格式:doc
- 大小:33.00 KB
- 文档页数:5
耐磨材料的磨损机理研究耐磨材料是一类能在磨损条件下保持较高耐磨性能的材料,它们广泛应用于工业生产中的磨损环境中。
然而,耐磨材料仍然存在一定程度的磨损。
因此,研究耐磨材料的磨损机理对于改进其性能和延长使用寿命具有重要意义。
一、磨损机理的基本概念磨损是指材料表面在摩擦或其他机械作用下逐渐失去物质的过程。
磨损机理是指导致磨损过程发生的各种因素和机制。
磨损主要分为三种类型:磨削磨损、疲劳磨损和腐蚀磨损。
磨削磨损是由于颗粒在材料表面与其它材料之间的相对运动中引起的磨损。
疲劳磨损是由于材料的重复应力加载引起的破裂和磨损。
腐蚀磨损是由于材料与介质之间的化学或电化学反应引起的磨损。
二、磨损机理的研究方法磨损机理的研究通常采用实验方法和理论模型相结合的方式进行。
实验方法主要包括摩擦磨损试验和磨损机理分析。
摩擦磨损试验可以模拟实际工作条件下材料的磨损过程,通过测量磨损量和观察磨损形貌等参数来评估材料的耐磨性能。
磨损机理分析则通过对磨损表面的观察、扫描电镜分析等手段来揭示磨损的机理和过程。
理论模型则是通过建立材料磨损的数学模型,从而定量地描述磨损过程和磨损机理。
三、磨损机理的影响因素耐磨材料的磨损机理受到多种因素的影响。
首先是材料的力学性能,包括硬度、强度和韧性等。
硬度是表征材料耐磨性能的重要指标,硬度较高的材料通常具有较好的耐磨性能。
其次是摩擦条件,包括摩擦力、摩擦速度和工作温度等。
摩擦力和摩擦速度的增加都会导致材料的磨损加剧。
此外,介质以及杂质的存在也会对耐磨材料的磨损机理产生一定的影响。
四、耐磨材料的改进策略为了改进耐磨材料的耐磨性能,可以采取多种策略。
一方面,可以通过优化材料的组织结构和成分,例如通过合金化、热处理或表面改性等方式来增加材料的硬度、强度和韧性等力学性能。
另一方面,可以通过涂层或复合材料等方式增加材料的摩擦和磨损性能,例如通过在材料表面涂覆一层硬度较高的薄膜来提高耐磨材料的耐磨性能。
此外,加工工艺的改进也有助于提高耐磨材料的性能,例如通过冷加工、表面处理等方式来优化材料的结构和性能。
磨料磨损综述磨料磨损理论摘要:综述了磨料磨损理论的发展趋势, 介绍了磨料磨损的几种机理和几种典型的磨料磨损模型, 对影响磨拉磨损的各种因素进行讨论。
关键词:磨料磨损;磨损机理;磨料1 引言由硬质颗粒或硬突起与金属表面相互作用, 使金属产生磨屑而导致材料破坏的磨损现象, 称为磨料磨损。
这种磨损是工业中最常见易见磨损速率极高的磨损形式, 大约有百分之五十左右的机械零件的损坏是由于磨粒磨损所致[1]。
随着我国重工业的发展, 在冶金、矿山、建材、电力、水利之机械工业中, 对各种磨粒磨损件的耐磨性提出了更高的要求。
由于磨料磨损建模具有重大的实践意义, 国内外许多研究者对其进行了研究, 积累了丰富的试验数据, 并对磨损机理进行了探讨, 并建立了一些计算磨料磨损的磨损率的数学模型。
但从已有的磨料磨损的模型来看,绝大多数研究人员的分析研究重点在那些确定性的因素上, 如材料的性能(硬度、塑性、疲劳强度、断裂韧性等), 载荷的大小, 相对运动的速度, 介质的温度和湿度等等;而对那些随机性的因素, 诸如载荷的波动幅度、磨粒的粒径分布、磨粒的尖锐度、材料因微观组织上的差异而产生的抗磨性质的起伏等等, 就不予考虑, 或按常量处理。
这些数学模型大多是考虑了纯切削或准切削过程, 考虑疲劳断裂和塑变的较少。
故这些数学模型得到的磨损率与实验结果相差比较大, 仅具有方向性的指导意义, 还不能较准确地预测材料的磨损率。
所以, 现有的工作还很有限,许多实验结果常常很难解释, 迄今为止有关磨料磨损的理论研究还是不够充分, 有待进一步完善[2]。
2 磨料磨损机理与模型2.1 微观切削机理磨粒作用在零件材料表面上的力,可分为法向力和切向力。
法向力使磨粒压入表面,如硬度试验一样,在表面上形成压痕。
切向力使磨粒向前推进,当磨粒的形状与位向适当时,磨粒就象刀具一样,对表面进行切削,而形成切屑。
不过这种切削的宽度和深度都很小,因此产生的切屑也很小。
机械设备磨损 - 磨料磨损磨料磨损也称为磨粒磨损,它是当摩擦副的接触表面之间存在着硬质颗粒,或者当摩擦副材料一方的硬度比另一方的硬度大得多时,所产生的一种类似金属切削过程的磨损。
它是机械磨损的一种,特征是在接触面上有明显的切削痕迹。
在各类磨损中,磨料磨损约占50%.是十分常见且危害性最严重的一种磨损,其磨损速率和磨损强度都很大,致使机械设备的使用寿命大大降低,能源和材料大量消耗。
根据摩擦表面所受的应力和冲击的不同,、磨料磨损的形式可分为錾削式、高应力碾碎式和低应力擦伤式三类。
1.磨料磨损机理磨料磨损的机理属于磨料颗粒的机械作用,磨料的来源有外界砂尘、切屑侵人、流体带人、表面磨损产物、材料组织的表面硬点及夹杂物等。
目前,关于磨料磨损机理有四种假说:(1)微量切削认为磨料磨损主要是由于磨料颗粒沿摩擦表面进行微量切削而引起的,微量切屑大多数呈螺旋状、弯曲状或环状,与金属切削加工的切屑形状类似。
(2)压痕破坏认为塑性较大的材料,因磨料在载荷的作用下压人材料表面而产生压痕,并从表层上挤出剥落物。
(3)疲劳破坏认为磨料磨损是磨料使金属表面层受交变应力而变形,使材料表面疲劳破坏,并呈小颗粒状态从表层脱落下来。
(4)断裂认为磨料压入和擦划金属表面时,压痕处的金属要产生变形,磨料压人深度达到临界值时,伴随压人而产生的拉伸应力足以产生裂纹。
在擦划过程中,产生的裂纹有两种主要类型:一种是垂直于表面的中间裂纹;另一种是从压痕底部向表面扩展的横向裂纹。
当横向裂纹相交或扩展到表面时,便发生材料呈微粒状脱落形成磨屑的现象。
2.减少或消除磨料磨损的对策磨料磨损是由磨料颗粒与摩擦表面的机械作用而引起的,因而,减少或消除磨料磨损的对策也有两方面。
(1)磨料方面磨料磨损与磨料的相对硬度、形状、大小(粒度)有密切的关系。
磨料的硬度相对于摩擦表面材料硬度越大,磨损越严重;呈棱角状的磨料比圆滑状的磨料的挤切能力强,磨损率高。
实践与实验表明,在一定粒度范围内,摩擦表面的磨损量随磨粒尺寸的增大而按比例较快地增加,但当磨料粒度达到一定尺寸(称为临界尺寸)后,磨损量基本保持不变。
磨料磨损是指各种物料的颗粒或凸出物在与零件表面相互接触时,使表面材料发生损耗的现象。
按磨料与材料相互作用特征来分类。
把磨料磨损分为三类:
(1)凿削式磨料磨损(包括冲蚀与冲刷):如锤式,环式碎煤机、风扇磨煤机、风管弯头、除灰管弯头、落煤管、粗细粉分离器、灰渣泵、阀门、排粉风机叶片中,煤、煤粉、灰对金属的磨损,煤块、研石对CFB锅炉管道的磨损等。
(2)高应力碾压磨损(包括研磨):如各类中速磨煤机、鄂式破碎机、圆锥破碎机、研磨机、球磨机中物料被破碎、银碎、研磨时对金属的磨损。
(3)低应力擦伤磨锁:如油槽、输送机、输送带、煤粉仓、给粉机、埋刮板运输机、犁桦中物料对材料的磨损。
考虑到介质和温度环境,则有腐蚀磨料磨损和热磨料磨损,如CFB锅炉管道、碎渣机、捞渣机、普通PC锅炉尾部省煤器,预热器管与灰的磨损及锅炉燃烧器与煤粉的磨损。
考虑到磨损发生的状态有干有湿,则有r-磨料磨损(磨制煤粉的球磨机)和湿磨料磨损(磨矿石的球磨机等)。
按接触表面的接触状态,又可分为二体磨料磨损(冲刷、凿削、低应力磨损),如煤粉管道、除灰管道、风扇磨煤机、灰渣泵、阀、风机叶片的磨损和三体磨料磨损〔碾碎、研磨),如中速磨煤机、球磨机、额式破碎机中的磨损。
按磨料与金属的相对硬度,还可分为软磨料磨损(物料硬度低于或远远低于材料硬度)如粮食、油料磨机的磨损和硬磨料磨损(物料硬度高于材料硬度),如矿石磨机、破碎机等。
从磨损机理上考虑磨损发生的材料表面磨损的微观行为,可分为微切削磨损机制、反复塑性变形与(弹性变形)疲劳机制、微观脆性断裂机制、腐蚀磨损机制、高温腐蚀磨损机制等。
磨粒磨损基本介绍由外界硬质颗粒或硬表面的微峰在摩擦副对偶表面相对运动过程中引起表面擦伤与表面材料脱落的现象,称为磨粒磨损。
其特征是在摩擦副对偶表面沿滑动方向形成划痕。
磨损分类磨料磨损有多种分类方法,例如,以力的作用特点来分,可分为:(1)低应力划伤式的磨料磨损,它的特点是磨料作用于零件表面的应力不超过磨料的压溃强度,材料表面被轻微划伤。
生产中的犁铧,及煤矿机械中的刮板输送机溜槽磨损情况就是属于这种类型。
(2)高应力辗碎式的磨料磨损,其特点是磨料与零件表面接触处的最大压应力大于磨料的压溃强度。
生产中球磨机衬板与磨球,破碎式滚筒的磨损便是属于这种类型。
(3)凿削式磨料磨损,其特点是磨料对材料表面有大的冲击力,从材料表面凿下较大颗料的磨屑,如挖掘机斗齿及颚式破碎机的齿板。
也有以磨损接触物体的表面分类,分为两体磨料磨损和三体磨料磨损。
两体磨损的情况是,磨料与一个零件表面接触,磨料为一物体,零件表面为另一物体,如犁铧。
而三体磨损,其磨损料介于两个滑动零件表面,或者介于两个滚动物体表面,前者如活塞与汽缸间落人磨料,后者如齿轮间落人磨料。
这两种分类法最常用。
试验规律虽然零件或材料的耐磨性能不是材料的固有特性,它与许多因素有关,但是材料本身的硬度和磨粒的硬度是影响磨料磨损的两个最主要的因素,现已总结出它们的影响规律。
(1)如果材料预先已经过加工硬化,则对增加耐磨性就不再起作用。
这说明磨损试验本身,已使材料表面达到了最大的加工硬化状态。
(2)材料的耐磨性显然与磨粒的硬度、几何形状、物理性能有关。
除了提高材料本身硬度可增加抗磨料磨损性能外,还可进行感应加热淬火、渗碳、氮化、表面喷镀与堆焊来提高耐磨性。
磨损机理(1)微观切削磨损机理(2)多次塑变导致断裂的磨损机理(3)微观断裂磨损机理影响磨粒磨损的因素(1)磨料的硬度、大小及形状,磨粒的韧性、压碎强度等。
(2)外界载荷大小、滑动距离及滑动速度。
(3)材料自身的硬度及内部组织。
表面摩擦与磨损摘要:简要介绍了摩擦与磨损的定义,摩擦的分类及评价方法;磨损的分类及评价方法;磨损的评价方法;抗摩擦磨损表面强化技术。
关键词:摩擦;磨损;表面1 引言摩擦与磨损是自然界存在的普遍现象, 摩擦对人类的生活和生产活动有利有弊, 而磨损却是有百害而无一利。
摩擦与磨损对能源及材料的消耗是相当可观的, 据粗略估计, 有1/3 ~ 1/2的能源消耗于磨损, 而磨损又常常是机器零部件失效的主要原因。
摩擦与磨损是发生在相互接触并相对运动的两个固体表面之间, 因此接触表面的特性, 诸如表面粗糙度及硬度等与摩擦、磨损关系密切。
有些表面特性是由材料的本性决定的, 此外, 还可以采用各种方法对材料表面进行改性, 其中表面处理技术中的电镀及复合镀等则是常用的手段。
在制备减摩及耐磨镀层时需进行检测, 因此, 有必要对摩擦及磨损的定义、产生原因和测试方法等有一定程度的了解[1]。
2 摩擦与磨损的定义摩擦的定义是:两个相互接触的物体在外力的作用下发生相对运动或者相对运动趋势时,在切相面见间产生切向的运动阻力,这一阻力又称为摩擦力。
磨损的定义是:任一工作表面的物质,由于表面相对运动而不断损失的现象。
据估计消耗在摩擦过程中的能量约占世界工业能耗的 30%。
在机器工作过程中,磨损会造成零件的表面形状和尺寸缓慢而连续损坏,使得机器的工作性能与可靠性逐渐降低,甚至可能导致零件的突然破坏。
人类很早就开始对摩擦现象进行研究,取得了大量的成果,特别是近几十年来已在一些机器或零件的设计中考虑了磨损寿命问题。
在零件的结构设计、材料选用、加工制造、表面强化处理、润滑剂的选用、操作与维修等方面采取措施,可以有效地解决零件的摩擦磨损问题,提高机器的工作效率,减少能量损失,降低材料消耗,保证机器工作的可靠性[2]。
3 摩擦的分类及评价方法在机器工作时,零件之间不但相互接触,而且接触的表面之间还存在着相对运动。
从摩擦学的角度看,这种存在相互运动的接触面可以看作为摩擦副。
磨料磨损名词解释
磨料磨损是指在磨削过程中,磨料与工件之间的相互作用导致磨料表面的磨损现象。
磨料磨损是磨削过程中不可避免的现象,它会影响磨削的质量和效率。
磨料磨损可以分为两种类型:自由磨损和强制磨损。
自由磨损是指磨料表面的松散颗粒在磨削过程中脱落,导致磨料表面的磨损。
强制磨损是指磨料与工件之间的相互作用导致磨料表面的磨损。
磨料磨损的主要影响因素包括磨料硬度、磨料颗粒大小、磨削压力、磨削速度、磨削液等。
磨料硬度越高,磨损越小;磨料颗粒越小,磨损越大;磨削压力越大,磨损越大;磨削速度越快,磨损越大;磨削液可以减少磨料磨损。
磨料磨损的解决方法包括选择合适的磨料、磨削参数的优化、使用磨削液等。
选择合适的磨料可以减少磨料磨损,磨削参数的优化可以减少磨料磨损和提高磨削效率,使用磨削液可以减少磨料磨损和提高磨削质量。
总之,磨料磨损是磨削过程中不可避免的现象,但可以通过选择合适
的磨料、磨削参数的优化和使用磨削液等方法来减少磨料磨损,提高磨削效率和质量。
材料的磨损机制及其耐磨性能改进材料的磨损机制是指在摩擦、磨削或磨损等作用下,材料表面因连续接触和剪切力而逐渐失去原有质量。
磨损机制的了解可以帮助我们改进材料的耐磨性能,提高材料的使用寿命和性能。
一、材料的磨损机制材料的磨损机制主要包括磨粒磨损、疲劳磨损和粘着磨损三种形式。
1. 磨粒磨损:在两个物体的接触摩擦作用下,外界的磨料颗粒进入其间,对材料表面造成切割和擦拭作用,导致材料表面的层状剥落、凸起及表面粗糙度增大。
2. 疲劳磨损:在周期性摩擦、滑动或冲击作用下,材料表面发生微小损伤和裂纹,逐渐扩展并形成磨损颗粒,此过程称为疲劳磨损。
3. 粘着磨损:当两个物体在摩擦作用下密切接触时,由于摩擦力和局部温度的升高,材料表面出现微观塑性变形,导致表面的微小物质相互粘附,形成磨损颗粒。
以上三种磨损机制往往同时存在于材料表面,可以相互作用导致磨损的加剧。
二、耐磨性能改进的方法为了提高材料的耐磨性能,延长其使用寿命,我们可以采取以下几种方法:1. 选择合适的材料:不同工作环境和使用要求下,材料的磨损机制可能有所不同,因此需要选择适应特定工况的耐磨材料。
常见的耐磨材料包括金属合金、陶瓷、高分子材料等。
2. 表面处理:通过表面处理来增强材料的耐磨性能。
常见的表面处理方法包括热处理、表面喷涂、表面改性等。
这些方法可以在材料表面形成一层硬、耐磨的保护层,减少磨损和摩擦。
3. 添加耐磨剂:在材料中添加一定量的耐磨剂,如颗粒、纤维等,可以有效地减少磨损。
耐磨剂能填充材料表面的微观凹坑,形成保护膜,防止磨料颗粒对材料的进一步切割和磨损。
4. 提高材料硬度:增加材料的硬度可以提高其抗磨损性能。
可以通过热处理、合金化等方式来提高材料的硬度。
5. 润滑和减摩:采用润滑措施可以有效减少材料之间的摩擦和磨损。
常见的方法包括润滑油、固体润滑剂和涂层等。
6. 设计优化:在产品设计的过程中,可以通过合理的结构设计、力学优化等方法来降低材料的受力和磨损,提高其耐磨性能。
磨损机理总结引言磨损是指物体表面因与外界物体接触而受到破坏和破碎的现象。
磨损问题不仅仅存在于机械领域,也涉及到许多其他领域,因此研究磨损机理对于改善材料性能和延长设备寿命具有重要意义。
本文将总结几种常见的磨损机理,并对其进行分析和解释。
粘着磨损粘着磨损是指当两个物体表面接触时,由于表面粗糙度和局部挤压等原因,两个物体表面之间发生微小的粘接现象,随着相对运动不断增大,粘接点断裂从而引起磨损。
这种磨损机理常见于金属材料之间的摩擦,会导致表面的金属片层剥离和磨粒的形成。
疲劳磨损疲劳磨损是指当物体表面受到重复的应力加载时,随着应力周期的增加,表面裂纹逐渐扩展,最终导致磨损失效。
这种磨损机理常见于高速旋转部件、机械传动装置等高应力加载的工作条件下。
磨粒磨损磨粒磨损是指当硬颗粒或磨料与物体表面接触时,在一定载荷和相对运动条件下,磨粒将物体表面的材料切削或破碎,从而引起磨损。
这种磨损机理常见于磨削、研磨等加工过程中,也是磨损试验中常用的磨损机理。
腐蚀磨损腐蚀磨损是指物体表面在介质的作用下,受到化学腐蚀和机械磨损的联合作用而发生破损。
腐蚀磨损机理常见于金属材料在潮湿环境中的工作条件下,例如海洋设备、管道等。
磨粒颗粒磨损磨粒颗粒磨损是指当颗粒状物质(如尘埃、颗粒污染等)在物体表面与相对运动时,由于颗粒的硬度和尺寸等因素的影响,会导致表面的划擦和磨损。
这种磨损机理常见于粉尘污染环境下的设备和机械部件。
润滑磨损润滑磨损是指在润滑介质的存在下,由于润滑膜的破裂和损坏,导致物体表面之间发生直接接触而引起的磨损。
这种磨损机理常见于摩擦副的润滑失效和润滑剂质量降低等情况下。
结论磨损机理的研究对于改善材料性能和延长设备寿命具有重要意义。
理解不同磨损机理的发生原因和特点,有助于我们制定合理的磨损预防措施和维护策略。
同时,磨损机理的研究对于开发新型材料、润滑剂和磨损耐磨涂层等方面也具有重要的指导作用。
因此,磨损机理的深入研究对于推动科技进步和工业发展具有重要意义。
磨料磨具的均匀磨损及磨损规律研究磨料磨具是一种广泛应用于工业领域的磨削工具,其性能直接影响着零件的加工精度和表面质量。
磨料磨具磨损是导致其性能变差的主要原因之一,因此研究磨料磨具的磨损规律对提高其使用寿命和性能具有重要的意义。
1. 磨料磨具的磨损形式磨料磨具的磨损主要分为两种形式:单一磨损和多种磨损。
单一磨损是指磨料磨具只有一种磨损形式,如磨粒脱落、磨粒变形等。
多种磨损则是指同时存在多种磨损形式,如材料疲劳、热裂纹等。
2. 磨料磨具的磨损机理磨料磨具的磨损机理很复杂,其中包括磨料与被加工材料的互相磨损、材料的疲劳开裂、热裂纹等多种机理。
由于不同的机理会对磨料磨具的磨损产生不同的影响,因此需要针对不同机理进行详细研究。
3. 磨料磨具磨损规律的研究研究磨料磨具的磨损规律是提高磨料磨具使用寿命和性能的关键。
研究的方法主要有试验、模拟和理论计算等。
试验方法可以获得真实的磨损数据,但需要耗费时间和成本。
模拟方法可以通过计算机模拟磨损过程,从而得出磨损规律。
理论计算方法则是根据磨料磨具的物理和化学特性,通过数学公式进行计算,推导出磨损规律。
4. 磨料磨具的均匀磨损磨料磨具的均匀磨损是指磨料磨具在使用过程中不会发生明显的磨损偏差。
均匀磨损对于保持磨削精度、提高磨削效率和延长磨料磨具寿命非常重要。
如果磨料磨具发生非均匀磨损,将会导致磨削精度下降和表面粗糙度增加,同时还会增加加工时的塞床现象和材料的毛刺等问题。
5. 磨料磨具的均匀磨损原因分析磨料磨具出现非均匀磨损的原因主要有以下几个方面:一是磨料颗粒和被加工材料之间的摩擦力不均,导致磨料磨具的磨损分布不均;二是磨料颗粒密度分布不均,导致部分区域的磨料磨具磨损严重;三是磨料磨具的结构不合理,导致磨料磨具在使用过程中的磨损分布偏差。
6. 磨料磨具均匀磨损的解决办法提高磨料磨具的均匀磨损是提高其使用寿命和性能的重要措施。
为了解决磨料磨具的非均匀磨损,可以采取以下方法:一是优化磨料颗粒的组成和结构,使其密度和分布均匀;二是改变磨料磨具的材料和结构,以增加其抗磨损能力和热稳定性;三是采用新型的涂层技术和磨料注入技术等先进的加工手段,以改善磨料磨具的使用效果。
磨料磨损的特点磨料磨损是一种常见的现象,广泛应用于工业生产中的各个领域。
磨料磨损的特点是什么?我们可以从以下几个方面来探讨。
一、磨料磨损的定义磨料磨损是指磨料颗粒在磨削过程中与工件表面接触,使工件表面发生破坏或剥落的现象。
磨料磨损是由于磨料颗粒与工件表面的接触,产生高温和高压力,导致工件表面材料的破坏或剥落。
二、磨料磨损的形式磨料磨损的形式多种多样,主要包括以下几种:1、磨料颗粒与工件表面的切削磨损这种磨损形式主要发生在磨削过程中,磨料颗粒通过与工件表面的摩擦和切削,使工件表面发生破坏或剥落。
2、磨料颗粒与工件表面的疲劳磨损这种磨损形式主要发生在磨削过程中,磨料颗粒反复接触工件表面,使工件表面发生疲劳破坏或剥落。
3、磨料颗粒与工件表面的腐蚀磨损这种磨损形式主要发生在化学加工和电化学加工中,磨料颗粒与工件表面的化学反应使工件表面发生腐蚀或剥落。
三、磨料磨损的特点1、磨料磨损是一个复杂的过程磨料磨损涉及多种因素,如磨料颗粒的硬度、形状、大小和密度,工件表面的材料、硬度和形状等。
这些因素相互作用,导致磨料磨损的形式和程度各不相同。
2、磨料磨损是一个不可逆的过程磨料磨损过程中,工件表面材料的破坏或剥落是不可逆的,一旦发生,就无法恢复原状。
因此,在磨削过程中需要注意控制磨料磨损,以保证工件表面的质量。
3、磨料磨损是一个渐进的过程磨料磨损是一个渐进的过程,随着磨料颗粒与工件表面的接触次数增加,工件表面的破坏或剥落程度逐渐加重。
因此,在磨削过程中需要及时更换磨料,以避免过度磨损。
4、磨料磨损是一个可控的过程磨料磨损是可控的,可以通过调整磨削参数、选择适当的磨料和工件材料等方式来控制磨料磨损的程度和形式,以达到最佳的磨削效果。
四、磨料磨损的影响磨料磨损会对磨削效率、磨削质量和磨具寿命等方面产生影响。
1、磨削效率磨料磨损会降低磨削效率,因为磨料颗粒与工件表面的接触面积减小,磨削力增大,磨削效率降低。
2、磨削质量磨料磨损会影响磨削质量,因为磨料颗粒与工件表面的接触面积减小,磨削表面的光洁度和精度降低。
材料的磨料磨削工艺探究材料的磨削技术被广泛应用于工业生产和日常生活中,很多机械部件和精密器件都需要经过磨削加工才能达到所需的精度和表面质量。
磨削工艺种类繁多,其中磨料磨削是一种常用的工艺方法。
本文将探讨材料的磨料磨削工艺相关的理论知识和实际应用。
一、磨料磨削的工艺基础磨料磨削是一种依靠磨料粒子与工件表面直接接触来磨削的工艺,它通常使用旋转磨轮,将磨料作为磨削材料与工件相互作用,实现磨削的目的。
其主要工艺参数包括:磨削力、工件转速、磨料粘着力和磨料磨损等。
磨轮是磨料磨削的核心部件,磨轮的种类和品质对工件加工的质量和效率有着重要的影响。
磨料是磨轮的组成部分,它常被分为砂轮、割石磨料、金刚石、CBN等几类材料。
磨料的性质也直接关系到磨削加工的效果和效率。
二、磨料磨削的加工特点磨料磨削的加工有着许多独特的特点,主要包括以下几个方面:1、加工成本低廉:相较于其他方法,磨料磨削的加工成本较低,因为它不需要耗费大量能源和资源。
2、精度高:磨料磨削可以实现微米级或纳米级的加工精度,适用于制造高精度齿轮、精密导向台等物件。
3、磨削速度快:相较于其他类型的加工,磨料磨削的速度较快,且可以同时进行多道磨削,提升了加工能力。
4、表面质量好:由于磨料磨削本身就是对工件表面进行磨削加工,因此工件表面质量可以达到非常高的水平。
三、磨料磨削的实际应用在实际应用中,磨料磨削有着广泛的应用领域,包括制造、伺服、仪器、汽车、机械等领域。
1、研究生产领域:磨料磨削被广泛应用于硅酸盐陶瓷、玻璃、金属、高附加值合金等材料的加工。
2、伺服和仪器领域:磨料磨削被广泛应用于制造高精度齿轮、精密导向台、丝杠等器件。
3、汽车领域:磨料磨削在发动机、变速器、机电件等方面的应用也十分广泛,提升了汽车的性能和功能。
4、机械领域:磨料磨削可以用于制造高精度的零部件,如滚动轴承、压缩机、泵等,提升了机械设备的精度和生产效率。
总之,磨料磨削在材料加工领域的应用前景十分广阔,它不仅可以提升产品的质量和效率,而且可以为各个领域带来更多的发展和创新。
磨料磨损失效分析磨损失效是机械设备和零部件的三种主要失效形式———断裂、腐蚀和磨损失效形式之一。
通常磨损过程是一个渐进的过程,正常情况下磨损直接的结果也并非灾难性的,因此,人们容易忽视对磨损失效重要性的认识。
实际上,机械设备的磨损失效造成的经济损失是巨大的[1~10,15]。
美国曾有统计,每年因磨损造成的经济损失占其国民生产总值的4%。
2004年底由中国工程院和国家自然科学基金委共同组织的北京摩擦学科与工程前沿研讨会的资料显示,磨损损失了世界一次能源的三分之一,机电设备的70%损坏是由于各种形式的磨损而引起的;我国的GDP只占世界的4%,却消耗了世界的30%以上的钢材;我国每年因摩擦磨损造成的经济损失在1000亿人民币以上,仅磨料磨损每年就要消耗300多万吨金属耐磨材料。
可见减摩、抗磨工作具有节能节材、资源充分利用和保障安全的重要作用,越来越受到国内外的重视。
因此,研究磨损失效的原因,制定抗磨对策、减少磨损耗材、提高机械设备和零件的安全寿命有很大的社会和经济效益。
1 磨损和磨损失效的主要类型磨损———由于机械作用造成物体表面材料逐渐损耗。
磨损失效———由于材料磨损引起的机械产品丧失应有的功能。
通常,按照磨损机理和磨损系统中材料与磨料、材料与材料之间的作用方式划分,磨损的主要类型可分为磨料磨损、粘着磨损、冲蚀磨损、疲劳磨损、腐蚀磨损和微动磨损等类型。
1.1 磨料磨损由外部进入摩擦面间的硬颗粒或突出物在较软材料的表面上犁刨出很多沟纹,产生材料的迁移而造成的一种磨损现象称为磨料磨损。
影响这种磨损的主要因素:在多数情况下,材料的硬度越高,耐磨性越好;磨损量随磨损磨粒平均尺寸的增加而增大;磨损量随着磨粒硬度的增大而加大等。
1.2 粘着磨损在两摩擦表面相对滑动时,材料发生"冷焊"后便从一个表面转移到另一个表面,成为表面凸起物,促使摩擦表面进一步磨损的现象称为粘着磨损。
影响粘着磨损的主要因素:同类的摩擦副材料比异类材料容易粘着,采用表面处理(如热处理、喷镀、化学处理等)可以减少粘着磨损;脆性材料比塑性材料抗粘着能力高;材料表面粗糙度值越小,抗粘着能力也越强;控制摩擦表面的温度,采用的润滑剂等可减轻粘着磨损等。
磨料磨损理论摘要:综述了磨料磨损理论的发展趋势, 介绍了磨料磨损的几种机理和几种典型的磨料磨损模型, 对影响磨拉磨损的各种因素进行讨论。
关键词:磨料磨损;磨损机理;磨料1 引言由硬质颗粒或硬突起与金属表面相互作用, 使金属产生磨屑而导致材料破坏的磨损现象, 称为磨料磨损。
这种磨损是工业中最常见易见磨损速率极高的磨损形式, 大约有百分之五十左右的机械零件的损坏是由于磨粒磨损所致[1]。
随着我国重工业的发展, 在冶金、矿山、建材、电力、水利之机械工业中, 对各种磨粒磨损件的耐磨性提出了更高的要求。
由于磨料磨损建模具有重大的实践意义, 国内外许多研究者对其进行了研究, 积累了丰富的试验数据, 并对磨损机理进行了探讨, 并建立了一些计算磨料磨损的磨损率的数学模型。
但从已有的磨料磨损的模型来看,绝大多数研究人员的分析研究重点在那些确定性的因素上, 如材料的性能(硬度、塑性、疲劳强度、断裂韧性等), 载荷的大小, 相对运动的速度, 介质的温度和湿度等等;而对那些随机性的因素, 诸如载荷的波动幅度、磨粒的粒径分布、磨粒的尖锐度、材料因微观组织上的差异而产生的抗磨性质的起伏等等, 就不予考虑, 或按常量处理。
这些数学模型大多是考虑了纯切削或准切削过程, 考虑疲劳断裂和塑变的较少。
故这些数学模型得到的磨损率与实验结果相差比较大, 仅具有方向性的指导意义, 还不能较准确地预测材料的磨损率。
所以, 现有的工作还很有限,许多实验结果常常很难解释, 迄今为止有关磨料磨损的理论研究还是不够充分, 有待进一步完善[2]。
2 磨料磨损机理与模型2.1 微观切削机理磨粒作用在零件材料表面上的力,可分为法向力和切向力。
法向力使磨粒压入表面,如硬度试验一样,在表面上形成压痕。
切向力使磨粒向前推进,当磨粒的形状与位向适当时,磨粒就象刀具一样,对表面进行切削,而形成切屑。
不过这种切削的宽度和深度都很小,因此产生的切屑也很小。
虽然切削时“刀具”,即一般的磨粒,大多具有负前角的特征,切屑变形也较大些,但代显微镜下观察,这些微观切屑仍具有机加工中切屑的特征[3]。
微观切削类型的磨损是经常见到的,特则是在固定磨料磨损和凿削式磨损中,是材料表面磨损的主要机理。
但是,磨粒和炭面接触时发生切削的概率不是很大的,虽然在某种条件下切削磨损量占总磨损量的比例很大。
但当磨粒形状较圆钝时,或者在犁沟的过程中磨粒的棱角而不是棱边对着运动方向时,或者磨粒和被磨材料表面间的夹角(迎角)太小时,或者表面材料塑性很高时,往往磨粒在表面滑过后,只犁出一条沟来,把材料推向两边或前面,而不能切削出切屑来,特别是松散的自由磨粒,大概有90%以上的磨粒发生滚动接触,只能压出印痕来,而形成犁沟的概率只不过10%,这样切削的可能性就更少了[4]。
还有种情况,如冲击角较大的冲蚀磨损以及球磨机房球对磨料种击时,往往在表面上形成压坑和在压坑四周被挤压出唇状凸缘,只能使表面发生塑性变形而切削的分量就很少。
2.2 多次塑变导致断裂的磨损机理上面已经述及,当磨粒滑过表面时,除了切削外,大部分磨粒只把材料推向前面或两旁,这些材料受到很大的塑性形变,却没有脱离母体,同时在沟底及构槽附近的材料也受到较大的变形。
犁沟时一般可能有一部分材料被切削而形成切屑,一部分则末被切削而仅有塑变,被推向两侧和前缘。
若犁沟时全部的沟槽体积都被推向两旁和前缘而不产生任何一次切屑时,则称之为犁皱。
犁沟或犁皱后堆积在两旁和前缘的材料以及沟槽中的材料,当受到随后的磨料作用时,可能把堆积起的材料重新压平,也可能使已变形的沟底材料遭到再一次的犁皱变形,如此反复塑变,导致材料的加工硬化或其它强化作用,终于剥落而成为磨屑。
这种形式的磨料磨损在球磨机的磨球和衬板,颚式破碎机的齿板及圆锥式破碎壁上更具有典型性[5]。
材料多次塑性变形的磨损是因为多次变形引起材料晶格的残余畸变,同时达到材料不破坏其间的联系而无法改变其形状的极限状态,这是由于材料不可能再继续变形和吸收能量之故。
塑性变形降低了材料应力重新分配的能力,故有些截面上(当外力不变时)由于应力的增长(集中)逐渐丧失塑性而变为脆性状态。
2.3 疲劳磨损机理克拉盖尔斯基提出“疲劳磨损机理在一般磨料磨损中起主导作用”。
疲劳一词是指出重复应力循环引起的一种特殊破坏形式,这种应力循环的应力幅不超过材料的弹性极限。
疲劳磨损系由于表层微观组织受周期载荷作用而产生的。
其特征是材料在强化过程进展的同时,过程的速度强烈地决定于周围的介质以及介质对强化的作用[6]。
标准的疲劳过程常有潜伏期,在此期间材料外部发生硬化但不出现任何微观破坏。
当进一步发展时,在材料表层出现硬化的滑移塑变层和裂纹。
吉宁巴乌姆认为疲劳磨损与多次变形表层破坏过程之间存在着许多共性关系,而且两种机理可以同时发生。
他认为这两种机理的区别在于作用于金属内部的应力与相应的表层变形不向。
前者发生在法向应力低于屈服极限而后者的变形破坏过程则在塑性变形条件下进行的,当材料的周期载荷超过了一定范围后,过程发生了转变。
吉宁巴乌姆认为这两种机理使材料达到破坏的加载周期数是大不相同的,疲劳破坏过程中表层微观组织的加载周期数高于十的三次方。
,而多次变形过程只有十次或一百次[7]。
疲劳破坏的破坏源在离表面不远处,例如在最大剪应力处。
一般这种机理具有组织的敏感性,其特征为对破坏的选择性,至少在发展开始期是如此。
而多次变形的破坏常开始于表面,此处材料达到最大程度变形常比次表层要早些。
疲劳破坏较为局部,具有较深较圆的坑。
而多次变形过程破坏多在表层上留有加工硬化的瓣状辗压片,其周围布有裂纹,裂纹出现在表面但不深。
吉宁巴乌姆似乎把多次塑变磨损划为低周疲劳磨损的范畴[8]。
2.4 微观断裂(剥落)磨损机理摩磨损时内于磨粒的压入材料表面具有静水压的应力状态所以大多数材料都会发生塑性变形。
但有些材料,特别是脆性材料,断裂机理可能占支配的地位。
当断裂发生时,压痕四周外围的材料都要被磨损剥落,脆性材料的压入断裂,其外部条件决定于载荷大小、压头形状及尺寸和周围环境等参量,内部参量则主要决定于材料的硬度与断裂韧性等[9]。
脆性材料的实际体积磨损决定于由断裂机理、微观切削和塑性变形机理所生的综合磨损。
以上是磨料磨损可能出现的几种机理,有些机理以及机理的细节还有待于进一步的研究和阐明。
还有一点必须加以说明,即磨料磨损过程中不只是有一种机理而往往有几种机理同时存在,由于磨损时外部条件或内部组织的变化磨损机理也相应地发生变化校往从一种机理为主转变为另一种机理为主[10]。
3 影响磨料磨损的因素磨料磨损过程是一个复杂的多种因素综合作用的摩擦学系统,该系统主要包括磨料的特性,外部条件以及被磨材料等因素,系统中任一因素的变化都会导致系统的改变。
3.1 磨料特性及其影响磨料一般是指天然矿物、岩石、泥沙,土壤和人工制作的一定尺寸的矿物,为粒状或无定形固体。
磨料的磨损性能和磨料的机械性能(如硬度、强度等)、存在状态、结合状态及其大小、形状和运动条件等有关,特别是自然破碎后的角度。
3.1.1 磨料的形状尖锐的、多角形的磨料比因而钝的磨料磨损得快。
尖锐的磨料在问一载荷下压入深度大,容易造成金属表面的微观切削,增加磨损量;钝的磨料压入深度小,大多数产生浅的犁沟或压坑,使材料发生弹塑性变形或甚至只在弹性变形范围内,不发生切削,且在自由状态时因钝形磨料容易发生滚动,使磨损量变得很小。
3.1.2 迎角α迎角(或叫冲角)是指磨料和材料表面接触时和表面间的夹角。
当用角锥的棱面去切削时,能否产生一次切削与迎角有关,当迎角超过临界迎角时,才能产生切屑;否则,只能产生塑性犁沟,将金属排向两边及边缘[11]。
3.1.3 磨粒的大小材料磨损量与磨粒大小有关,一般是随着磨粒直径的增大而增大,直到达到某一临界尺寸后就不再增大,而这种影响对非金属材料来说比金属更大些。
若裁荷增大,粒径超过临界尺寸后,磨粒的大小对磨损仍有影响,不过影响略小一些。
3.1.4 磨粒的硬度一般磨料磨损是指磨料的硬度比材料表面高得多,但当磨料的硬度比材料硬度低时,也会发生磨损只是磨损量很小而已。
故材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。
当Hm/Ha比值超过一定值后,磨损量便会迅速降低。
3.2 外部条件的影响3.2.1 载荷根据磨料磨损的简单模型可知,磨损量与载荷成正比。
但是磨损率和载荷的线性关系一般都有一临界值,到达此极限载荷,线性关系开始破坏。
材料表面加工硬化,磨粒受摩擦热的影响而变质以及三体磨料磨损时磨料对表面的相对运动发生变化等,都能引起磨损量的改变,破坏磨损量与载荷的线性关系。
3.2.2 滑动距离若磨粒在滑动过程中条件不变,如磨粒不变圆钝或碎裂则磨损量与滑动距离一般成正比,否则磨损量将有改变。
3.2.3 磨料和材料表面的相对速度当速度较小时磨损率随速度的增高而有下降的趋势.以后又逐渐升高到达一定速度后趋于常数。
在低速时,速度对磨损的影响并不重要,而高速时,特别在连续运转时,速度对磨损的影响实际上是温度对磨损的影响,若此时将裁荷减小,这种影响将会降低。
3.2.4 热和温度摩擦时,载荷和速度对磨损的影响实际上是出于热和温度的影响所致。
特别在高温时,热能引起材料表面的氧化、软化、硬化甚至于熔化,这样就使表面的磨损变得复杂了。
3.3 材料的机械性能和微观组织的影响3.3.1 材料的机械性能的影响(1)材料的表面硬度(2)断裂韧性(3)弹性模量(4)真实切断抗力(5)抗拉强度3.3.2 材料的微观组织(1)基体组织(2)第二相(3)夹杂物等参考文献[1]仝健民, 李明义. 材料的冲击磨料磨损耐磨性及其疲劳磨损机制[J]. 机械工程材料, 1993, (3):10-12.[2]周秋沙, 周锡容. 冲击磨料磨损机理研究[J]. 西南石油学院学报, 1996, 18(3):82-88.[3]叶茂.金属塑性加工中摩擦润滑原理及应用.北京:冶金工业出版社,1990.1[4]关成君, 陈再良. 机械产品的磨损——磨料磨损失效分析[J]. 理化检验:物理分册, 2006, 42(1):50-54.[5]茹铮等.塑型加工摩擦学.北京:冶金工业出版社,1992.8[6]余俊等,《摩擦学》,湖南科学技术出版.84年版[7]戴雄杰,《摩擦学基础》,上海科学技术出版,1984年版[8]籍国宝等,《摩擦磨损原理》,北京农业机械化学院,1984年版。
[9]D.F.摩尔,《摩擦学原理和应用》,机械工业出版社,1982年版。
[10]J.雹林,《摩擦学原理》,机械土业出版社,1981年版。
[11]詹武, 闫爱淑, 丁晨旭,等. 金属摩擦磨损机理剖析[J]. 天津理工学院工报,。