定义新运算-八年级试卷
- 格式:pdf
- 大小:184.40 KB
- 文档页数:2
一、选择题(每题5分,共25分)1. 下列哪个数是3的倍数?A. 24B. 35C. 42D. 582. 一个等腰三角形的底边长为8cm,腰长为6cm,那么这个三角形的周长是多少cm?A. 20B. 22C. 24D. 263. 一个数列的前三项分别是2,4,8,那么这个数列的第四项是多少?A. 12B. 16C. 18D. 204. 小明从家出发,向东走了5公里,然后向北走了3公里,最后又向东走了2公里。
请问小明现在距离家的位置在什么方向?A. 东B. 南C. 西D. 北5. 下列哪个图形是轴对称图形?A. 正方形B. 等腰三角形C. 长方形D. 梯形二、填空题(每题5分,共25分)6. 若a、b、c是等差数列,且a=2,b=4,则c=______。
7. 在直角坐标系中,点A(2,3)关于x轴的对称点是______。
8. 一个圆的半径为5cm,那么它的直径是______cm。
9. 若一个长方体的长、宽、高分别为3cm、2cm、4cm,那么它的体积是______cm³。
10. 下列哪个数是正数?A. -3B. 0C. 1.5D. -1三、解答题(每题15分,共45分)11. (10分)已知数列{an}的前三项分别是1,3,5,且满足an+2=an+an+1,求这个数列的第四项。
12. (15分)一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的面积。
13. (15分)一个长方形的长为6cm,宽为4cm,求这个长方形的对角线长度。
四、附加题(20分)14. (10分)已知函数f(x)=2x+3,求函数f(x)在x=2时的函数值。
15. (10分)一个质数p,若p+2和p+4都是质数,求p的值。
答案:一、选择题:1. C2. B3. B4. A5. B二、填空题:6. 67. (2,-3)8. 109. 2410. C三、解答题:11. a4=912. 面积=40cm²13. 对角线长度=8cm四、附加题:14. f(2)=2×2+3=715. p=3(因为p=3时,p+2=5,p+4=7都是质数)。
定义新运算练习题1.定义一种新的运算*:规定a*b=30×a+20×b,例如5*6=30×5+20×6=270,计算3*8==。
2.定义新运算a△b=(a+b)×(a﹣b),则6.2△3.8=。
3.定义新运算:△表示一种运算符号,其意义是a△b=2.5a﹣b,计算(4△5)△6。
4.如果2△3=2+3+4=9,5△4=5+6+7+8=26,照这样计算,求9△5。
5.定义一种新运算:3△2=3+33=36,5△4=5+55+555+5555=6170,那么7△4的结果是。
6.定义新运算:若2※3=2+3+4,5※4=5+6+7+8,求2※(3※2)的值。
7.规定:符号“△”为选择两数中较大的数,“○”为选择两数中较小的数.例如5△2=5,3○6=3,求[(8○3)△5]×(4○7)。
附加题:8.2▽4=8,5▽3=13,3▽5=11,9▽7=25.按此规律计算,求10▽12。
定义新运算-解析1.定义一种新的运算*:规定a*b=30×a+20×b,例如5*6=30×5+20×6=270,计算3*8==。
【分析】根据规定a*b=30×a+20×b,计算3*8时,a=3,b=8。
运用新定义计算。
【解答】a*b=30×a+20×b3*8=30×3+20×8=2502.定义新运算a△b=(a+b)×(a﹣b),则6.2△3.8=。
【分析】△的运算是两数和与两数差的乘积;据此解答即可。
【解答】6.2△3.8=(6.2+3.8)×(6.2﹣3.8)=10×2.4=243.定义新运算:△表示一种运算符号,其意义是a△b=2.5a﹣b,计算(4△5)△6。
【分析】根据a△b=2.5a﹣b,把4△5改写为2.5×4﹣5,算出结果,再用这个结果的2.5倍减6,即是(4△5)△6的结果。
定义新运算附答案定义新运算附答案我们学过的常⽤运算有:+、-、×、÷等.如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算⽅式不同,实际是对应法则不同.可见⼀种运算实际就是两个数与⼀个数的⼀种对应⽅法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有⼀个唯⼀确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这⼀讲中,我们定义了⼀些新的运算形式,它们与我们常⽤的“+”,“-”,“×”,“÷”运算不相同.我们先通过具体的运算来了解和熟悉“定义新运算”.例1、设a、b都表⽰数,规定a△b=3×a-2×b,①求 3△2, 2△3;②这个运算“△”有交换律吗?③求(17△6)△2,17△(6△2);④这个运算“△”有结合律吗?⑤如果已知4△b=2,求b.分析:解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:⽤运算符号前⾯的数的3倍减去符号后⾯的数的2倍.解:① 3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例⼦可知“△”没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第⼆步39△2=3 × 39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例⼦可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.例2、定义运算※为 a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③这个运算“※”有交换律、结合律吗?④如果3※(5※x)=3,求x.解:①5※7=5×7-(5+7)=35-12=23,7※5=7×5-(7+5)=35-12=23.②要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第⼆步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.③由于a※b=a×b-(a+b);b※a=b×a-(b+a)=a×b-(a+b)(普通加法、乘法交换律)所以有a※b=b※a,因此“※”有交换律.由②的例⼦可知,运算“※”没有结合律.④5※x=5x-(5+x)=4x-5;3※(5※x)=3※(4x-5)=3(4x-5)-(3+4x-5)=12x-15-(4x-2)= 8x- 13那么 8x-13=3 解出x=2.例3、定义新的运算a ⊕ b=a×b+a+b.①求6 ⊕ 2,2 ⊕ 6;②求(1 ⊕ 2)⊕ 3,1 ⊕(2 ⊕ 3);③这个运算有交换律和结合律吗?解:① 6 ⊕ 2=6×2+6+2=20,2 ⊕ 6=2×6+2+6=20.②(1 ⊕ 2)⊕ 3=(1×2+1+2)⊕ 3=5 ⊕ 3=5×3+5+3=231 ⊕(2 ⊕ 3)=1 ⊕(2×3+2+3)=1 ⊕ 11=1×11+1+11=23.③先看“⊕”是否满⾜交换律:a ⊕ b=a×b+a+bb ⊕ a=b×a+b+a=a×b+a+b(普通加法与乘法的交换律)所以a ⊕ b=b ⊕ a,因此“⊕”满⾜交换律.再看“⊕”是否满⾜结合律:(a ⊕ b)⊕ c=(a×b+a+b)⊕ c=(a×b+a+b)×c+a×b+a+b+c=abc+ac+bc+ab+a+b+c.a ⊕(b ⊕ c)=a ⊕(b×c+b+c)=a×(b×c+b+c)+a+b×c+b+c=abc+ab+ac+a+bc+b+c=abc+ac+bc+ab+a+b+c.(普通加法的交换律)所以(a ⊕ b)⊕ c=a ⊕(b ⊕ c),因此“⊕”满⾜结合律.说明:“⊕”对于普通的加法不满⾜分配律,看反例:1 ⊕(2+3)=1 ⊕ 5=1×5+1+5=11;1 ⊕ 2+1 ⊕ 3=1×2+1+2+1×3+1+3=5+7=12;因此1 ⊕(2+3)≠ 1 ⊕ 2+1 ⊕ 3.例4、有⼀个数学运算符号“?”,使下列算式成⽴:2?4=8,5?3=13,3?5=11,9?7=25,求7?3=?解:通过对2?4=8,5?3=13,3?5=11,9?7=25这⼏个算式的观察,找到规律: a ?b =2a +b ,因此7?3=2×7+3=17.例5、x 、y 表⽰两个数,规定新运算“*”及“△”如下:x*y=mx+ny ,x △y=kxy ,其中 m 、 n 、k 均为⾃然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.分析:我们采⽤分析法,从要求的问题⼊⼿,题⽬要求1△2)*3的值,⾸先我们要计算1△2,根据“△”的定义:1△2=k ×1×2=2k ,由于k 的值不知道,所以⾸先要计算出k 的值,k 值求出后,l △2的值也就计算出来了.我们设1△2=a , (1△2)*3=a*3,按“*”的定义: a*3=ma+3n ,在只有求出m 、n 时,我们才能计算a*3的值.因此要计算(1△2)*3的值,我们就要先求出 k 、m 、n 的值.通过1*2 =5可以求出m 、n 的值,通过(2*3)△4=64求出 k 的值.解:因为1*2=m ×1+n ×2=m+2n ,所以有m+2n=5.⼜因为m 、n 均为⾃然数,所以解出:①当m=1,n=2时:(2*3)△4=(1×2+2×3)△4 =8△4=k ×8×4=32k 有32k=64,解出k=2. ②当m=3,n=1时:(2*3)△4=(3×2+1×3)△4 =9△4=k ×9×4=36k有36k=64,解出k=971,这与k 是⾃然数⽭盾,因此m=3,n =1,k=971 这组值应舍去. 所以m=l ,n=2,k=2.(1△2)*3=(2×1×2)*3=4*3=1×4+2×3=10.在上⾯这⼀类定义新运算的问题中,关键的⼀条是:抓住定义这⼀点不放,在计算时,严格遵照规定的法则代⼊数值.还有⼀个值得注意的问题是:定义⼀个新运算,这个新运算常常不满⾜加法、乘法所满⾜的运算定律,因此在没有确定新运算是否具有这些性质之前,不能运⽤这些运算律来解题.课后习题m=1n =2m=2n =23(舍去)m=3 n =11.a*b 表⽰a 的3倍减去b 的21,例如: 1*2=1×3-2×21=2,根据以上的规定,计算:①10*6;②7*(2*1). 2.定义新运算为 a ⼀b =b1a +,①求2⼀(3⼀4)的值;②若x ⼀4=1.35,则x =? 3.有⼀个数学运算符号○,使下列算式成⽴: 21○32=63,54○97=4511,65○71=426,求113○54的值.4.定义两种运算“⊕”、“?”,对于任意两个整数a 、b , a ⊕b =a +b +1, a ?b=a ×b -1,①计算4?[(6⊕8)⊕(3⊕5)]的值;②若x ⊕(x ?4)=30,求x 的值.5.对于任意的整数x 、y ,定义新运算“△”, x △y=y×2x ×m y×x ×6+(其中m 是⼀个确定的整数),如果1△2=2,则2△9=?6.对于数a 、b 规定运算“▽”为a ▽b=(a +1)×(1-b ),若等式(a ▽a )▽(a +1)=(a +1)▽(a ▽a )成⽴,求a 的值.7.“*”表⽰⼀种运算符号,它的含义是: x*y=xy 1+))((A y 1x 1++,已知2*1=1×21+))((A 1121++=32,求1998*1999的值.8.a ※b=b÷a ba +,在x ※(5※1)=6中,求x 的值. 9.规定 a △b=a +(a +1)+(a +2)+…+(a +b -1),(a 、b 均为⾃然数,b>a )如果x △10=65,那么x=?10.我们规定:符号◇表⽰选择两数中较⼤数的运算,例如:5◇3=3◇5=5,符号△表⽰选择两数中较⼩数的运算,例如:5△3=3△5=3,计算:)25.2◇106237()9934△3.0()3323△625.0()2617◇6.0(++&&=?课后习题解答1.2.3.所以有5x-2=30,解出x=6.4左边:8.解:由于9.解:按照规定的运算:x△10=x +(x+1)+(x+2)+…+(x+10-1) =10x +(1+2+3+?+9)=10x + 45因此有10x + 45=65,解出x=2.欢迎您的下载,资料仅供参考!致⼒为企业和个⼈提供合同协议,策划案计划书,学习资料等等打造全⽹⼀站式需求。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载定义新运算练习题 (1)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容定义新运算练习题对于任意的两个数a和b,规定a*b=3×a-b÷3。
求8*9的值。
已知ab表示a除以3的余数再乘以b,求134的值。
已知ab表示(a-b)÷(a+b),试计算:(53)(106)。
规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值。
5.假定m◇n表示m的3倍减去n的2倍,即m◇n=3m-2n。
(2)已知x◇(4◇1)=7,求x的值。
7.对于任意的两个数P, Q,规定P☆Q=(P×Q)÷4。
例如:2☆8=(2×8)÷4。
已知x☆(8☆5)=10,求x的值。
8.定义:a△b=ab-3b,ab=4a-b/a。
计算:(4△3)△(2b)。
9.已知:23=2×3×4,45=4×5×6×7×8,……求(44)÷(33)的值。
10.定义两种运算“※”和“△”如下:a※b表示a,b两数中较小的数的3倍,a△b表示a,b两数中较大的数的2.5倍。
比如:4※5=4×3=12,4△5=5×2.5=12.5。
计算:[(0.6※0.5)+(0.3△0.8)]÷[(1.2※0.7)-(0.64△0.2)]。
11.设m,n是任意的自然数,A是常数,定义运算m⊙n=(A×m-n)÷4,并且2⊙3=0.75。
试确定常数A,并计算:(5⊙7)×(2⊙2)÷(3⊙2)。
12,用a,b,c表示一个等边三角形围绕它的中心在同一平面内所作的旋转运动:a表示顺时针旋转240°,b表示顺时针旋转120°,c表示不旋转。
初二新定义运算练习题现在让我们一起来进行一些初二新定义运算练习题,这些题目将帮助我们更好地理解和应用新定义运算。
这些题目包括实际应用题和理论题,以便全面提高我们的能力。
题目一:温度运算已知摄氏温度和华氏温度之间的关系为:华氏温度 = 1.8 ×摄氏温度 + 32。
请计算以下温度之间的换算:1. 40℃对应的华氏温度是多少?2. 85°F对应的摄氏温度是多少?3. A地的温度为24°C,B地比A地冷18°F,B地的温度是多少摄氏度?题目二:面积运算已知正方形的面积公式为:面积 = 边长 ×边长。
请回答以下问题:1. 边长为3cm的正方形的面积是多少平方厘米?2. 一个正方形的面积是36平方米,边长是多少米?3. 如果一个正方形的面积是64平方英尺,边长是多少英尺?题目三:百分数运算已知百分数的定义为:百分数 = 实际值 / 总值 × 100%。
请计算以下问题:1. 一款手机原价5000元,现在打折30%,折后价格是多少?2. 有一部电影,票房收入为320万,总票房为5000万,电影票房占总票房的百分比是多少?3. 一个班级共有60名学生,男生占总人数的40%,男生有多少人?题目四:速度运算已知速度的定义为:速度 = 路程 / 时间。
请计算以下问题:1. 若小明骑自行车匀速行驶,两小时内骑行的距离是45公里,他的速度是多少千米/小时?2. 若小红以10米/秒的速度行驶,她行驶了2分钟,距离是多少米?3. 如果一辆汽车以每小时90公里的速度行驶,它行驶了5小时,总共行驶了多少千米?题目五:角度运算已知圆周角的定义为:圆周角 = 360°。
请计算以下问题:1. 一个角度为120°,求其余角的度数。
2. 一张扇形的圆心角为150°,求其对应的弧度。
3. 如果一个角是锐角,且角的度数是70°,则其余角是多少度?通过这些初二新定义运算练习题,我们可以更好地掌握新定义运算的概念和应用。
一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x + 1,若f(a) = 7,则a的值为:A. 3B. 2C. 4D. 6答案:A. 3解析:将a代入函数f(x) = 2x + 1,得到f(a) = 2a + 1 = 7,解得a = 3。
2. 若一个等差数列的首项为2,公差为3,则第10项的值为:A. 29B. 30C. 31D. 32答案:A. 29解析:等差数列的第n项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
将a1 = 2,d = 3,n = 10代入公式,得到第10项的值为29。
3. 若一个等比数列的首项为3,公比为2,则第5项的值为:A. 48B. 96C. 192D. 384答案:D. 384解析:等比数列的第n项公式为an = a1 r^(n - 1),其中a1为首项,r为公比。
将a1 = 3,r = 2,n = 5代入公式,得到第5项的值为384。
4. 若一个梯形的上底为5,下底为10,高为4,则该梯形的面积为:A. 20B. 30C. 40D. 50答案:B. 30解析:梯形的面积公式为S = (a + b) h / 2,其中a和b为上底和下底的长度,h为高。
将a = 5,b = 10,h = 4代入公式,得到该梯形的面积为30。
5. 若一个圆的半径为r,则其周长的平方与面积的关系为:A. 周长的平方 = 4 面积B. 周长的平方 = 16 面积C. 周长的平方 = 9 面积D. 周长的平方 = 25 面积答案:A. 周长的平方 = 4 面积解析:圆的周长公式为C = 2πr,面积公式为S = πr^2。
将C和S代入公式,得到周长的平方= (2πr)^2 = 4π^2r^2,面积= πr^2。
所以周长的平方 = 4 面积。
二、填空题(每题5分,共50分)1. 若一个正方形的边长为a,则其周长为______,面积为______。
答案:周长为4a,面积为a^2。
一、选择题(每题5分,共25分)1. 下列哪个选项不是新定义运算?A. 两个数a和b的“和差”定义为a + bB. 两个数a和b的“积商”定义为a bC. 两个数a和b的“和差”定义为a - bD. 两个数a和b的“积商”定义为a / b2. 以下哪个新定义符合“初、高中知识衔接新知识”的特点?A. 定义新运算:两个数a和b的“和差”定义为a + bB. 定义新概念:定义“奇数”为不能被2整除的整数C. 定义新运算:定义“数列”为一系列有规律的数D. 定义新概念:定义“对数”为y = log_a(x)3. 下列哪个新定义不属于“定义新概念”的类型?A. 定义“偶数”为能被2整除的整数B. 定义“质数”为除了1和它本身外,没有其他因数的自然数C. 定义“平行四边形”为对边平行且相等的四边形D. 定义“正方体”为所有面都是正方形的立体图形4. 在解决“新定义”题型时,以下哪个步骤最为关键?A. 理解新定义的含义B. 分析题目背景和条件C. 运用已学知识进行运算和推理D. 总结解题方法和技巧5. 下列哪个选项不属于新定义题型?A. 定义“函数”为一种映射关系B. 定义“极限”为当自变量趋于无穷大时,函数值趋于一个固定值C. 定义“几何体”为具有一定形状和尺寸的立体图形D. 定义“复数”为形如a + bi的数,其中a和b是实数,i是虚数单位二、填空题(每题5分,共25分)6. 若定义“数字a的奇偶性质”为:若a为偶数,则值为1;若a为奇数,则值为-1,则“数字5的奇偶性质”为______。
7. 下列数列中,若定义“数列的“和”为所有项之和,则数列1, 2, 3, ... 的“和”为______。
8. 已知定义“平行四边形的对角线”为连接非相邻顶点的线段,则平行四边形ABCD中,对角线AC的长度为______。
9. 若定义“三角形的“面积”为底边乘以高的一半,则三角形ABC的底边BC长度为3,高为4,则其面积为______。
定义新运算
一. 单选题(本大题共8小题, 共48分) A. -9 B. -3
C. 0
D. 3 1.(本小题6分) 对任意四个有理数a,b,c,d定义新运算:
,已知,则
x=( ) A. 21 B. 22
C. 23
D. 26
2.(本小题6分) 现定义一种新运算:★,对于任意整数a,b,有a★b=a+b-1,则4★[(6★8)★(3★5)]的值为( )
A. 45
B. -37
C. 25
D. 41
3.(本小题6分) 对于有理数x,y定义新运算:x*y=ax+by+1,其中a,b为常数.已知3*5=15,4*7=28,则5*9的值为( )
A. 0
B. 1
C. -1
D.
4.(本小题6分) 我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,,
,,从而对于任意正整数,我们可以得到
,同理可得,,.那么
的值为( )
A. 1
B. 2
C. 3
D. 8
5.(本小题6分) 对于任意的自然数X和Y,定义新运算&:X&Y=,其中m是一个确定的自然数.若1&2=1,则2&8=( )
A. -1
B. 0
6.(本小题6分) 在实数的原有运算法则中,我们补充定义“新运算”如下:当时,,当
时,则.当时,的最大值为( )
二. 填空题(本大题共7小题, 共52分)
C. 1
D. 2
A. 1个
B. 2个
C. 3个
D. 4个
7.(本小题6分) 对于任意不相等的两个非负实数a和b,定义一种新的运算a*b=,则下列关于这种运算的几个结论:①3*2=;②a*b+b*a=0;③a*(b+c)=a*b+a*c;④不存在这样的实数a和b,使得a*b=0.其中正确结论的个数是( )
A. 1
B. 2
C. 3
D. 无法确定
8.(本小题6分) 定义新运算△为:a△b=ab+2a+2b+2,若x△2△2△2△2△2=5118,则x=( )
9.(本小题7分) 定义一种新运算:,利用这种算法计算____.
10.(本小题7分) 定义新运算:A*B=(A-B)÷3,A□B=(A+B)×3,请计算:(39*12)□3=____.
11.(本小题7分) 定义一种新运算“△”,其运算规则是a△b=.已知-1△x=,则x的值是____.
12.(本小题7分) 规定一种新的运算:,则4*(3*2)的值为____.
13.(本小题7分) 定义运算“*”的运算法则是a*b=,则(2*6)*8的值为____.
14.(本小题7分) 在有理数的原有运算法则中,我们补充定义新运算“※”如下:当m≥n时,
;当m<n时,m※n=m,则当x=-2时,(-3x※x)-(1※x)•x的值为____.
15.(本小题10分) 若一个正整数是3的倍数,将它的各个数字分别立方求和,称为第一次运算;得到一个新数,再将新数的各个数字分别立方求和,称为第二次运算;重复上述运算若干次,你会发现最后这个数将一成不变,称这个数为“魔”数.若现有一个3的倍数是9,则它的第三次运算结果是____,这个“魔”数是____.。