高一物理向心力典型例题(含问题详解)
- 格式:doc
- 大小:311.00 KB
- 文档页数:20
向心力【知识要点】1、向心力:做匀速圆周运动的物体受到的指向圆心的合力叫做向心力。
注意:①向心力是根据力的作用效果来命名的。
向心力可以是某一个力或某个力的分力或某几个力的合力来提供。
不管属于什么性质的力,只要产生向心加速度,就叫做向心力。
②向心力的方向与线速度的方向垂直,起改变速度方向的作用,不改变速度的大小,所以向心力不会对物体做功。
2、变速圆周运动:速率大小发生变化的圆周运动叫做变速圆周运动。
注意:①变速圆周运动中的合外力并不指向圆心。
这一力F 可以分解为互相垂直的两个力:跟圆周相切的分力F r 和指向圆心方向的分力F n .F n 产生了向心加速度,与速度垂直,改变了速度方向。
F r 产生切向加速度,切向加速度与物体的速度方向在一条直线上,它改变了速度的大小。
仅有向心加速度的运动是匀速圆周运动,同时具有向心加速度和切向加速度的运动是变速圆周运动。
②变速圆周运动中,某一点的向心加速度和向心力均可用rva n 2=、2ωr a n =和rvm F n 2=、2ωmr F n =公式求解,只不过v,ω都是指那一点的瞬时速度。
③处理一段曲线运动的方法:一段曲线运动轨迹可以分割成许多不同半径的极短一小段圆弧,这样一般曲线运动可以采用圆周运动的分析方法。
3、向心力大小公式:rvmF n 2= 2ωmr F n = 推论: 224Tmrmv F n πω==4、 向心力的来源分析:(1)匀速圆周运动中,物体所受的合外力提供其做圆周运动的向心力。
例如,用细线系一小球在水平面内作匀速圆周运动,其所需的向心力就是由重力和细绳的拉力的合力来提供。
又如汽车在水平路面上匀速转动时的向心力就由其静摩擦力来提供。
(2)一般圆运动中的向心力与合外力不同。
此时向心力只是合外力的一个分力,如图7-1所示。
分析圆周运动问题的一般方法: ①确定做圆周运动物体的研究对象。
②确定物体圆周运动的轨道平面、圆心、半径及轨道。
③按通常的方法,对研究对象进行受力分析,从中确定出哪些力起到了向心力作 用,即组成向心力。
专题5 竖直面内的圆周运动(解析版)一、目标要求目标要求重、难点向心力的来源分析重难点水平面内的圆周运动重难点火车转弯模型难点二、知识点解析1.汽车过桥模型(单轨,有支撑)汽车在过拱形桥或者凹形桥时,桥身只能给物体提供弹力,而且只能向上(如以下两图所示).(1)拱形桥(失重)汽车在拱形桥上行驶到最高点时的向心力由重力和桥面对汽车的弹力提供,方向竖直向下,在这种情况下,汽车对桥的压力小于汽车的重力:mg-F=2mvR,F ≤ mg,汽车的速度越大,汽车对桥的压力就越小,当汽车的速度达到v max=gR,此时物体恰好离开桥面,做平抛运动.(2)凹形路(超重)汽车在凹形路上行驶通过最低点的向心力也是由重力和桥面对汽车的弹力提供,但是方向向上,在这种情况下,汽车对路面的压力大于汽车的重力:2-=mvF mgR,由公式可以看出汽车的速度越大,汽车对路面的压力也就越大.说明:汽车过桥模型是典型的变速圆周运动.一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题.2.绳模型(外管,无支撑,水流星模型)(1)受力条件:轻绳对小球只能产生沿绳收缩方向的拉力,圆形轨道对小球只能产生垂直于轨道向内的弹力,故这两种模型可归结为一种情况,即只能对物体施加指向轨迹圆心的力.(2)临界问题:①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)如果刚好等于零,小球的重力充当圆周运动所需的向心力,这是小球能通过最高点的最小速度,则:2=v mg m R,解得:0=v gR说明:如果是处在斜面上,则向心力公式应为:20sin v mg m R α=,解得:0sin v gR α=②能过最高点的条件:v ≥0v .③不能过最高点的条件:v <0v ,实际上小球在到0v 达最高点之前就已经脱离了圆轨道,做斜上抛运动.3.杆模型(双管,有支撑)(1)受力条件:轻杆对小球既能产生拉力又能产生支持力,圆形管道对其内部的小球能产生垂直于轨道用长为L 的轻绳拴着质量为m 的小球 使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直外管内侧做圆周运动用长为L 的轻杆拴着质量为m 的小球使小球在竖直平面内作圆周运动 质量为m 的小球在半径为R 的光滑竖直双管内做圆周运动向内和向外的弹力.故这两种模型可归结为一种情况,即能对物体施加沿轨道半径向内和向外的力.(2)临界问题:①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度0=v 临,此时轻杆或轨道内侧对小球有向上的支持力:0-=N F mg .②当0<v gR N F .由-mg N F 2=v m R 得:N F 2=-v mg m R.支持力N F 随v 的增大而减小,其取值范围是0<N F <mg .③当=v gR 时,重力刚好提供向心力,即2=v mg m R,轻杆或轨道对小球无作用力.④当v gR F 或轨道外侧对小球施加向下的弹力N F 弥补不足,由2+=v mg F m R 得:2=-v F m mg R,且v 越大F (或N F )越大.说明:如果是在斜面上:则以上各式中的mg 都要改成sin mg α. 4.离心运动做匀速圆周运动的物体,在合外力突然消失或者减小的情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动.(1)离心运动的成因做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞去的倾向.当2F mr ω=时,物体做匀速圆周运动;当0F =时,物体沿切线方向飞出;当2F mr ω<时,物体逐渐远离圆心.F 为实际提供的向心力.如图所示.(2)离心运动的应用离心运动可以给我们的生活、工作带来方便,如离心干燥器、洗衣机的脱水筒等就是利用离心运动而设计的.离心干燥器:将湿物体放在离心干燥器的金属网笼里,当网笼转得较快时,水滴所受的附着力不足以提供其维持圆周运动所需的向心力,水滴就做离心运动,穿过网孔,飞离物体,使物体甩去多余的水分.(3)离心运动的防止有时离心运动也会给人们带来危害,如汽车、摩托车、火车转弯时若做离心运动则易造成交通事故;砂轮转动时发生部分砂块做离心运动而造成人身伤害.因此应对它们进行限速,这样所需向心力mvr2较小,不易出现向心力不足的情况,从而避免离心运动的产生.(4)几种常见的离心运动物理情景实物图原理图现象及结论洗衣机脱水筒当水滴跟物体之间的附着力F不能提供足够的向心力(即2ω<F m r))时,水滴做离心运动汽车在水平路面上转弯当最大静摩擦力不足以提供向心力(即2max<vF mr))时,汽车做离心运动三、考查方向题型1:汽车过桥模型典例一:如图所示,质量为m的滑块与轨道间的动摩擦因数为μ,当滑块从A滑到B的过程中,受到的摩擦力的最大值为Fμ,则( )A.Fμ=μmg B.Fμ<μmgC.Fμ>μmg D.无法确定Fμ的值【答案】:C【解析】在四分之一圆弧底端,根据牛顿第二定律得:2vN mg mR-=,解得:N=mg+ 2vmR,此时摩擦力最大,有:2>v F N mg m mg R μμμμ⎛⎫==+ ⎪⎝⎭.故C 正确确,ABD 错误.题型2:绳模型典例二:如图所示,杂技演员表演水流星节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子运动中水始终不会从杯子洒出,设重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A gLB 2g LC 5gLD 10gL【答案】:B【解析】:据题知,杯子圆周运动的半径2=Lr ,杯子运动到最高点时,水恰好不流出,由水的重力刚好提供其做圆周运动的向心力,根据牛顿第二定律得:22Lmg m ω= 解得:2g L ω=题型3:杆模型典例三:一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】:A【解析】:轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v gR A正确,B错误;若v gR最高点对小球的弹力竖直向上,mg-F=m2vR,随v增大,F减小,若v gR高点对小球的弹力竖直向下,mg+F=m2vR,随v增大,F增大,故C、D均错误。
高一物理下册《向心力计算题综合复习》例1.长度为L=0.5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动(g取10m/s2)。
(1)通过最高点时小球的速率是2.0m/s,计算此时细杆OA受到的弹力;(2)通过最高点时小球的速率是3.0m/s,计算此时细杆OA受到的弹力。
例2.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m。
设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2;求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ。
例3.如图所示,质量为m的木块,用一轻绳拴着,置于很大的水平转盘上,细绳穿过转盘中央的细管,与质量也为m的小球相连,木块与转盘间的最大静摩擦力为其重力的μ倍(μ=0.2),当转盘以角速度ω=4rad/s匀速转动时,要保持木块与转盘相对静止,木块转动半径的范围是多少?(g取10m/s2)例4.如图所示,一根长为0.5m的轻质细线,一端系着一个质量为0.8kg的小球(可视为质点),另一端固定在光滑圆锥体顶端,圆锥顶角的一半θ=37°(sin37°=0.6,cos37°=0.8),g取10m/s2;求:当小球随圆锥体围绕其中心轴线一起以ω=5rad/s做匀速圆周运动时,小球受到绳子的拉力与圆锥体的支持力。
例5.如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=60°,一条长度为L的绳(质量不计),一端固定在圆锥体的顶点O处,另一端拴着一个质量为m的小球(可看成质点),小球以角速度ω绕圆锥体的轴线做水平匀速圆周运动。
求:当小球以的角速度转动时所受拉力F T和支持力F N大小。
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故. 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s 解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M 甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ① r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零 C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/π a=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ 即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12 F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
高中物理力学典型例题1、如图1—1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。
绳上挂一个光滑的轻质挂钩。
它钩着一个重为12牛的物体.平衡时,绳中张力T=____分析与解:本题为三力平衡问题。
其基本思路为:选对象、分析力、画力图、列方程。
对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。
所以,本题有多种解法。
解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。
解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。
以两个拉力为邻边所作的平行四边形为菱形.如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛.想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。
)2、如图2—1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B 上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等.在轻绳两端C、D分别施加竖直向下的恒力F=mg。
先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变.(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。
因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小.当物块的合外力为零时,速度达到最大值。
之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。
高_物理暑假作业■探究向心力大小与半径、角速度、质量的关系_、实验题供99分)探究做匀速圆周运动的物体所需的向心力的大小与质量、角速度和半径之间关系的实验装置如图所示。
转动手柄使长槽和短槽分别随变速塔轮匀速转动,槽内的球做匀速圆周运动。
横臂的挡板对球的压力提供了向心力,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力筒下降,从而露出标尺,标尺上的红白相间的等分格就能得到两个球所受向心力的比值。
(1)若探究的是向心力与半径之间的关系,必须保持小球的、相同,这里用到的实验方法是(2)某次实验中,探究的是向心力与质量之间的关系,左、右两边露出的标尺分别是1格和3格,贝I左、右两边所放小球的质量之比为用如图甲所示的装置探究影响向心力大小的因素。
已知小球在槽中A、8、。
位置做圆周运动的轨迹半径之比为1: 2:1,变速塔轮自上而下按如图乙所示三种方式进行组合,每层半径之比由上至下分别为1:1、2:1和3: 1.(1)在这个实验中,利用了来探究向心力的大小F与小球质量初、角速度口和半径尸之间的关系。
A.理想实验法B.等效替代法C.控制变量法(2)在探究向心力大小与半径的关系时,为了控制角速度相同需要将传动皮带调至第(填“一”“二”或“三")层塔轮,然后将两个质量相等的钢球分别放在(填"A和8〃"A和C"或“8和C")位置;(3)在探究向心力大小与角速度的关系时,若将传动皮带调至图乙中的第三层,转动手柄,则左右两小球的角速度之比为o为了更精确探究向心力大小尸与角速度3的关系,采用接有传感器的自制向心力实验仪进行实验,测得多组数据经拟合后得到尸一^图像如图丙所示,由此可得的实验结论是O某同学利用如图所示的装置来探究向心力大小与半径、角速度、质量的关系。
两个变速塔轮通过皮带连接,调节装置,转动手柄,使长槽和短槽分别随变速塔轮在水平面内匀速转动,槽内的钢球做匀速圆周运动。
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故 . 所以A、B、C均错误,D正确.4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F 向,角速度为ω,半径分别为r 甲、r 乙.则F 向=M 甲ω2r 甲=M 乙ω2r 乙=9.2 N ① r 甲+r 乙=0.9 m ②由①②两式可解得只有D 正确 答案:D7、如图所示,在匀速转动的圆筒壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说确的是( )A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变 析:物体在竖直方向上受重力G 与摩擦力F ,是一对平衡力,在向心力方向上受弹力F N .根据向心力公式,可知F N =mω2r ,当ω增大时,F N 增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是( )A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A 、B 错误.周期不变时,绳长易断,故D 正确.由,当线速度不变时绳短易断,C 错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M 的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg 的小球从光滑斜面上高h=3.5 m 处由静止滑下,斜面的底端连着一个半径R=1 m 的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v 1,则mgh=mg·2R+ 1/2mv 12 F n +mg= mv 12/R 得:F n =40 N②小球刚好通过最高点时速度为v 2,则mg= mv 22/R 又mgh′=mg2R+1/2 mv 22/R 得h′=2.5R 答案:40 N;2.5R匀速圆周运动典型问题剖析1. 基本概念、公式的理解和运用[例2] 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
高一物理向心力公式试题答案及解析1.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体与圆筒一起运,物体相对桶壁静止.则()A.物体受到4个力的作用.B.物体所受向心力是物体所受的重力提供的.C.物体所受向心力是物体所受的弹力提供的.D.物体所受向心力是物体所受的静摩擦力提供的【答案】 C【解析】试题分析: 对物体进行受力分析,物体在竖直方向上受重力和静摩擦力,并且这两个力相互平衡,水平方向受圆筒给它指向圆心的压力,所以物体受到三个力作用,故A错误;可知物体的合外力即为圆筒给它指向圆心的弹力,所以物体所受向心力由弹力力提供,故B、D错误,C正确。
【考点】向心力2.如图洗衣机的甩干筒在转动时有一衣物附在筒壁上,则此时()A.衣服受到重力、筒壁的弹力、摩擦力和向心力B.衣服随筒壁做圆周运动的向心力是摩擦力C.筒壁的弹力随筒的转速的增大而减小D.水与衣物间的附着力小于水做圆周运动所需的向心力,水从筒壁小孔甩出【答案】D【解析】衣物受到重力、筒壁的弹力和摩擦力的作用,靠弹力提供向心力.分析受力时,不单独分析向心力,故A、B错误;因弹力提供向心力,由知,当转速增大,向心力增大,则弹力F增大,C错误;水与衣物间的附着力小于水做圆周运动所需的向心力,水从筒壁小孔甩出,D正确。
【考点】向心力;牛顿第二定律.3.、如图所示,有些地区的铁路由于弯多、弯急,路况复杂,依靠现有车型提速的难度较大,铁路部门通过引进摆式列车来解决转弯半径过小造成的离心问题,摆式列车是集电脑、自动控制等高新技术于一体的新型高速列车。
当列车转弯时,在电脑控制下,车厢会自动倾斜,使得车厢受到的弹力FN 与车厢底板垂直,FN与车厢重力的合力恰好等于向心力,车厢没有离心侧翻的趋势(车轮内缘还要受到外轨侧向的弹力),当列车行走在直线上时,车厢又恢复原状,就像玩具“不倒翁”一样。
它的优点是能够在现有线路上运行,无需对线路等设施进行较大的改造。
运行实践表明:摆式列车通过弯道的速度可提高20%---40%,最高可达50%,摆式列车不愧为“曲线冲刺能手”。
高一物理专题训练:向心力一、单选题1.在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如图所示,图a中小环与小球在同一水平面上,图b中轻绳与竖直轴成θ(θ<90°)角.设图a和图b中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则在下列说法中正确的是()A.T a一定为零,T b一定为零B.T a、T b是否为零取决于小球速度的大小C.N a一定不为零,N b可以为零D.N a、N b的大小与小球的速度无关2.甲、乙两名滑冰运动员,M甲=60kg,M乙=40kg,面对面拉着弹簧测力计做圆周运动进行滑冰表演,如图所示.两人相距0.8m,弹簧测力计的示数为9.2N,下列判断中正确的是()A.两人的运动半径不同,甲为0.32m,乙为0.48mB.两人的运动半径相同,都是0.45mC.两人的线速度相同,约为40m/sD.两人的角速度相同,约为6rad/s3.变速自行车变换齿轮组合来改变行驶速度.如图所示是某一变速自行车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该自行车可变换两种不同挡位B.当B轮与C轮组合时,两轮的线速度之比本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
C.当A轮与D轮组合时,两轮的角速度之比D.当A轮与C轮组合时,两轮上边缘点M和N的向心加速度之比4.水平放置的三个不同材料制成的圆轮A、B、C,用不打滑皮带相连,如图所示(俯视图),三圆轮的半径之比为R A∶R B∶R C=3∶2∶1,当主动轮C匀速转动时,在三轮的边缘上分别放置一相同的小物块(可视为质点),小物块均恰能相对静止在各轮的边缘上,设小物块所受的最大静摩擦力等于滑动摩擦力,小物块与轮A、B、C接触面间的动摩擦因数分别为μA、μB、μC,A、B、C三轮转动的角速度分别为ωA、ωB、ωC,则( )A.μA∶μB∶μC=2∶3∶6 B.μA∶μB∶μC=6∶3∶2C.ωA∶ωB∶ωC=1∶2∶3 D.ωA∶ωB∶ωC=6∶3∶25.如图所示,轻杆长为L,一端固定在水平轴上的O点,另一端固定一个小球(可视为质点)。
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmr ω2,故 . 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B 点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ①r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M 的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ 即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R 答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
(一)运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。
为了描述其运动的特殊性,又引入周期(T )、频率(f )、角速度(ω)等物理量,涉及的物理量及公式较多。
因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。
1. 基本概念、公式的理解和运用[例1] 关于匀速圆周运动,下列说确的是( )A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变 解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
[例2] 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
解析:A 、B 两点做圆周运动的半径分别为R R r A 2130sin =︒= R R r B 2360sin =︒=它们的角速度相同,所以线速度之比3331====B A B A B A r r r r v v ωω 加速度之比3322==B B A A B A r r a a ωω 2. 传动带传动问题[例3] 如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。
求:(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。
解析:A 、C 两点在同一皮带轮上,它们的角速度相等,即C A ωω=,由于皮带不打滑,所以A 、B 两点的线速度大小相等,即B A v v =。
(1)根据r v=ω知21===A B B A B C r r ωωωω (2)根据ωr v =知21====A B A C A C B C r r r r v v v v (3)根据ωv a =知412121=⨯==B B C C B C v v a a ωω 点评:共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等,这样通过“角速度”或“线速度”将比较“遥远”的两个质点的运动学特点联系在一起。
(二)动力学特征及应用物体做匀速圆周运动时,由合力提供圆周运动的向心力 且有222)2(Tmr mr r v m ma F F πω=====向向合方向始终指向圆心1. 基本概念及规律的应用[例4] 如图3所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比。