磁介质
- 格式:ppt
- 大小:1.72 MB
- 文档页数:43
B=B+(ralative8以电子的轨道运动为例,第i 个电子受的磁力矩B m M i i v vv ×=电子轨道角动量增量ii i L t M L v v v ⊥=d d ∴电子旋进,它引起的感应磁矩反平行于。
i m Δv0B v 这种效应在顺磁质中也有,不过与分子固有磁矩的转向效应相比弱得多。
m im i11由于介质磁化而出现的一些等效的附加电流分布。
2. 磁化电流如上图,磁介质均匀被磁化,内部各点处的分子电流会相互抵消;表面上的小分子电流没有抵消,它们方向相同,等效为表面上有一层面束缚电流。
Si m v v=分子以顺磁质为例:由于分子的热运动,每个磁极子的取向不断在变化,但从统计平均的角度,每个磁极子对磁化强度的贡献是一样的, 将这个贡献等效为一分子磁矩,设分子m vM v在磁场中发生磁化,磁化强度MSNΔP m分m r ΔiS Ni分m r 顺磁质抗磁质2rS S i m π=v v 图示为顺磁质情形Mnm VM Vm n VMmM V V V ˆΔˆΔlim limΔ)ˆ(lim0ΔΔ0Δ分分分====→→→∑v14现为面束缚电流。
磁化n rM rt M r lrd SI ′d θ与电介质极化电荷面密度nP ˆ⋅v设:二、环路定理的应用举例[例1]书P171:无限长直螺线管充以磁介质[例2]书P172: 长同轴电缆充以磁介质19SΔS ΔSS Δ<<Δ侧lΔlΔ<<δ(2(当tg tg 211=θμμθ23* 静磁屏蔽铁磁材料的闭合壳体置于外磁场中,壳内口腔中磁感应强度大大削弱的现象。
应用:精密探头、显象管…都需要磁屏蔽。
*铁磁质具有把磁感应线聚集于自己内部的特性(磁感应线沿铁走)部分磁屏蔽25§19.4 铁磁质(ferromagnetic substance)一、磁畴(magnetic domain )自发磁化的小区域─磁畴实验研究表明:铁磁质内部存在一个个小区域,小区域内,分子磁矩有序排列(自发磁化)。
第15章磁介质一、物质的磁化1、磁介质中的磁场设真空中的磁感应强度为的磁场中,放进了某种磁介质,在磁场和磁介质的相互作用下,磁介质产生了附加磁场,这时磁场中任意一点处的磁感应强度2、磁导率由于磁介质产生了附加磁场磁介质中的磁场不再等于原来真空中的磁场,定义和的比值为相对磁导率:介质中的磁导率:式中为真空中的磁导率3、三种磁介质(1)顺磁质:顺磁质产生的与方向相同,且。
略大于1(2)抗磁质:抗磁质产生的与方向相反,且。
略小于1(3)铁磁质:铁磁质产生的与方向相同,且。
远大于1二、磁化强度1、磁化强度定义为单位体积中分子磁矩的矢量和即:2、磁化强度与分子面电流密度的关系:式中为磁介质外法线方向上的单位矢量。
3、磁化强度的环流即磁化强度对闭合回路的线积分等于通过回路所包围面积内的总分子电流三、磁介质中的安培环路定律1、安培环流定律在有磁介质条件下的应用即:2、磁场强度定义为:3、磁介质中的安培环路定律:4、应用磁介质中的安培环路定律的注意点:(1)的环流只与传导电流有关,与介质(或分子电流)无关。
(2)的本身()既有传导电流也与分子电流有关。
既描写了传导电流磁场的性质也描写了介质对磁场的影响。
(3)要应用磁介质中的安培环路定律来计算磁场强度时,传导电流和磁介质的分布都必须具有特殊的对称性。
5、磁介质中的几个参量间的关系:(1)磁化率(2)与的关系(3)与等之间的关系四、磁场的边界条件(界面上无传导电流)ေ、壁介蔨分界面伤边磁感应强度的法向分量连廭,即Ҩ2、磁介谨分界面两龹的磁场强嚦纄切向分量连续,即:Ƞ3 磃感应线的折射定律ā*怎义如图15-1所示)五、铁磁物贩q、磁畴:电子ꇪ旋磁矩取向相同的對区域。
2、磁化曲线(图55-2中曲线)ေ磁导率曲线(图15-2中??曲线)4、磁滞回线ေ图17耩3)图中乺矫끽嚛㠂5、铁磁质与非铁㳁质的主要区别:铁磁物质产生的附加磁场错误!未定义书签。
的比原来真空中的磁场大得多。