数学建模指派问题201105
- 格式:ppt
- 大小:933.50 KB
- 文档页数:19
目录一问题重述 (2)二模型假设 (2)三匈牙利法陈述 (2)四问题分析 (3)五问题实现 (5)1问题重述 (5)2 问题求解 (5)2.1由匈牙利法构造目标函数 (5)2.2模型建立 (6)3 模型解析 (6)4 程序实现 (7)六结果显示及min求解 (17)七模型深入 (17)1 模型建立 (18)2 进行求解 (18)3程序分析 (20)八模型检验 (20)九整体总结 (20)十参考文献 (21)一问题重述指派问题亦称平衡指派问题仅研究人数与事数相等、一人一事及一事一人的情形。
现有的不平衡指派问题将研究范围扩大到人数与事数可以不等、一人一事或一人多事及一事一人的情形。
日常活动中也不乏人数与事数可以不等、一人多事及一事多人的情形,这类事务呈现了广义指派问题的实际背景。
平衡指派问题是特殊形式的平衡运输问题,可运用匈亚利法、削高排除法和缩阵分析法等特殊方法求解。
另一方面,正是平衡指派问题的这种特殊性,使得不平衡指派问题不能按常规技术转化为平衡指派问题。
因此,各种不平衡指派问题需要确立相应的有效解法1问题的提出及其数学模型广义指派问题并非奇特和抽象的构想,相反,该问题可以从司空见惯的日常事务中引出。
现在我们就运用匈牙利法,去实现n个人,n件工作的指派问题。
二模型假设1 假设一共有n个人,n件工作,即人数与工作数相等。
2 假设每个人的都能从事某项工作,但是付出的代价不同。
3 假设求解代价最小的解。
4甲乙丙丁四个人,ABCD四项工作,要求每人只能做一项工作,每项工作只由一人完成,问如何指派总时间最短?三匈牙利法陈述第一步:找出矩阵每行的最小元素,分别从每行中减去这个最小元素;第二步:再找去矩阵每列的最小元素,分别从各列减去这个最小元素;第三步:经过这两步变换后,矩阵的每行每列至少都有了一个零元素,接着根据以下准则进行试指派,找出覆盖上面矩阵中所有零元素至少需要多少条直线;(1)从第一行开始,若该行只有一个零元素打上()号。
第一章绪论1、指派问题的背景及意义指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用,则问题可以写成LINGO程序SETS:PERSON/1..N/;WORK/1..N/;WEIGHT(PERSON, WORK): C, X ;ENDSETSDATA:W=…ENDDATAMIN=@ SUM(WEIGHT: C*X);@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1);@FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1);@FOR(WEIGHT: @BIN(X));其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.但是由于有N^2个0-1变量, 当N很大时,用完全枚举法解题几乎是不可能的. 而已有的0-1规划都是用隐枚举法做的,计算量较大. 对于指派问题这种特殊的0-1规划,有一个有效的方法——匈牙利算法,是1955年W. W. Kuhn利用匈牙利数学家D.König的二部图G的最大匹配的大小等于G的最小顶点覆盖的大小的定理提出的一种算法,这种算法是多项式算法,计算量为O(N3).匈牙利算法的基本原理是基于以下两个定理.定理1设C=(C ij)n×n是指派问题的效益矩阵,若将C中的任一行(或任一列)减去该行(或该列)中的最小元素,得到新的效率矩阵C’,则C’对应的新的指派问题与原指派问题有相同的最优解.证明:设X’是最优解, 即@SUM(WEIGHT: C*X’)<= @SUM(WEIGHT: C*X), 则当C中任一行或任一列减去该行或该列的最小数m时,得到的阵C’还是非负矩阵, 且@SUM(WEIGHT: C’*X’)<=@SUM(WEIGHT: C*X)-m=@SUM(WEIGHT: C’*X)定理2效率矩阵C中独立的0元素的最多个数等于覆盖所有0元素的最少直线数. 当独立零元素的个数等于矩阵的阶数时就得到最优解.3、理论基础定义:图G的一个匹配M是图G中不相交的边的集合. 属于匹配M中的边的所有端点称为被该匹配M饱和, 其他的顶点称为M-未饱和的. 如果一个匹配M 饱和了图G的所有顶点,则称该匹配M是一个完全匹配. 可见顶点数是奇数的图没有完全匹配. 一个匹配M称为是极大匹配, 如果它不能再扩张成更大的一个匹配. 一个匹配称为是最大匹配, 如果不存在比它更大的匹配.定义:对于一个匹配M, 图G的一个M-交替路是图G中的边交替地在M中及不在M中的边组成. 从M-未饱和点出发到M-为饱和点结束的M-交替路称为一条M-增广路. 把M-增广路中不是M中的边改成新的匹配M’中的边, 把M-增广路中M中的边不作为M’中的边, 在M-增广路以外的M中的边仍作为M’中的边, 则M’的大小比M大1. 故名M-增广路. 因此最大匹配M不存在M-增广路.定义:若图G和图H有相同的顶点集V, 我们称G和H的对称差,记为G∆H,是一个以V为顶点集的图, 但其边集是G和H的边集的对称差: E(G∆H)=E(G) ∆E(H)=E(G)⋂E(H)-(E(G)⋃E(H))=(E(G)-E(H)) ⋂ (E(H)-E(G))定理: (Berge, 1957) 图G的一个匹配M是最大匹配,当且仅当G中没有M-增广路.证明: 我们只要证明, G中没有M-增广路时, M是最大匹配. 用反证法, 若有一个比M大的匹配M’. 令G的一个子图F, E(F)=M∆M’, 因M和M’都是匹配, F的顶点的最大度数至多是2, 从而F由不相交的路和环组成, 它们的边交替地来自M和M’, 于是F中的环的长度是偶数. 由于M’比M大, F中存在一个连通分支,其中M’中的边数大于M中的边数. 这个分支只能是起始和终止的边都在M’中. 而这就是一条G中的M-增广路. 与假设矛盾. 证毕.定理(Hall, 1935)设G是一个二部图, X和Y是其二分集, 则存在匹配M 饱和X当且仅当对于X中的任意子集S, Y 中与S中的点相邻的点组成的集合N(S)中元素的个数大于等于集合S中元素的个数.证明:必要性是显然的. 对于充分性, 假设 |N(S)|≥|S|, ∀S⊂X, 考虑G的一个最大匹配M, 我们用反证法,若M没有饱和X, 我们来找一个集合S不满足假设即可. 设u∈X是一个M-未饱和顶点, 令S⊂X和T⊂Y分别是从u出发的M-交替路上相应的点.我们来证明M中的一些边是T到S-u上的一个匹配. 因为不存在M-增广路,T中的每个点是M-饱和的. 这意味着T中的点通过M中的边到达S中的一个顶点. 另外, S-u中的每个顶点是从T中的一个顶点通过M中的一条边到达的. 因此M 中的这些边建立了T与S-u的一个双射, 即|T|=|S-u|. 这就证明了M中的这些边是T到S-u上的一个匹配,从而意味着T⊂N(S), 实际上, 我们可证明T=N(S). 这是因为连接S和Y-T中的点y的边是不属于M的, 因为不然的话, 就有一条到达y的M-增广路, 与y∉T矛盾. 故|N(S)|=|T|=|S-u|=|S|-1<|S|, 与假设矛盾.当X与Y的集合的大小相同时的Hall定理称为婚姻问题,是由Frobenius(1917)证明的.推论: k-正则的二部图(X的每一点和Y的每一点相关联的二部图)(k>0)存在完全匹配.证明: 设二分集是X,Y. 分别计算端点在X和端点在Y的边的个数, 得k|X|=k|Y|, 即|X|=|Y|.因此只要证明Hall的条件成立即可. 使X饱和的匹配就是完全匹配. 考虑∀S⊂X, 设连接S与N(S)有m条边, 由G的正则性, m=k|S|. 因这m条边是与N(S)相关联的, m≤k|N(S)|, 即k|S|≤ k|N(S)|, 即|N(S)|≥|S|. 这就是Hall的条件.用求M-增广路的方法来得到最大匹配是很费时的. 我们来给出一个对偶最优化问题.定义:图G的一个顶点覆盖是集合S⊂V(G), 使得G的每条边至少有一个端点在S中. 我们称S中的一个顶点覆盖一些边, 若这个顶点是这些边的公共端点.因为匹配的任意两条边不能被同一个顶点覆盖, 所以顶点覆盖的大小不小于匹配的大小: |S|≥|M|. 所以当|S|=|M| 时就同时得到了最大的匹配和最小的顶点覆盖.定理(König [1931],Egerváry[1931])二部图G的最大匹配的大小等于G的最小顶点覆盖的大小.证明: 设M是G的任一个匹配, 对应的二分集是X,Y. 设U是一个最小的顶点覆盖, 则|U|≥|M|, 我们只要由顶点覆盖U来构造一个大小等于|U|的匹配即完成证明. 令R=U⋃X, T=U⋃Y, 令H, H’分别是由顶点集R⋂(Y-T)及T⋂(X-R)诱导的G的子图. 我们应用Hall的定理来证明H有一个R到Y-T中的完全匹配,H’有一个从T到X-R中的完全匹配. 再因这两个子图是不相交的, 这两个匹配合起来就是G中的一个大小为|U|的匹配.因为R⋂T是G的一个覆盖, Y-T与X-R之间没有边相联接. 假设S⊂R, 考虑在H中S的邻接顶点集N(S), N(S) ⊂Y-T. 如果|N(S)|<|S|, 因为N(S)覆盖了不被T覆盖的与S相关联所有边, 我们可以把N(S) 代替S作为U中的顶点覆盖而得到一个更小的顶点覆盖. U的最小性意味着H中Hall条件成立. 对H'作类似的讨论得到余下的匹配. 证毕.最大匹配的增广路算法输入: 一个二分集为X,Y的二部图G,一个G中的匹配M, X中的M-未饱和顶点的集合U.思路: 从U出发探求M-交替路,令S⊂X,T⊂Y为这些路到达过的顶点集. 标记S中不能再扩张的顶点. 对于每个x∈(S⋂T)-U, 记录在M-增广路上位于x前的点.初始化: S=U,T=∅.叠代: 若S中没有未标记过的顶点, 结束并报告T⋂(X-S)是最小顶点覆盖而M是最大匹配.不然, 选取S中未标记的点x, 考虑每个y∈N(x)且xy∉M, 若y是M-未饱和的, 则得到一个更大的匹配,它是把xy加入原来的匹配M得到的,将x从S中去除. 不然, y是由M中的一条边wy相连接的, w∈X, 把y加入T(也有可能y本来就在T中), 把w加入S. w未标记, 记录w前的点是y. 对所有关联到x的边进行这样的探索后, 标记x. 再次叠代.定理: 增广路算法可以得到一个相同大小的匹配和顶点覆盖.证明: 考虑这个算法终止的情况, 即标记了S中所有的点. 我们要证明R=T⋂(X-S)是大小为|M|的一个顶点覆盖.从U出发的M-交替路只能通过M中的边进入X中的顶点, 所以S-U中的每个顶点通过M与T中的顶点匹配, 并且没有M中的边连接S和Y-T. 一旦一条M-交替路到达x∈S, 可以继续沿着任何未饱和的边进入T, 由于算法是对于x的所有邻域顶点进行探索才终止的,所以从S 到Y-T 没有未饱和边. 从而S 到Y-T 没有边, 证明了R 是一个顶点覆盖.因为算法是找不到M-增广路时终止, T 的每一个顶点是饱和的. 这意味着每个顶点y ∈T 是通过M 匹配与S 中的一个顶点. 由于U ⊂S, X-S 的每个顶点是饱和的, 故M 中与X-S 相关联的边不和T 中的点相连接. 即它们与是饱和T 的边不同的, 这样我们可见M 至少有|T|+|X-S|条边. 因不存在一个比顶点覆盖更大的匹配, 所以有|M|=|T|+|X-S|=|R|.设二部图G 的二分集X 和Y 都是n 个元素的点集, 在其边j i y x 上带有非负的权ij w , 对于G 的一个匹配M, M 上各边的权和记作w(M).定义: 一个n ×n 矩阵A 的一个横截(transversal)是A 中的n 个位置, 使得在每行每列中有且只有一个位置(有的文献中把横截化为独立零元素的位置来表示).定义: 指派问题就是给定一个图G=n n K ,(完全二部图, 即每个X 中的顶点和Y 中的每个顶点有边相连接的二部图)的边的权矩阵A, 求A 的一个横截, 使得这个横截上位置的权和最大. 这是最大带权匹配问题的矩阵形式.定义: 对于图G=n n K ,,设其二分集是X ,Y ,给定G 的边j i y x 的n ×n 权矩阵W={ij w }.考虑G 的子图v u G ,, 设其二分集是U ⊂X ,V ⊂Y, 边集是E(v u G ,), 对于子图v u G ,的带权覆盖u,v 是一组非负实数{i u },{j v },使得ij j i w v u ≥+,)(,v u j i G E y x ∈∀, v u G ,的带权覆盖的费用是∑∑+j i v u 记为C(u,v), 最小带权覆盖问题就是求一个具有最小费用C(u,v)的带权覆盖u,v.引理: 若M ⊂E(v u G ,)是一个带权二部子图v u G ,的最大匹配, 且u, v 是v u G ,的带权覆盖, 则C(u,v)≥w(M). 而且, C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀. 这时M 是v u G ,最大带权匹配, u,v 是v u G ,的最小带权覆盖, 定义这时的v u G ,为G 的相等子图(equality subgraph ).证明: 因为匹配M 中的边是不相交的, 由带权覆盖的定义就得C(u,v)≥w(M). 而且C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀成立. 因一般地有C(u,v)≥w(M).所以当C(u,v)=w(M)时. 意味着没有一个匹配的权比C(u,v)大, 也没有一个覆盖的费用比w(M)小.Kuhn 得到一个指派问题的算法,命名为匈牙利算法, 为的是将荣耀归于匈牙利数学家König 和Egerv áry.指派问题的匈牙利算法(Kuhn[1955], Munkres[1957]):输入G=n n K ,的边的权矩阵A, 及G 的二分集X,Y.初始化: 任取一个可行的带权覆盖,例如)(max ij ji w u =,0=j v ,建立G 的相等子图v u G ,, 其二分集是X, Y ’⊂Y, 求v u G ,的一个最大匹配M. 这个匹配的权和w(M)=C(u,v), M 的带权覆盖是具有最小费用的.叠代: 如M 是G 的一个完全匹配, 停止叠代, 输出最大带权匹配M. 不然, 令U 是X 中的M-未饱和顶点. 令S ⊂X, T ⊂Y 是从U 中顶点出发的M-交替路到达的顶点的集合.令},:min{T Y y S x w v u j i ij j i -∈∈-+=ε.对于所有的S x i ∈, 将i u 减少ε, 对于所有的T y j ∈,将j v 增加ε,形成新的带权覆盖u ’,v ’及对应的新的相等子图v u G '',.如果这个新的相等子图含有M-增广路, 求它的最大匹配M ’, 不然不改变M 再进行叠代.定理: 匈牙利算法能找到一个最大权匹配和一个最小费用覆盖.证明: 算法由一个覆盖开始,算法的每个叠代产生一个覆盖,仅在相等子图有一个完全的匹配为止。
指派问题的数学模型
数学中有多种指派问题模型,以下是几个常见的:
1. 二分图匹配模型:将指派问题看作是二分图中的最大匹配问题。
将待分配的任务和接受任务的对象分别看作是二分图中的两个部分,将每个待分配任务和每个对象之间连一条边,并赋予权值表示在该情况下指派此任务给此对象的效果。
最终目标是找到一种方案,使得总权值最大。
2. 匈牙利算法:是解决二分图匹配问题的经典算法,能够在多项式时间内求解最大匹配问题。
3. 线性规划模型:将指派问题转化为线性规划模型,通过最小化或最大化某个目标函数的方式,得到满足约束条件的最优解。
4. 费用流模型:将指派问题看作是最小费用最大流问题,将待分配的任务看作源点,接受任务的对象看作汇点,建立相应的网络流模型,并加入相应的约束条件,通过找到最小费用最大流的方式得到最优解。
指派问题求解方法
指派问题的求解方法主要包括以下步骤:
1. 建立效率矩阵:对于n个任务和n个执行任务的人,建立一个nn的效率矩阵,矩阵中的元素表示第i个人完成第j项任务时的效率或所需时间、成本等。
2. 对效率矩阵进行归一化处理:通过行归约和列归约,使效率矩阵中每行每列都出现0元素。
行归约是指找出每行的最小元素,分别从每行中减去这个最小元素;列归约是指找出每列的最小元素,分别从每列中减去这个最小元素。
3. 指派任务:从归一化后的效率矩阵中找出独立的零元素,即每行每列各有一个元素为0。
将任务指派给这些独立零元素所在的行或列中对应的人。
若某行(列)中只有一个零元素,对该零元素标1,表示这个任务就指派给某人做。
每标一个1,同时将该零元素同列的其他零元素标为2,表示此任务已不能由其他人来做。
如此反复进行,直到系数矩阵中所有的零元素都已经被标为1或者2为止。
4. 确定最优解:将0(1)所在位置记为1,其余位置记为0,则获得了该问题的最优解。
以上信息仅供参考,如果您还有疑问,建议咨询专业人士。
河南理工大学2014年数学建模竞赛论文答卷编号(竞赛组委会填写):题目编号:(F)论文题目:工作的安排参赛队员信息(必填):答卷编号(竞赛组委会填写):评阅情况(学校评阅专家填写):评阅1.评阅2.评阅3.工作的安排摘要:工作指派问题是日常生活中常见的一类问题。
本文所要研究就是在效率与成本的背景下,如何安排每个人员的工作分别达到以下三个要求:1、使得总的工作效率最大。
2、使得总的成本最低。
3、兼顾工作效率和成本,优化工作安排方案。
对于问题一,该问题属于工作指派问题,要求使工作效率最大。
为了得到最优的安排方案,我们采用0-1规划模型,引入0-1变量,即其中一人负责某一项工作记作1,否则为0,然后与之对应的效率相乘,然后把所有的工作安排情况这样处理后,再求和作为目标函数。
此外我们对该问题进行了如下约束:因为六个人刚好六份工作,所以每个人只能被安排一份工作,而且每份工作只允许一人来完成。
最后在模型求解中我们应用lingo软件编程使目标函数值最大化,根据此时对应的0-1变量的所有值,最终得到最优安排方案。
对于问题二,要求的方案使工作成本最低。
该问题与问题一相似,只是求解的是目标函数的最小值,为此我们建立了成本最小化模型,该模型同样应用了0-1规划方法,然后用与问题一中相似的方法建立目标函数,然后应用lingo软件编程使目标函数值最小,最终得到使成本最小的相应安排方案。
对于问题三,该问题兼顾效率与成本,属于多目标规划。
首先,数据标准化处理。
给出的效率成本数据属于两个不同性质的指标,两个指标之间存在着不可公度性,而且两项的数值整体大小水平不一样,会有大数起主导作用的影响,如果不对两个指标的数据进行标准化,就会得到错误的结果,为此我们首先采用极值差方法,用matlab编程对两项指标数据进行标准化。
经过极差变换后,两项指标值均在0和1之间。
对于此问题的多目标规划解决,我们采用理想点方法将多目标规划转化为单目标规划,建立了偏离理想点距离模型。