存储管理---动态分区分配算法的模拟
- 格式:doc
- 大小:55.00 KB
- 文档页数:26
动态分区分配方式的模拟动态分区分配方式是计算机中内存管理的一种重要方式。
在动态分区分配方式中,内存空间被分割为多个不同大小的分区,每个分区可以被进程占用。
当一个进程需要内存时,系统会为其分配一个适当大小的分区,进程结束后,该分区将会被释放出来供其他进程使用。
为了更好地理解动态分区分配方式的原理和实际运作,可以通过模拟的方法来观察和分析。
下面是一个简单的动态分区分配方式的模拟过程:假设我们有一块容量为6400KB的内存,要模拟分配4个进程的情况。
这4个进程的内存需求分别是1000KB,2000KB,500KB和300KB。
首先,我们可以将内存划分为几个分区,每个分区的大小根据需要进行调整。
可以设置整块内存为一块分区(大小为6400KB),或者划分成多个较小的分区。
由于这里有4个进程需要分配内存,我们可以为它们设置4个分区,分别为P1,P2,P3和P41.初始状态:内存:[6400KB](未分配)进程:P1,P2,P3,P4(空)2.分配P1:内存:[1000KB](P1)、[5400KB](未分配)进程:P1,P2,P3,P4P1占用了1000KB的内存,剩余空间为5400KB。
3.分配P2:内存:[1000KB](P1)、[2000KB](P2)、[3400KB](未分配)进程:P1,P2,P3,P4P2占用了2000KB的内存,剩余空间为3400KB。
4.分配P3:内存:[1000KB](P1)、[2000KB](P2)、[500KB](P3)、[2900KB](未分配)进程:P1,P2,P3,P4P3占用了500KB的内存,剩余空间为2900KB。
5.分配P4:内存:[1000KB](P1)、[2000KB](P2)、[500KB](P3)、[300KB](P4)、[2600KB](未分配)进程:P1,P2,P3,P4P4占用了300KB的内存,剩余空间为2600KB。
在模拟的过程中,我们可以看到进程在内存中的分配情况和未分配内存的变化。
最好适应动态分区分配算法模拟动态分区分配算法是操作系统中的一种管理内存分配的方法,它可以根据实际需求动态地分配和回收内存。
在动态分区分配算法中,内存被划分为多个较小的区域,每个区域可以被分配给一个进程使用。
当一个进程结束后,它所占用的内存可以被回收,并重新分配给其他进程使用。
以下是一个模拟动态分区分配算法的例子。
假设系统中有4个进程需要申请内存空间,它们的大小分别是:P1(100KB)、P2(200KB)、P3(400KB)、P4(300KB)。
本例中我们采用首次适应算法(First Fit)来模拟动态分区分配。
首次适应算法是指内存分区按大小顺序排列,当有一个进程需要内存分配时,系统从低地址到高地址进行,找到一个能满足所需大小的内存分区即可。
以下是该算法的详细步骤:1.初始化内存分区列表。
假设系统中的内存总大小为1000KB,起始地址为0KB,结束地址为1000KB。
此时内存分区列表为空。
2.进程P1申请100KB的内存空间。
内存分区列表,找到第一个大小大于等于100KB的空闲分区,假设为Q1(大小为200KB)。
将分区Q1划分为两个部分:一个部分给进程P1使用,大小为100KB;另一个部分留作未分配区,大小为100KB。
更新内存分区列表,添加两个分区:分区Q1(已分配给P1)和分区Q2(未分配区,大小为100KB)。
此时内存分区列表为:Q1(100KB,已分配给P1)、Q2(100KB,未分配区)。
3.进程P2申请200KB的内存空间。
内存分区列表,找到第一个大小大于等于200KB的空闲分区,假设为Q3(大小为400KB)。
将分区Q3划分为两个部分:一个部分给进程P2使用,大小为200KB;另一个部分留作未分配区,大小为200KB。
更新内存分区列表,添加两个分区:分区Q3(已分配给P2)和分区Q4(未分配区,大小为200KB)。
此时内存分区列表为:Q1(100KB,已分配给P1)、Q2(100KB,未分配区)、Q3(200KB,已分配给P2)、Q4(200KB,未分配区)。
动态分区分配方式的模拟实验原理说明一、引言动态分区分配方式是操作系统中的一种内存管理方式,它将内存分为若干个不同大小的分区,根据进程的需求动态地分配内存。
在实际应用中,动态分区分配方式广泛应用于多任务操作系统中,如Windows、Linux等。
本文将介绍动态分区分配方式的模拟实验原理。
二、动态分区分配方式的基本原理动态分区分配方式是指在内存空间中按照进程需要划分出若干个不同大小的空间块,每个空间块可以被一个进程占用。
当有新进程需要内存时,操作系统会在空闲的空间块中选择一个大小合适的空间块给该进程使用。
当进程结束时,该进程所占用的空间块就会被释放出来,成为空闲块。
三、模拟实验环境搭建为了模拟动态分区分配方式,我们需要搭建一个虚拟机环境。
首先需要安装一款虚拟机软件(如VMware Workstation),然后安装一个操作系统(如Windows)。
接下来,在虚拟机中安装Visual Studio等开发工具。
四、模拟实验步骤1.设计数据结构为了方便管理内存空间,我们需要设计一种数据结构来存储内存块的信息。
我们可以使用链表来实现这一功能,每个节点表示一个内存块,包括该内存块的起始地址、大小以及状态(已分配或未分配)等信息。
2.初始化内存空间在模拟实验中,我们需要初始化一段虚拟内存空间。
我们可以使用一个数组来表示整个内存空间,并将其划分为若干个大小不同的空间块。
同时,我们需要将这些空间块的信息存储到链表中。
3.模拟进程请求内存在模拟实验中,我们需要模拟多个进程同时请求内存的情况。
当一个进程请求内存时,操作系统会根据其所需的内存大小,在空闲的空间块中选择一个合适的块分配给该进程,并将该块标记为已分配状态。
4.模拟进程释放内存当一个进程结束时,它所占用的内存块就会被释放出来,成为空闲块。
此时操作系统会更新链表信息,并将该块标记为未分配状态。
5.显示当前内存使用情况在模拟实验过程中,我们需要不断地显示当前的内存使用情况。
实验五动态分区分配算法的模拟为了更好地理解动态分区分配算法的工作原理,我们可以进行一次模拟实验。
在实验中,我们将模拟一个内存分区,并使用动态分区分配算法来管理这些分区。
首先,让我们定义一个内存大小为1000字节的分区。
我们假设这个内存中包含几个已分配的分区和几个空闲的分区。
我们使用首次适应算法来进行分区的首次适应分配。
首先,我们将整个内存空间标记为空闲状态,并创建一个初始的空闲链表。
我们假设初始时只有一个空闲分区,大小为1000字节,起始地址为0。
现在,假设有一个进程请求分配一个250字节大小的内存空间。
我们首先检查空闲链表,找到一个大小大于等于250字节的空闲分区。
在这种情况下,我们发现第一个空闲分区的大小是1000字节,所以我们将它拆分成250字节的已分配分区和750字节的空闲分区。
我们在已分配分区上标记一个进程编号,并将空闲分区加入空闲链表。
接下来,假设我们的进程需要申请500字节的内存空间。
在这种情况下,我们需要查找一个大小大于等于500字节的空闲分区。
我们发现第一个可用的空闲分区大小是750字节,我们将它拆分为已分配的500字节和剩余的250字节的空闲分区。
然后,我们假设有进程释放了先前分配的250字节的内存空间。
当一个进程释放分配的内存空间时,我们需要合并相邻的空闲分区。
在这种情况下,释放的分区位于地址0,大小为250字节,并且其下一个分区是地址500,大小为500字节的空闲分区。
因此,我们将这两个分区合并为一个大小为750字节的空闲分区。
接下来,我们假设另一个进程将请求600字节的内存空间。
根据首次适应算法,我们将在第一个满足条件的空闲分区进行分配。
在这种情况下,我们将分配200字节的空闲分区和分配400字节的空闲分区拆分为600字节的已分配分区和空闲分区。
最后,假设一个进程请求200字节的内存空间。
根据首次适应算法,我们在第一个满足条件的空闲分区进行分配。
在这种情况下,我们将250字节的空闲分区拆分为200字节的已分配分区和50字节的空闲分区。
动态分区分配方式模拟动态分区分配方式的核心思想是将内存划分为若干个不同大小的分区,每个分区可以用来存放一个进程或作为一部分进程的存储区域。
当一个进程需要分配内存时,系统会根据进程的需要选择一个合适大小的空闲分区分配给该进程。
当进程执行完毕后,系统会回收其占用的内存分区,再次将其标记为空闲分区。
首次适应算法(First Fit)是最简单的动态分区分配算法之一、它从内存的起始位置开始,寻找第一个满足进程需要的空闲分区,然后将该分区分配给进程。
首次适应算法的优点是实现简单,且内存利用率较高。
然而,它也有一些缺点,比如容易产生碎片,导致内存的利用率下降。
最佳适应算法(Best Fit)是根据进程需要的内存大小,选择最小的满足条件的空闲分区进行分配。
最佳适应算法可以最大限度地减少碎片的产生,提高内存的利用率。
但是,最佳适应算法的缺点是实现较为复杂,同时由于选择最小的分区进行分配,会导致大量的碎片出现。
最坏适应算法(Worst Fit)与最佳适应算法相反,它选择最大的满足进程需要的空闲分区进行分配。
最坏适应算法的优点是可以减少大型进程的外部碎片,但由于选择最大的分区进行分配,会导致更多的碎片产生。
为了更好地理解动态分区分配方式,我们可以通过一个简单的模拟实例来进行说明。
假设有一块内存大小为1MB,现有以下三个请求需要进行内存分配:1.进程A需要200KB的内存;2.进程B需要400KB的内存;3.进程C需要600KB的内存。
首次适应算法:首先,进程A需要200KB的内存,首次适应算法从内存起始位置开始寻找空闲分区,找到一个大小符合要求的空闲分区,将其分配给进程A。
然后,进程B需要400KB的内存,首次适应算法会从上次分配的位置开始,找到一个大小满足要求的空闲分区,并将其分配给进程B。
最后,进程C需要600KB的内存,首次适应算法会继续从上次分配的位置开始,但发现没有足够的空闲分区,分配失败。
最佳适应算法:最佳适应算法需要对所有空闲分区进行排序,按照分区大小的升序排列。
使用动态分区分配方式的模拟1内容(1)用C语言分别实现采用首次适应算法和最佳适应算法的动态分区分配过程alloc( )和回收过程free( )。
其中,空闲分区通过空闲分区链来管理:在进行内存分配时,系统优先使用空闲区低端的空间。
(2)假设初始状态下,可用的内存空间为640KB,并有下列的请求序列:•作业1申请130KB。
•作业2申请60KB。
•作业3申请100KB。
•作业2释放60KB。
•作业4申请200KB。
•作业3释放100KB。
•作业1释放130KB。
•作业5申请140KB。
•作业6申请60KB。
•作业7申请50KB。
•作业6释放60KB。
请分别采用首次适应算法和最佳适应算法,对内存块进行分配和回收,要求每次分配和回收后显示出空闲分区链的情况。
2、示例程序://Tittle: 使用动态分区算法的模拟//author: XuYongzhen#include <stdio.h>#include <stdlib.h>#include <malloc.h>#include <iostream>using namespace std;typedef struct DuLNode{struct DuLNode *prior;struct DuLNode *next;int address;int jsize;int jnumber;//显示分区被那个作业占用,显示零则为空闲分区;}DuLNode,*DuLinkList ;void CreatList(DuLinkList &L){DuLinkList p=(DuLinkList)malloc(sizeof(DuLNode));L->next=p;L->jnumber=100;//为释放头结点后面的结点空间做统一化处理p->prior=L;p->next=NULL;p->jsize=600;p->address=0;p->jnumber=0;}void RequestList(DuLinkList &L,int job,int size){cout<<"作业"<<job<<"申请"<<size<<"KB的空间"<<endl;DuLinkList p=L->next;while((p->jnumber>0||p->jsize<size)&&p)p=p->next;if(p==NULL)cout<<"没有适合的空间分配"<<endl;else{DuLinkList s=(DuLinkList)malloc(sizeof(DuLNode));s->prior=p->prior;p->prior->next=s;s->next=p;p->prior=s;s->jnumber=job;s->jsize=size;s->address=p->address;p->address=p->address+s->jsize;p->jsize=p->jsize-s->jsize;DuLinkList t=L->next;while(t){if(t->jnumber==0)cout<<"空闲分区:始址="<<t->address<<"大小="<<t->jsize<<endl;elsecout<<"已分配的分区:作业号="<<t->jnumber<<"始址="<<t->address<<"大小="<<t->jsize<<endl;t=t->next;}//whilecout<<endl;}//else}//RequestListvoid FreeList(DuLinkList &L,int job){cout<<"作业"<<job<<"释放"<<endl;DuLinkList p=L->next;while(p->next&&p->jnumber!=job)p=p->next;if(p->prior->jnumber==0 && p->next->jnumber==0){//p的前后都是空闲分区,则合并三者DuLinkList s=p->next;DuLinkList q=p->prior;p->prior->next=p->next;p->next->prior=p->prior;s->prior->next=s->next;s->next->prior=p->prior;q->jsize=p->jsize+s->jsize+q->jsize;}if(p->prior->jnumber==0 && p->next->jnumber!=0){//回收区与插入点的前一个分区相临接DuLinkList q=p->prior;p->prior->next=p->next;p->next->prior=p->prior;q->jsize=p->jsize+q->jsize;}if(p->prior->jnumber!=0 && p->next->jnumber==0){//回收区与插入点的后一个分区相临接DuLinkList q=p->next;p->prior->next=p->next;p->next->prior=p->prior;q->address=p->address;q->jsize=p->jsize+q->jsize;}if(p->prior->jnumber!=0 && p->next->jnumber!=0)//回收区去插入点前后的两个空闲分区都不相临接p->jnumber=0;DuLinkList t=L->next;while(t){if(t->jnumber==0)cout<<"空闲分区:始址="<<t->address<<"大小="<<t->jsize<<endl;elsecout<<"已分配的分区:作业号="<<t->jnumber<<"始址="<<t->address<<"大小="<<t->jsize<<endl;t=t->next;}cout<<endl;}void main(){DuLinkList L=(DuLinkList)malloc(sizeof(DuLNode));CreatList(L);RequestList(L,1,130);RequestList(L,2,60);RequestList(L,3,100);FreeList(L,2);RequestList(L,4,200);FreeList(L,3);FreeList(L,1);RequestList(L,5,140);RequestList(L,6,60);RequestList(L,7,50);FreeList(L,6);}。
存储管理---动态分区分配算法的模拟一、设计任务完成存储器动态分区分配算法的模拟实现。
二、设计思想在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法),实现分区存储管理的内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接,等等相关的内容。
三、预期目的让我们了解操作系统的基本概念,理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。
通过课程设计,我们可以进一步理解在计算机系统上运行的其它各类操作系统,并懂得在操作系统的支持下建立自己的应用系统。
操作系统课程设计,对于训练学生掌握程序设计、熟悉上机操作和程序调试技术都有重要作用。
重点培养学生的思维能力、设计能力、创新能力和排错能力。
四、设计方案首先是对相关知识的掌握,例如数据结构,计算方法,组成原理以及操作系统等。
在这些基本知识的基础上进行扩展,用语言的形式从函数,数据结构原代码,原程序等方面来达到自己想要的目的。
该设计就是要达到对各个细节的问题的解决将各个数据块连接起来,最终达到存储器动态分区分配算法的模拟实现。
五、数据结构1.设计合理的数据结构来描述存储空间:1)对于未分配出去的部分,用空闲分区链表来描述。
struct freeList{int startAddress; /* 分区起始地址 */int size; /* 分区大小 */struct freeList *next; /* 分区链表指针 */ }2)对于已经分配出去的部分,由装入内存的作业占据。
第2页struct usedList{int startAddress; /* 分区起始地址 */int jobID; /* 分区中存放作业ID */struct usedList *next; /* 分区链表指针 */ }3)将作业组织成链表。
一、设计任务完成存储器动态分区分配算法的模拟实现。
二、设计思想在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法),实现分区存储管理的内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接,等等相关的内容。
三、预期目的让我们了解操作系统的基本概念,理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。
通过课程设计,我们可以进一步理解在计算机系统上运行的其它各类操作系统,并懂得在操作系统的支持下建立自己的应用系统。
操作系统课程设计,对于训练学生掌握程序设计、熟悉上机操作和程序调试技术都有重要作用。
重点培养学生的思维能力、设计能力、创新能力和排错能力。
四、设计方案首先是对相关知识的掌握,例如数据结构,计算方法,组成原理以及操作系统等。
在这些基本知识的基础上进行扩展,用语言的形式从函数,数据结构原代码,原程序等方面来达到自己想要的目的。
该设计就是要达到对各个细节的问题的解决将各个数据块连接起来,最终达到存储器动态分区分配算法的模拟实现。
五、数据结构1.设计合理的数据结构来描述存储空间:1)对于未分配出去的部分,用空闲分区链表来描述。
struct freeList{int startAddress; /* 分区起始地址 */int size; /* 分区大小 */struct freeList *next; /* 分区链表指针 */ }2)对于已经分配出去的部分,由装入内存的作业占据。
struct usedList{int startAddress; /* 分区起始地址 */int jobID; /* 分区中存放作业ID */struct usedList *next; /* 分区链表指针 */ }3)将作业组织成链表。
存储管理---动态分区分配算法的模拟齐齐哈尔大学操作系统课程综合实践题目:存储管理---动态分区分配算法的模拟班级:计本062姓名:wolfboy学号:1111111111指导教师:TEACHER2008年12月班级姓名指导教师题目:存储管理---动态分区分配算法的模拟评分标准评分的依据评分标准分数权重得分A C选题符合大纲要求,选题基本符合大纲要 10 选题题目较新颖,工作量求,工作量适中大态度端正,能主动认真完成各个环节的工能够完成各环节基本 10 工作态度作,不迟到早退,出工作,出勤较好。
勤好。
能正确选择存储结能正确选择存储结存储结构、算构,定义准确,算法构,算法流程图或类 20 法描述流程图或类C语言描C语言描述的算法基述的算法准确无误本准确具有独立分析、解决有一定的分析、解决问题能力,有一定的问题能力。
能够在老独立解决问创造性,能够独立完 10 师指导下完成软件的题的能力成软件的设计与调试设计与调试工作,程工作,程序结构清晰,序功能较完善。
逻辑严谨,功能完善。
答辨问题回能准确回答老师提出能基本准确回答老师 20 答的问题提出的问题程序运行正确、界面程序运行正确、界面程序运行情 10 清晰,测试数据设计较清晰,能给出合适况合理。
的测试数据。
格式规范,层次清晰,格式较规范,设计思综合实践报设计思想明确,解决20 想基本明确,解决问告问题方法合理,体会题方法较合理。
深刻。
总分指导教师(签字):1存储管理---动态分区分配算法的模拟:分区分配算法就是系统在寻找空闲的分区分配给某一用户作业,具体可采用首次适应算法,循环首次适应算法和最佳适应算法。
下面将针对每个算法的数据结构及算法实现进行分析,在分析算法前,先对此次课题进行了分析,再对一些基础相关知识进行了整理。
:分区分配算法;首次适应;循环首次适应;最佳适应概述动态分区分配是根据进程的实际需要,动态地为之分配内存空间。
在实现可变分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。
1、设计目的及开发环境分区管理是满足多道程序运行的最简单的存储管理方式,为了实现对内存空间的有效管理,需要采取一些方法和策略,用以实现对内存空间的分配或回收。
操作系统:windows xp开发环境:Dev-C++ 52数据结构设计(1) 空闲区说明表结构:把空闲区定义为结构体变量,包括空闲区始址,空闲区大小和空闲区状态,用0表示空表目,1为可用空闲块。
struct freearea {int startaddress;/*空闲区始址*/int size;/*空闲区大小*/int state;/*空闲区状态:0为空表目,1为可用空闲块*/}freeblock[N]={{20,20,1},{80,50,1},{150,30,1},{300,30,0},{600,10,1}};(2) 为作业分配主存空间的函数alloc(),三个算法分别对应三个分配主存空间的算法。
applyarea为作业申请量,tag为检查是否有满足作业需要的空闲区的标志。
21?首次适应算法:检查空闲区说明表是否有满足作业要求的空闲区时,如果大于作业要求,则分配给作业,修改地址和空闲区大小,并将tag置“1”,表示有满足作业要求的空闲区,返回为作业分配主存的地址.程序如下所示:if(freeblock[i].state==1&&freeblock[i].size>applyarea){freeblock[i].startaddress=freeblock[i].startaddress+applyarea;freeblock[i].size=freeblock[i].size-applyarea;tag=1;return freeblock[i].startaddress-applyarea;}如果空闲区等于作业要求,则分配给作业,修改地址和空闲区大小,并将tag置“1”,表示有满足作业要求的空闲区,返回为作业分配主存的地址.if(freeblock[i].state==1&&freeblock[i].size==applyarea){freeblock[i].state=0;tag=1;return freeblock[i].startaddress;}如果没有满足条件的空闲区,分配不成功,返回-1 if(tag==0)return -1;2?循环首次适应算法的alloc()函数与首次适应算法的alloc()函数区别在于从哪里开始找是否有满足作业要求的空闲区,它是从上次找到的空闲区的下一个空闲分区开始找,只需要改变for循环的条件即可。
for(i=s;i<N;i++) 3?最佳适应算法:该算法总是把满足要求、又是最小的空闲区分配给作业。
检查空闲区说明表是否有满足作业要求的空闲区,也分为三种情况:大于,等于,小于。
若检查到有“等于”的情况,就可以直接分配,若没有,则继续检查是否有“大于”的情况:if(freeblock[i].state==1&&freeblock[i].size==applyarea){freeblock[i].state=0;tag=1;return freeblock[i].startaddress;}3检查“大于”的情况:先把所有大于所要求的空闲区放入数组,for(i=0;i<N;i++){if(freeblock[i].state==1&&freeblock[i].size>applyarea)a[j++]=i; } 再从数组中挑出最小的那个:如果数组中的元素大于一个,则需要一个个比较过去,然后取出最小的那个分配给作业:if(j>1){h=a[0];min=freeblock[h];for(k=1;k<j;k++){h=a[k];if(freeblock[h].size<min.size){mid.size=freeblock[h].size;mid.state=freeblock[h].state;mid.startaddress=freeblock[h].startaddress; freeblock[h].size=min.size;freeblock[h].state=min.state;freeblock[h].startaddress=min.startaddress; min.size=mid.size;min.state=mid.state;min.startaddress=mid.startaddress;}}min.startaddress=min.startaddress+applyarea; min.size=min.size-applyarea;tag=1;return min.startaddress-applyarea;}如果数组中只有一个元素,则直接分配给作业:if(j==1)4{h=a[0];min=freeblock[h];min.startaddress=min.startaddress+applyarea;min.size=min.size-applyarea;tag=1;return min.startaddress-applyarea;}如果没有满足条件的空闲区,分配不成功,返回-1if(tag==0)return -1;(3) 主存回收函数setfree():tag1代表释放区的高地址是否邻接一个空闲区,tag2代表释放区的高低地址是否都邻接一个空闲区,tag3代表释放区的低地址是否邻接一个空闲区。
分为四种情况:1?回收分区的上邻和下邻分区都不是空闲的,则直接将回收区的相关信息记录在空闲区表中。
if(tag3==0){for(j=0;j<N;j++){ if(freeblock[j].state==0){freeblock[j].startaddress=s;freeblock[j].size=l;freeblock[j].state=1;break;}}}2 ?回收分区的上邻分区是空闲的,需要将这两个相邻的空闲区合并成一个较大的空闲区,然后修改空闲区表。
if(freeblock[i].startaddress==s+l&&freeblock[i].state==1) {l=l+freeblock[i].size;tag1=1;5}3 ?回收分区的下邻分区是空闲区,需要将这两个相邻的空闲区合并成一个空闲区,并修改空闲区表。
if(freeblock[i].startaddress+freeblock[i].size==s&&freeblock[i].stat e==1){freeblock[i].size=freeblock[i].size+l;tag3=1;break;}4 ?回收分区的上邻和下邻都是空闲区,则需要将这三个空闲区合并成一个更大2的空闲区,然后修改空闲区表。
先判断有上邻空闲区(如?所示),再判断有下3邻空闲区(如?所示),若都有,则将tag2置1。
(4) 对空闲区表中的空闲区调整的函数adjust():使空闲区按始地址从小到大排列,空表目放在最后面。
(5) 打印空闲区说明表函数:print()(6) 首次适应算法函数shouci():若有作业需要分配内存,则对空闲区表中的空闲区进行调整,调用调整函数adjust(),再将其打印出来;输入作业申请量,调用alloc()函数为作业分配空间,分配结束后,要进行主存回收,再次调整空闲区表后,打印出来。
循环执行直到没有作业为止。
(7) 循环首次适应算法xunhuan():与首次适应算法不同的是,循环首次适应算法要记录上次找到的空闲区地址,并在下次分配时从这个地址开始。
(8) 最佳时应算法best():该算法在分配内存时,把所有满足要求的空闲区中最小的那个空闲区分配给请求进程。
3算法的实现首次适应算法要求空闲区按其起始地址由小到大排列,当某一用户作业要求装入内存时,存储分配程序从起始地址最小的空间区开始扫描,直到找到满足该作业要求的空闲区为止。
在查找空闲区时,不再每次从链首开始查找,而是从上一次找到的空闲区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲区为止,并从中划出一块与请求大小相等的内存空间分给该作业。
该算法总是把满足要求,又是最小的空闲区分配给请求进程,即在空闲区表6中,按空闲区的大小由小到大排序,建立索引,当用户进程请求分配内存时,从索引表中找到第一个满足该进程大小要求的空闲区分配给它。
系统利用某种分配算法,从空闲分区链(表)中找到所需大小的分区,设请求分区的大小为r.size,其中空闲分区的大小可表示为f.size,若 f.size-r.size?size(size为事先规定的不再切割的剩余分区的大小)成立,则说明多余部分太小,不能满足其它请求进程,故将整个分区分配给该请求者;否则,从该分区中按请求的大小划分出一块内存空间分配出去,余下的部分留在空闲区表中,然后将分区首部返回给调用者。