数字图像处理基础
- 格式:ppt
- 大小:6.13 MB
- 文档页数:84
数字图像处理的基础知识数字图像处理是一种以计算机为基础的处理图像的技术。
它的核心是数字信号处理技术,其中包括数字滤波、傅里叶变换、数字图像处理等等。
数字图像处理主要是针对图像进行数字信号处理和计算机算法处理,从而得到使图像更加美观、清晰,同时也可对其进行各种分析和处理。
数字图像处理的基础知识包括图像的获取、表示和处理。
在此,我们将分别阐述这些基础知识。
一、图像的获取图像的获取方式有很多种,包括摄影、扫描、数码相机等等。
这些方式都可以将图像转化为数字信号,以便于计算机的处理。
在数字相机中,传感器采集光线信息并将其转化为电信号,再经过模数转换后保存在内存卡中。
而在扫描仪中,可以通过光线照射样品,然后采集样品的反射信息,保存成数字图像的形式。
二、图像的表示图像可以用矩阵的形式进行表示,其中每个矩阵的元素都对应图像中的一个像素点。
这个像素值可以代表颜色、灰度和亮度等信息。
将图像信息存储成数字矩阵的方式称为栅格画。
在黑白影像中,每个像素点只有黑和白两种颜色,每个像素点都用1或0表示。
在彩色图像中,每个像素中则由红绿蓝三原色按一定比例混合而成的颜色值来表示,并用数值表示。
这些数值也可以是整数或浮点数等形式。
另外,还有图像的压缩技术。
图像压缩通常包括有损压缩和无损压缩。
有损压缩会使压缩的图像失去一些细节,但能帮助减少图像的尺寸。
无损压缩则不会丢失图像的任何信息。
常见的无损压缩格式为PNG、BMP、TIFF等,常见的有损压缩格式为JPEG、GIF等。
三、图像的处理图像的处理包括预处理、增强、分割、检测和识别等等。
其中预处理指图像的去噪、灰度平衡、色彩校正等,以利用后续处理。
增强指通过调整图像的对比度、亮度等等,使图像更加清晰、唯美。
分割技术可以将图像分为多个区域,每个区域有独特的特征。
例如,我们可以用分割技术将人体和背景分开。
检测技术用于在图像中找到我们感兴趣的点,例如在医学图像中检测肿瘤。
识别技术允许计算机对图像中的对象进行分类,例如人脸识别技术和指纹识别技术等等。
数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。
数字图像是离散的表示了光的强度和颜色分布的连续图像。
数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。
1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。
常见的像素表示方法有灰度图像和彩色图像。
在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。
1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。
图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。
图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。
图像压缩可以减少图像的存储空间和传输带宽。
图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。
第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。
常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。
2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。
常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。
线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。
非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。
直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。
直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。
该方法适用于灰度图像和彩色图像。
2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。
数字图像处理基本知识数字图像处理基木知识图像处理最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4)图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前己研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
数字图像处理的理论与方法数字图像处理(Digital Image Processing)是指利用计算机对图像进行处理和分析的一种技术。
它涉及的理论与方法是指对图像进行数学建模和处理的一系列过程和方法。
下面将对数字图像处理的理论与方法进行详细介绍,并分点列出步骤。
一、数字图像处理的理论基础1. 数学基础:数字图像处理的理论与方法建立在一系列数学基础上,包括几何学、代数学、概率论、统计学等。
2. 图像重建理论:数字图像处理的核心目标是从原始图像中还原出最准确的信息,图像重建理论为实现这一目标提供了依据。
3. 信号处理理论:图像本质上是一个二维信号,所以信号处理理论对于数字图像处理至关重要,包括傅里叶分析、滤波器设计等。
二、数字图像处理的方法1. 图像获取:获得数字图像是数字图像处理的前提,方法包括数码相机、扫描仪、卫星遥感等。
2. 图像预处理:对原始图像进行预处理是为了去除噪声和改善图像质量。
常用的方法有平滑滤波、锐化、直方图均衡化等。
3. 图像增强:根据具体需求,对图像进行增强可以使图像更加鲜明和易于分析,常用方法有对比度增强、边缘增强等。
4. 图像恢复:通过数学模型和算法,重建被损坏的图像或以更好的方式表示图像是图像恢复的关键过程,常用方法有降噪、插值等。
5. 图像分割:将图像划分为具有特定特征的区域,常用方法有阈值分割、边缘检测、聚类等。
6. 特征提取:从分割后的图像中提取出与感兴趣的目标有关的特征,常用方法有形状分析、纹理分析等。
7. 目标识别与分类:根据提取的特征,利用模式识别算法对目标进行识别与分类,常用方法有神经网络、支持向量机等。
8. 图像压缩与编码:为了减少图像数据的存储空间和传输带宽,常使用图像压缩与编码技术,例如JPEG、PNG等。
三、数字图像处理的应用领域1. 医学影像处理:数字图像处理在医学影像诊断中起着重要作用,例如X光、磁共振成像、超声等。
2. 人脸识别:数字图像处理为人脸识别提供了基础技术,常用于安全、人机交互等领域。
第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
数字图像处理中的数学基础数字图像处理是一门涉及数学基础的学科,它使用数学方法和算法来处理和分析图像。
在数字图像处理中,数学基础是至关重要的,它为我们理解和应用各种图像处理技术提供了理论基础。
本文将介绍数字图像处理中的数学基础,并探讨其在图像处理中的应用。
一、离散信号和连续信号在数字图像处理中,我们处理的是离散信号,而不是连续信号。
离散信号是在时间和空间上都是离散的,而连续信号是在时间和空间上都是连续的。
离散信号可以用数学中的序列来表示,而连续信号可以用函数来表示。
在数字图像处理中,我们常常使用采样来将连续信号转换为离散信号。
采样是指在一定时间或空间间隔内对连续信号进行取样,得到一系列的离散信号点。
二、数字图像的表示在数字图像处理中,我们使用像素来表示图像。
像素是图像中最小的单位,它具有特定的位置和灰度值。
对于灰度图像,每个像素的灰度值表示图像在该位置上的亮度。
对于彩色图像,每个像素的灰度值表示图像在该位置上的颜色。
图像可以用矩阵来表示,其中每个元素表示一个像素的灰度值。
例如,一个灰度图像可以表示为一个二维矩阵,矩阵的行和列分别对应于图像的行和列,矩阵中的元素对应于每个像素的灰度值。
三、图像的变换与滤波在数字图像处理中,我们经常需要对图像进行变换和滤波来实现不同的目标。
数学基础中的线性代数和傅里叶分析等理论为我们提供了强大的工具和方法。
线性代数在图像处理中扮演着重要的角色。
例如,我们可以使用线性变换来调整图像的亮度和对比度,以及进行图像的旋转、缩放和平移等操作。
此外,线性代数还可以用于图像的压缩和编码等方面。
傅里叶分析是图像处理中常用的数学工具之一。
傅里叶变换可以将图像从空间域转换到频率域,将图像表示为一系列的频谱分量。
通过对频谱分量的处理,我们可以实现图像的滤波、去噪和增强等操作。
四、图像的恢复与重建在数字图像处理中,我们有时需要对受损或失真的图像进行恢复和重建。
数学基础中的统计学和概率论等理论为我们提供了恢复和重建图像的方法。
数字图像处理数字图像基础数字图像处理是将数字图像进行分析、处理和理解的过程,它的目标是提高数字图像的质量、抽取图像的特征、提取图像的信息和实现图像的应用。
数字图像处理技术已经渗透到几乎所有领域,如医学、电影、远程通讯、安全监控等。
数字图像处理基础知识包括采集、压缩、存储、预处理、增强、分割、特征提取、分类和应用。
图像采集采集是数字图像处理中最基础的环节,它将物理光学信号转化为数字信号。
常见的图像采集设备包括CCD、CMOS和磁介质等。
图像压缩图像压缩是将图像文件从原始大小减小,并通过各种手段来减少文件大小和传输时间的过程。
图像压缩通常有两种方式,一种是有损压缩,一种是无损压缩。
图像存储图像存储是将数字图像保存在计算机或外部储存设备中。
常用的图像存储格式包括BMP、PNG、JPEG和GIF。
图像预处理图像预处理是在进行其他数字图像处理操作之前,对原始图像进行预处理以去除噪声、平滑、增强、锐化等。
常见的预处理方法包括空间域滤波、频率域滤波、直方图均衡化、形态学操作等。
图像增强图像增强是为了改善图像的质量、提高图像的视觉效果和增强图像的细节而进行的操作。
常见的图像增强方法包括灰度拉伸、对数变换、伽马变换、直方图规定化等。
图像分割图像分割是将数字图像分成不同的区域并对这些区域进行分析和理解的过程。
图像分割可以有多种方法,包括阈值分割、区域分割、边缘分割等。
特征提取图像特征提取是从原始图像中提取一些相关的特征以便于后续的分类和识别。
特征提取的常见方法包括边缘检测、角点检测、纹理描述等。
图像分类图像分类是将数字图像按照其特征划分为不同的类别。
常见的图像分类算法有SVM、KNN、神经网络等。
应用数字图像处理在很多领域都有广泛的应用,如医学影像处理、智能交通、虚拟现实等。
最近,随着深度学习的兴起,数字图像处理技术也被广泛应用于计算机视觉、自然语言处理等领域。
以上是数字图像处理的基础知识,数字图像处理应用广泛,研究数字图像处理可以掌握现代图像处理的基本技能,有利于提高计算机视觉,图像识别和其他领域的研究水平。
遥感数字图像处理基础知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章数字图像处理基础1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。
3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为若干图像元素,兵赋予它们唯一的地址。
;离散化的小区域就是数字图像的基本单元,称为像元也称像素。
量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。
4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。
5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规则网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。
2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。
图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差 3颜色空间模型:RGB模型CMYK模型 HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色 1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规则映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。