华东师大版初中数学九年级上册 第22章 一元二次方程 22.2 一元二次方程的解法测试题1
- 格式:doc
- 大小:70.50 KB
- 文档页数:4
华东师大版九上数学第22章 一元二次方程1. 一元二次方程:1) 一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程.2) 一元二次方程的一般形式:)0(02≠=++a c bx ax .它的特征:等式左边是一个关于未知数x 的二次多项式,等式右边是零.2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.2. 一元二次方程的解法:1) 直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2) 配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±. 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式.3) 公式法:公式法是用求根公式解一元二次方程的解的方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4) 因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法.分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式.3. 一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.1) 当△>0时,一元二次方程有2个不相等的实数根;2) 当△=0时,一元二次方程有2个相同的实数根;3) 当△<0时,一元二次方程没有实数根.4. 韦达定理:如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,ac x x 21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.5. 一元二次方程的二次函数的关系:其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y =0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点,也就是该方程的解了.。
一元二次方程根与系数的关系55号教学目标:(一)知识与技能:掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题。
(二)过程与方法:经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想。
(三)情感态度:通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神。
教学重点:根与系数关系及运用教学难点:定理的发现及运用。
教学过程:一、 创设情境,激发探究欲望我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理。
那么一元二次方程中是否也存在什么规律呢?探究规律 先填空,再找规律:思考:观察表中1x +2x 与1x .2x 的值,它们与前面的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律? 二、 得出定理并证明(韦达定理)若一元二次方程a 2x +bx+c=0(a ≠0)的两根为1x 、2x ,则1x +2x = -b a 1x . 2x =ca特殊的:若一元二次方程2x +px+q=0的两根为1x 、2x ,则1x +2x =-p 1x . 2x =q证明此处略(师生合作完成) 三、 运用定理解决问题练习:不解方程说出下列方程的两根的和与两根的积各是多少?⑴ X 2-3X+1=0 ⑵ 3X 2-2X=2 ⑶ 2X 2+3X=0 ⑷ 3X 2=1 1.已知方程x 2-(k+1)x+3k=0的一个根是2 ,求它的另一个根及k的值.2.方程2x 2-3x+1=0的两根记作x 1,x 2,不解方程,求:进一步巩固根与系数的关系,体会“整体代入”思想在解题中的运用,可起到简便运算的作用。
3.(2013•荆州)已知:关于x 的方程kx 2-(3k -1)x +2(k -1)=0(1)求证:无论k 为何实数,方程总有实数根; (2)若此方程有两个实数根x 1,x 2, 且│x 1-x 2│=2,求k 的值. 四、 课堂小结:让学生谈谈本节课的收获与体会:知识?方法?思想?等,教师可适当引导和点拨。
22.2 一元二次方程的解法1 直接开平方法和因式分解法(第1课时)一、基本目标1.理解直接开平方法和因式分解法,掌握用两种方法解一元二次方程的一般步骤,并会根据方程的特点灵活选用方法解一元二次方程.2.通过利用已学知识求解一元二次方程,获得成功的体验,体会转化思想的应用. 二、重难点目标 【教学重点】用直接开平方法和因式分解法解一元二次方程. 【教学难点】根据方程特点选择合适的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P20~P25的内容,完成下面练习. 【3 min 反馈】1.直接开平方法:利用__平方根的定义__解一元二次方程的方法. 2.因式分解法:利用__因式分解__求出方程的解的方法.3.因式分解法的依据:如果两个因式的积等于0,那么两个因式中__至少__有一个等于0.反过来,如果两个因式中有一个等于0,那么__它们的积__就等于0.4.方程(x -1)2=1的解为__x 1=2,x 2=0__.5.用因式分解法解一元二次方程(4x -1)(x +3)=0时,可将原方程转化为两个一元一次方程,其中一个方程是4x -1=0,则另一个方程是__x +3=0__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】用直接开平方法或因式分解法解下列方程: (1)(x +1)2=2; (2)(2x +1)2=2x +1; (3)-x 2=4x ; (4)12(x +5)2=9.【互动探索】(引发学生思考)观察方程的特点,确定解方程的方法及一般步骤. 【解答】(1)直接开平方,得x +1=±2. 故x 1=2-1,x 2=-2-1.(2)移项,得(2x +1)2-(2x +1)=0.方程左边分解因式,得(2x +1)(2x +1-1)=0,所以2x +1=0或2x +1-1=0,得x 1=-12,x 2=0.(3)方程可变形为x 2+4x =0.方程左边分解因式,得x (x +4)=0,所以x =0或x +4=0,得x 1=0,x 2=-4.(4)方程两边同时乘2,得(x +5)2=18.直接开平方,得x +5=±32,所以x 1=32-5,x 2=-32-5.【互动总结】(学生总结,老师点评)(1)用直接开平方法解一元二次方程的一般步骤:①观察方程两边是否符合x 2=b (b ≥0)或(mx +a )2=b (m ≠0,b ≥0)的形式;②直接开平方,得到两个一元一次方程;③解这两个一元一次方程,得到原方程的两个根.(2)用因式分解法解一元二次方程的一般步骤:①移项,将方程的右边化为0;②将方程的左边分解成两个一次因式的积的形式;③令每个因式分别为0,得到两个一元一次方程;④解这两个一元一次方程,得到原方程的两个根.活动2 巩固练习(学生独学)1.一元二次方程x 2-16=0的根是( D ) A .x =2 B .x =4 C .x 1=2,x 2=-2D .x 1=4,x 2=-42.在实数范围内定义一种运算“﹡”,其规则为a ﹡b =a 2-b 2,根据这个规则,方程(x +1)﹡3=0的解为__x 1=2,x 2=-4__.【教师点拨】根据新定义,由(x +1)﹡3=0,得(x +1)2-32=0. 3.解下列方程: (1)4x 2=25; (2)x (x +2)=x +2.解:(1)方程可化为x 2=254.直接开平方,得x =±52,所以x 1=52,x 2=-52.(2)移项,得x (x +2)-(x +2)=0.方程左边分解因式,得(x +2)(x -1)=0,所以x +2=0或x -1=0,得x 1=-2或x 2=1.活动3 拓展延伸(学生对学)【例2】由多项式乘法:(x +a )(x +b )=x 2+(a +b )x +ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x 2+(a +b )x +ab =(x +a )(x +b ).示例:分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试:分解因式:x 2+6x +8=(x +__2__)(x +__4__); (2)应用:请用上述方法解方程:x 2-3x -4=0.【互动探索】理解“十字相乘法”的含义→对方程左边因式分解(十字相乘法)→解方程.【解答】∵x 2-3x -4=0,即x 2+(-4+1)x +(-4)×1=0,∴(x -4)(x +1)=0,则x +1=0或x -4=0,解得x 1=-1,x 2=4.【互动总结】(学生总结,老师点评)解此类题时,要把握新定义的内涵,抓住关键词语,合理套用求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)直接开平方法⎩⎪⎨⎪⎧定义依据:平方根的定义形式:方程x 2=a (a ≥0)的根为x 1=a ,x 2=-a因式分解法⎩⎪⎨⎪⎧定义依据:若ab =0,则a =0或b =0方法:提公因式、完全平方公式、平方差公式请完成本课时对应练习!2 配方法(第2课时)一、基本目标1.理解配方法解一元二次方程的含义,并掌握用配方法解一元二次方程的一般步骤. 2.经历利用完全平方公式推导配方法的过程,掌握新的解一元二次方程的方法——配方法.二、重难点目标 【教学重点】用配方法解一元二次方程. 【教学难点】把一元二次方程通过配方转化为(x ±h )2=k (k ≥0)的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P25~P27的内容,完成下面练习. 【3 min 反馈】1. (1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=⎝⎛⎭⎫x -!!!!__12__####2; (3)4x 2+4x +__1__=(2x + __1__)2.2.配方法:通过方程的简单变形,将左边配成一个含有未知数的__完全平方式__,右边是一个__非负常数__,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用配方法解下列方程: (1)x 2-4x -12=0; (2)22x 2+4x -6=0.【互动探索】(引发学生思考)用配方法解一元二次方程的一般步骤是什么? 【解答】(1)原方程可化为x 2-4x =12. 配方,得x 2-4x +4=16,即(x -2)2=16. 直接开平方,得x -2=±4, 所以x 1=-2,x 2=6. (2)移项,得22x 2+4x =6. 两边同除以22,得x 2+211x =311.配方,得x 2+211x +⎝⎛⎭⎫1112=311+⎝⎛⎭⎫1112,即⎝⎛⎭⎫x +1112=34121. 直接开平方,得x +111=±3411,所以x 1=-1+3411,x 2=-1-3411.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的一般步骤:(1)变形:将方程化为一般形式ax 2+bx +c =0(a ≠0);(2)移项:将常数项移到方程的右边;(3)系数化为1:方程的两边同除以二次项的系数,将二次项系数化为1;(4)配方:在方程的两边各加上一次项系数绝对值的一半的平方,把原方程化为(x ±h )2=k 的形式;(5)求解:若k ≥0,则利用直接开平方法求解;若k <0,则原方程无实数根.活动2 巩固练习(学生独学)1.用配方法解下列方程,配方正确的是( D ) A .2y 2-4y -4=0可化为(y -1)2=4 B .x 2-2x -9=0可化为(x -1)2=8 C .x 2+8x -9=0可化为(x +4)2=16 D .x 2-4x =0可化为(x -2)2=42.用配方法解下列方程,其中应在方程左右两边同时加上4的是( C ) A .x 2-2x =5 B .2x 2-4x =5 C .x 2+4x =3D .x 2+2x =53.用配方法解方程2x 2-x =4,配方后方程可化为⎝⎛⎭⎫x -142=__3316__. 4.用配方法解下列方程:(1)x 2+6x +1=0; (2)2x 2-3x +12=0.解:(1)x 1=22-3,x 2=-22-3. (2)x 1=5+34,x 2=-5+34. 活动3 拓展延伸(学生对学)【例2】试用配方法说明:无论x 取何值,代数式x 2-4x +5的值总是正数,并指出当x 取何值时,这个代数式的值最小,最小值是多少?【互动探索】这是一个二次三项式的最值问题→对x 2-4x +5进行配方→确定代数式的最小值.【解答】x 2-4x +5=(x -2)2+1. ∵(x -2)2≥0, ∴(x -2)2+1≥1,∴不论x 为何值,代数式x 2-4x +5的值总是正数,且当(x -2)2=0,即x =2时,代数式x 2-4x +5有最小值,最小值为1.【互动总结】(学生总结,老师点评)已知代数式是一个关于x 的二次三项式且含有一次项,在求它的最值时,通常用配方法将原代数式变形为一个完全平方式加一个常数的形式,再根据一个数的平方是非负数求出原代数式的最值.环节3 课堂小结,当堂达标 (学生总结,老师点评)配方法⎩⎪⎨⎪⎧定义依据:完全平方公式:a 2±2ab +b 2=(a ±b )2形式:方程(x ±h )2=k (k ≥0)的根为x 1=k ±h ,x 2=-k ±h请完成本课时对应练习!3 公式法(第3课时)一、基本目标1.理解求根公式的推导过程,能正确推导出一元二次方程的求根公式.2.理解b 2-4ac ≥0是求根公式使用的前提条件和重要的组成部分,当b 2-4ac <0时,方程无解.3.理解和掌握用公式法解一元二次方程的一般步骤,并能正确运用公式法解一元二次方程.二、重难点目标 【教学重点】用公式法解一元二次方程. 【教学难点】 求根公式的推导过程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P31的内容,完成下面练习. 【3 min 反馈】 1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是x =__-b ±b 2-4ac 2a(b 2-4ac ≥0)__.将一元二次方程中系数a 、b 、c 的值,直接代入这个公式,就可以求得方程的根.这种解一元二次方程的方法叫做__公式法__.2.用公式法解方程2x 2-3x -1=0时,a =__2__,b =__-3__,c =__-1__,则b 2-4ac =__17__,代入求根公式,得x =__3±174__.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】用公式法解下列方程:(1)5x 2-4x -1=0; (2)3x 2+5(2x +1)=0.【互动探索】(引发学生思考)用公式法解一元二次方程的一般步骤是什么? 【解答】(1)∵a =5,b =-4,c =-1,∴b 2-4ac =(-4)2-4×5×(-1)=16+20=36, ∴x =-b ±b 2-4ac 2a =4±362×5=4±610,∴x 1=1,x 2=-15.(2)将方程化为一般形式,得3x 2+10x +5=0. ∵a =3,b =10,c =5,∴b 2-4ac =102-4×3×5=100-60=40, ∴x =-b ±b 2-4ac 2a =-10±402×3=-5±103,∴x 1=-5+103,x 2=-5-103.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);(2)确定a 、b 、c 的值;(3)求出b 2-4ac 的值;(4)判断b 2-4ac 的符号.当b 2-4ac ≥0时,把a 、b 及b 2-4ac 的值代入求根公式,求出x 1、x 2;当b 2-4ac <0时,b 2-4ac 无意义,此时方程无解.活动2 巩固练习(学生独学)1.以x =b ±b 2+4c2为根的一元二次方程可能是( D )A .x 2+bx +c =0B .x 2+bx -c =0C .x 2-bx +c =0D .x 2-bx -c =02.方程3x 2-5x +1=0的解,正确的是( B ) A .x =-5±136B .x =5±136C .x =-5±133D .x =5±1333.用公式法解下列方程: (1)3x 2-6x -1=0; (2)(x -1)(x +3)=12; (3)x 2-x +3=0.解:(1)x 1=3+233,x 2=3-233.(2)x 1=-5,x 2=3. (3)方程没有实数解. 活动3 拓展延伸(学生对学)【例2】我们规定一种运算:⎪⎪⎪⎪a b c d =ad -bc ,例如:⎪⎪⎪⎪24 35=2×5-3×4=10-12=-2.按照这种运算的规定,当x 取何值时,⎪⎪⎪⎪x 1 0.5-x 2x =0?【互动探索】理解新定义的规则→转化所求式子形式→得一元二次方程→利用公式法解方程.【解答】由⎪⎪⎪⎪x 1 0.5-x 2x =0,得2x 2-1×(0.5-x )=0. 整理,得4x 2+2x -1=0,则a =4,b =2,c =-1,∴b 2-4ac =22-4×4×(-1)=20, ∴x =-2±202×4=-1±54,∴当x =-1+54或-1-54时,⎪⎪⎪⎪x 1 0.5-x 2x =0.【互动总结】(学生总结,老师点评)这是一个关于二元一次方程的新定义问题,解这类题的关键是根据新定义得到方程,再解方程即可.环节3 课堂小结,当堂达标 (学生总结,老师点评)公式法⎩⎪⎨⎪⎧定义—求根式公:-b ±b 2-4ac 2a(b 2-4ac ≥0)推导过程—配方法一般形式—方程ax 2+bx +c =0(a ≠0)的根为x =-b ±b 2-4ac 2a(b 2-4ac ≥0)请完成本课时对应练习!4 一元二次方程根的判别式(第4课时)一、基本目标1.了解根的判别式,掌握由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况.2.经历思考、探究一元二次方程ax 2+bx +c =0(a ≠0)的根的过程,学会合作交流,并掌握代数学习的常用方法——分类讨论法.二、重难点目标 【教学重点】由根的判别式符号判断一元二次方程ax 2+bx +c =0(a ≠0)的实数根的情况. 【教学难点】推导一元二次方程ax 2+bx +c =0(a ≠0)的b 2-4ac 的符号与其根的关系.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的__b2-4ac__叫做一元二次方程根的判别式,通常用符号“__Δ__”来表示.2.一元二次方程ax2+bx+c=0(a≠0)根的情况:当Δ__>0__时,方程有两个不相等的实数根;当Δ__=0__时,方程有两个相等的实数根;当Δ<0时,方程__没有__实数根.3.一元二次方程x2-5x-78=0根的情况是__有两个不相等的实数根__.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】不解方程,判定下列方程的根的情况:(1)16x2+8x=-3;(2)9x2+6x+1=0;(3)2x2-9x+8=0;(4)x2-7x-18=0.【互动探索】(引发学生思考)不解方程,要判断方程的根的情况,结合一元二次方程ax2+bx+c=0(a≠0)中Δ的符号与根的关系,各个方程的Δ与0的大小关系是什么?相应的方程根的情况是什么?【解答】(1)原方程可变形为16x2+8x+3=0,则a=16,b=8,c=3.∵Δ=b2-4ac=82-4×16×3=64-192=-128<0,∴方程没有实数根.(2)a=9,b=6,c=1.∵Δ=b2-4ac=62-4×9×1=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8.∵Δ=b2-4ac=(-9)2-4×2×8=81-64=17>0,∴方程有两个不相等的实数根.(4)a=1,b=-7,c=-18.∵Δ=b2-4ac=(-7)2-4×1×(-18)=49+72=121>0,∴方程有两个不相等的实数根.【互动总结】(学生总结,老师点评)不解一元二次方程,由Δ确定方程根的情况的一般步骤:(1)将原方程化为一般形式;(2)确定a、b、c的值;(3)计算b2-4ac的值;(4)判断b2-4ac与0的大小;(5)得出结论.活动2巩固练习(学生独学)1.一元二次方程x2+3x+5=0的根的情况是(C)A.有两个不相等的实数根B.有两个相等的实数根C .没有实数根D .无法判断2.若关于x 的一元二次方程x 2+x -m =0有实数根,则m 的取值范围是( B ) A .m ≥14B .m ≥-14C .m ≤14D .m ≤-14【教师点拨】若一元二次方程ax 2+bx +c =0(a ≠0)有实数根,则b 2-4ac ≥0. 3.已知方程x 2+px +q =0有两个相等的实数根,则p 与q 的关系是__p 2=4q __. 4.不解方程,试判断下列方程的根的情况: (1)2+5x =3x 2;(2)x 2-(1+23)x +3+4=0. 解:(1)方程有两个不相等的实数根. (2)方程没有实数根.5.已知关于x 的方程kx 2-6x +9=0,问k 为何值时,这个方程: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)当k <1且k ≠0时,方程有两个不相等的实数根. (2)当k =1时,方程有两个相等的实数根. (3)当k >1时,方程没有实数根. 活动3 拓展延伸(学生对学)【例2】已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a 、b 、c 分别为△ABC 三边的长.若方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.【互动探索】方程有两个相等的实数根→得出a 、b 、c 的数量关系→确定三角形的形状. 【解答】△ABC 是直角三角形.理由如下:∵关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0有两个相等的实数根, ∴Δ=0,即(2b )2-4(a +c )(a -c )=0, ∴a 2=b 2+c 2,∴△ABC 是直角三角形.【互动总结】(学生总结,老师点评)解此类题时,先根据根的情况得到判别式的符号,再推出系数之间的关系,进而解决问题.【例3】如果关于x 的方程mx 2-2(m +2)x +m +5=0没有实数根,试判断关于x 的方程(m -5)x 2-2(m -1)x +m =0的根的情况.【互动探索】方程mx 2-2(m +2)x +m +5=0没有实数根→确定m 的取值范围→分类讨论确定方程(m -5)x 2-2(m -1)x +m =0的根的情况.【解答】∵方程mx 2-2(m +2)x +m +5=0没有实数根,∴Δ=[-2(m +2)]2-4m (m +5)=4(m 2+4m +4-m 2-5m )=4(4-m )<0,∴m >4.对于方程(m -5)x 2-2(m -1)x +m =0,当m =5时,方程有一个实数根;当m ≠5时,Δ1=[-2(m -1)]2-4m (m -5)=12m +4.∵m >4,∴Δ1=12m +4>0,∴此时方程有两个不相等的实数根.综上,当m =5时,方程(m -5)x 2-2(m -1)x +m =0有一个实数根;当m >4且m ≠5时,方程(m -5)x 2-2(m -1)x +m =0有两个不相等的实数根.【互动总结】(学生总结,老师点评)解此题时,不要忽略对方程(m -5)x 2-2(m -1)x +m =0是否为一元二次方程进行讨论,此方程可能是一元一次方程.环节3 课堂小结,当堂达标(学生总结,老师点评)一元二次方程根的判别式⎩⎪⎨⎪⎧ 定义——Δ=b 2-4ac 与ax 2+bx +c =0(a ≠0)实数根的关系⎩⎪⎨⎪⎧ Δ>0↔有两个不相等的实数根Δ=0↔有两个相等的实数根Δ<0↔没有实数根请完成本课时对应练习!5 一元二次方程的根与系数的关系(第5课时)一、基本目标1.理解并掌握一元二次方程的根与系数的关系.2.能利用一元二次方程根与系数的关系解决相关问题.二、重难点目标【教学重点】一元二次方程两根之和及两根之积与方程系数之间的关系.【教学难点】一元二次方程的根与系数的关系的推导及其应用.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P33~P35的内容,完成下面练习.【3 min 反馈】1.一元二次方程根与系数的关系:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则有x 1+x 2=__-b a __,x 1x 2=__c a __. 特殊形式:若x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=__-p __,x 1x 2=__q __.2.已知x 1、x 2是一元二次方程x 2-6x -15=0的两根,则x 1+x 2=__6__,x 1x 2=__-15__.3.已知实数x 1、x 2满足x 1+x 2=11,x 1x 2=30,则以x 1、x 2为根的一元二次方程是__x 2-11x +30=0__.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知x 1、x 2是方程x 2+6x +3=0的两实数根,不解方程,求下列代数式的值.(1)(x 1-x 2)2; (2)x 2x 1+x 1x 2. 【互动探索】(引发学生思考)方程x 2+6x +3=0的根与系数的关系怎样?所求代数式与它们的关系有什么联系?【解答】∵x 1、x 2是方程x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3.(1)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-6)2-4×3=24.(2)x 2x 1 + x 1x 2=x 22 + x 21x 1x 2=(x 1 + x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10. 【互动总结】(学生总结,老师点评)(1)解此类题时,先根据根与系数的关系得到两根和与两根积,再把所求代数式变形,最后利用整体代入法计算即可.(2)常见的与一元二次方程根的和、积有关系的代数式变形:①x 21 + x 22=(x 1 + x 2)2-2x 1x 2; ②(x 1-x 2)2=(x 1+x 2)2-4x 1x 2;③1x 1+1x 2=x 1+x 2x 1x 2; ④x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2; ⑤(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2;⑥|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.活动2巩固练习(学生独学)1.方程x2-6x+10=0的根的情况是(C)A.两个实根和为6B.两个实根之积为10C.没有实数根D.有两个相等的实数根2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是(C) A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x+2=0 D.x2-2x+3=03.已知关于x的方程5x2+kx-6=0的一个根2,则k=__-7__,另一个根为__-35__.4.设a、b是方程x2+2x-2019=0的两个不相等的实数根.(1)a+b=__-2__,ab=__-2019__,2a2+4a=__4038__;(2)求代数式a2+3a+b的值.解:a2+3a+b=a2+2a+a+b=2019-2=2017.5.请利用一元二次方程的根与系数关系解决下列问题:(1)若x2+bx+c=0的两根为-2和3,求b和c的值;(2)设方程2x2-3x+1=0的两根为x1、x2,不解方程,求1x1+1x2的值.解:(1)b=-1,c=-6.(2)1x1+1x2=3.活动3拓展延伸(学生对学)【例2】设一元二次方程x2-6x+k=0的两根分别为x1、x2.(1)若x1=2,求x2的值;(2)若k=4,且x1、x2分别是Rt△ABC的两条直角边的长,试求Rt△ABC的面积.【互动探索】(1)已知方程一根→利用根与系数的关系得方程的另一个根.(2)分析法:Rt△的面积→与两直角边的乘积相关,即x1x2的乘积关系→根与系数的关系,确定x1x2的值.【解答】(1)∵x1、x2是一元二次方程x2-6x+k=0的两根,且x1=2,∴x1+x2=-(-6),即2+x2=6,∴x2=4.(2)∵x1、x2是一元二次方程x2-6x+k=0的两根,k=4,∴x1·x2=k=4.又∵x1、x2分别是Rt△ABC的两条直角边的长,∴S Rt△ABC=12x1·x2=12×4=2.【互动总结】(学生总结,老师点评)求(2)问时,弄清直角三角形的面积与方程两实根的关系是解决问题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程的根与系数的关系:ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1x 2=c a. 特殊地,x 2+px +q =0的两根为x 1、x 2,则x 1+x 2=-p ,x 1x 2=q .请完成本课时对应练习!。
22.2 一元二次方程的解法
[课前预习] 1、求下列各式中的x : ⑴x 2
=225; ⑵x 2
-169=0;
⑶36x 2
=49;
⑷4x 2
-25=0.
2、用因式分解法写出下列方程的解:
⑴ x (x -2)=0 的解为 x 1=____ x 2=_____ ⑵ (y +2)(y -3)=0 的解为y 1=____ y 2=_____ ⑶ (3x +2)(2x -1)=0 的解为 x 1=____ x 2=_____ ⑷ x 2
=x 的解为x 1=____ x 2=_____ 3、方程02=x 的根为 。
[课内练习] 4、解方程:
(1)4x 2
-3=0 (2)(x -2)2
=5 (3)253
12
=x
(4)(x +2)2=9 (5) (3x -1)2
=-5
(6)22
(2)4(3)x x -=+
5、方程ax 2+c=0(a>0)有解的条件是______;其中的非负整数解为________。
6、解下列方程: (1)254x x =;
(2)3x (x +2)=5(x +2) (3)3(2)(612)x x x ---=0
(4)x 2
-4=-(2-x )2
(5)2
(21)4(21)416x x +-++= (6)04222=-+-m mx x
7、解第6题中的方程3x (x +2)=5(x +2),小明是这样解的: 方程两边同除以(x +2),得 3x =5 ∴53
x =
这样解对吗?为什么?
8、已知(x -3+3)(x -3)=0,求222(x-3)(x+1)x -9
x 2x 1x x
÷+++的值.
[课后评价] 9、选择题:
(1)方程x 2
=0的实根个数是( )
A .0个
B .l 个
C .2个
D .以上答案都不对
(2)方程(x-a )2
=b (b >0)的根是( )
A 、a -±
B 、)a ±+
C 、a ±
D 、a ±
(3)方程036)5(2
=--x 的解为( )
A 、0
B 、1
C 、2
D 、以上均不对 (4)已知一元二次方程)0(02
≠=+m n mx ,若方程有解,则必须( )
A 、n=0
B 、n=0或m ,n 异号
C 、n 是m 的整数倍
D 、m ,n 同号 10、解方程: (1)
2
1(3x -1)2
=8 (2) (x +5)(x -5)=20 (3)27)3x 2(2
=+
(4)2
2)34()43(-=-x x (5)(2x -3)(4x -6)=18
(6)(m -x)2
=4(m+x)2
11、解下列方程: (1)(41)(57)0x x -+= (2)3(1)22x x x -=- (3)2
(23)4(23)x x +=+
(4)2
2
2(3)9x x -=-
12、若分式21
x x
x ++的值为0,那么x 的值为( )
(A )1-=x 或0x =(B )0=x (C )1x =(0)1-=x 13、下面是某同学在一次测验中解答的填空题: (1)若22a x =,则a x =。
(2)方程()112-=-x x x 的解为0=x 。
(3)方程2210x x -+=的解的个数为1个。
其中答案完全正确的题目个数为()
(A )0个 (B )1个 (C )2个 (D )3个
14、已知:()
()0212=-+-x x ,求2
14(3)(2)
3
3x x x x x x x x --+-⎛⎫-÷ ⎪-+⎝⎭的值。
15、阅读下题的解答过程,请判断其是否有错,若有错误请你在其右边写出正确解答
已知:是关于x 的方程mx 2
-2x +m=0的一个根为m ,求m 的值 解:把x=m 代入原方程,化简得m 3=m 两边同除以,得m 2
=1 ∴ m=1
把m=1代入原方程检验可知 m=1 符合题意 答:m 的值是1。