材料物理2010第3章10-6-巨磁阻效应和磁电子学.
- 格式:ppt
- 大小:1.46 MB
- 文档页数:7
巨磁阻效及应用报告巨磁阻效应是一种在外加磁场作用下发生显著磁电阻变化的物理现象。
这种效应是在1992年由巴黎莱旺研究机构的阿尔贝特罗蒂埃教授和他的团队首次发现的。
巨磁阻效应的应用前景巨大,因此引起了广泛的关注和研究。
巨磁阻效应基于磁电阻效应,即磁场对材料电阻的影响。
一般情况下,材料的电阻对磁场的变化不敏感。
然而,当材料中存在特殊的磁性结构时,如磁共振等,电阻对磁场的变化就会显著地变化,这就是磁电阻效应。
而巨磁阻效应是磁电阻效应中最明显的一种。
巨磁阻效应以具有巨大磁电阻变化的磁性材料为基础。
当这些材料处于没有外加磁场时,它们的电阻是最小的,可以达到几个百分点。
然而,当外加磁场作用于这些材料时,它们的电阻会迅速增加,甚至可以增加到几十个百分点。
这种磁电阻的巨大变化使得巨磁阻效应具有很大的应用潜力。
巨磁阻效应的应用非常广泛,尤其在磁存储技术中具有重要地位。
巨磁阻材料可以用来制造磁头,这是计算机硬盘驱动器中不可或缺的部分。
通过利用巨磁阻效应,磁头可以以非常小的尺寸来探测和读取硬盘上的磁场信息。
巨磁阻材料还可以用于制造磁阻随机存储器(MRAM),这是一种新兴的存储技术,具有快速的读写速度和非易失性的特点。
此外,巨磁阻效应还可以应用于传感器技术中。
例如,巨磁阻材料可以用于制造磁传感器,用来检测和测量磁场强度和方向。
磁传感器广泛应用于导航、地震监测、医疗诊断等领域。
此外,巨磁阻效应在自动控制领域也具有重要的应用。
例如,巨磁阻材料可以用于制造磁阻变结构,这种结构可以根据外界磁场的变化实时调节其电阻,从而实现对电路的精确控制和调节。
尽管巨磁阻效应在磁存储、传感器和自动控制等领域有着广泛的应用,但是该效应的原理和机制还需要进一步研究和理解。
目前,巨磁阻材料的性能还有待进一步提高和优化,以满足不同领域的应用需求。
随着材料科学和纳米技术的不断发展,相信巨磁阻效应的应用前景会越来越广阔。
巨磁电阻的原理的作用巨磁电阻(Giant Magnetoresistance,GMR)是一种利用磁电阻效应来实现电阻变化的新型材料。
它是由物理学家A. Fert和P. Grunberg于1988年独立发现的,并于2007年因此获得了诺贝尔物理学奖。
巨磁电阻的原理主要基于两种不同的磁性材料层之间的自旋极化效应和电子面积散射的相互作用。
自旋是电子的一种内禀自由度,它类似于电子围绕核自旋的自旋成对,但自旋只有两个可能的方向:向上和向下。
巨磁电阻由两个层组成,一个为磁性层,另一个为非磁性层。
这两个层之间存在一种称为自旋探测层的薄层,用于检测磁场的变化。
当磁场的方向与自旋探测层内的自旋极化方向夹角发生变化时,会导致电阻值的改变。
这种磁场引起的电阻变化称为磁电阻效应。
巨磁电阻的作用主要表现在以下几个方面:1. 磁存储器:巨磁电阻可以被应用于磁存储器中,例如硬盘驱动器和磁带。
在数据读取和写入过程中,磁场的变化可以通过巨磁电阻的变化来解析和传输。
这种巨磁电阻效应使得磁存储器在存储密度、读取速度和稳定性方面有了显著提升。
2. 传感器:巨磁电阻被广泛应用于磁传感器中,例如指南针、磁敏电阻(MR)传感器和地震传感器等。
这些传感器通过检测磁场的变化来测量物理量,如位置、方向和振动等。
巨磁电阻具有高灵敏度和线性响应的优势,使得传感器的性能得到了大幅提升。
3. 电子设备:巨磁电阻的高灵敏度和可调性使其被应用于电子设备中,如磁传感器芯片、磁性写头和磁性随机存储器等。
这些应用领域中,巨磁电阻的优势在于其低功耗、小体积、高工作速度和长寿命等特点。
4. 生物医学:巨磁电阻也被应用于生物医学领域,如磁共振成像(MRI)和生物传感器等。
在MRI中,巨磁电阻可用于探测磁场的变化以图像化内部结构。
生物传感器方面,利用巨磁电阻可以实现对生物体内生物分子的检测和诊断,具有高灵敏度和快速响应的特点。
总之,巨磁电阻的原理通过利用磁电阻效应实现了电阻的变化,将其应用于磁存储器、传感器、电子设备和生物医学等领域。
巨磁阻效应原理
巨磁阻效应是指在外加磁场作用下,磁电阻材料的电阻发生显
著变化的现象。
巨磁阻效应的发现,不仅在基础物理研究中具有重
要意义,而且在传感器、存储器、磁场测量等领域有着广泛的应用。
本文将着重介绍巨磁阻效应的原理及其在实际应用中的意义。
首先,我们来了解一下巨磁阻效应的基本原理。
巨磁阻效应是
由磁电阻材料的磁性微结构引起的。
在磁电阻材料中,存在着由磁
性和非磁性层交替排列形成的磁性微结构。
当外加磁场作用于这些
磁性微结构时,磁性层的磁矩会发生重新排列,从而导致了材料整
体电阻的变化。
这种磁矩重排所导致的电阻变化就是巨磁阻效应。
接下来,我们将讨论巨磁阻效应在实际应用中的意义。
由于巨
磁阻效应具有灵敏度高、响应速度快、能耗低等优点,因此在传感
器领域有着广泛的应用。
例如,利用巨磁阻效应制成的磁场传感器
可以用于测量地磁场、电流、位移等物理量,具有精度高、抗干扰
能力强的特点。
此外,巨磁阻效应还被应用于磁存储器领域。
利用
巨磁阻效应制成的磁阻随机存储器具有存储密度高、读写速度快的
特点,可以用于制造高性能的磁存储器。
除此之外,巨磁阻效应还
在磁场测量、磁导航等领域有着重要的应用价值。
总结一下,巨磁阻效应是一种重要的磁性现象,其原理是由磁
性微结构的磁矩重排所导致的电阻变化。
巨磁阻效应具有灵敏度高、响应速度快、能耗低等优点,在传感器、存储器、磁场测量等领域
有着广泛的应用前景。
相信随着科学技术的不断发展,巨磁阻效应
将会在更多领域展现出其重要的作用。
巨磁阻效应及其在自旋电子学方面的应用巨磁阻效应(GMR)是指在引入薄膜和多层膜晶体学领域中,利用磁性材料的巨磁阻效应来实现高灵敏度的磁传感器和高容量的存储技术。
巨磁阻效应是一种基本的物理现象,它能够改变材料电导率,从而使材料的电阻率随磁场变化。
它得到了广泛的应用,在磁性材料的测量、传感、存储以及自旋电子学等方面具有广阔的应用前景。
巨磁阻效应的应用1. 磁传感器巨磁阻效应可用于制造磁传感器,如磁阻计、磁导弹波传感器和磁触头等。
这些传感器可以用于检测磁场的变化,包括用于测量和控制电机和发电机的磁场、磁卡读头以及其他磁场测量和控制应用。
这些传感器具有高精度、高速度和低噪音等特点。
2. 存储器巨磁阻效应可用于制造高密度磁存储器。
从最初的几百兆字节到现在的几百千兆字节,磁存储器的容量已经有了巨大的提高。
随着存储芯片的微型化和集成化,巨磁阻效应在存储器方面的应用变得更加有效。
3. 自旋电子学自旋电子学是一种奇近效应现象,是一种可以利用操纵电子自旋的电学和磁学技术的新型电子学。
自旋最根本的特征是它自身具有磁矩,可以与晶体中的磁场相互作用。
不同于传统的基于电子电荷的电子学技术,自旋电子学技术的研究将有望在未来的纳米电子学和计算机中得到广泛应用。
巨磁阻效应将成为未来自旋电子学的重要组成部分,可以用于制造自旋电子学器件,如磁性电阻、磁隧道结、自旋阻抗和自旋导体等。
自旋电子学也受到了越来越多的关注,它可能会打破德鲁德电子传导中的阻抗序列,提高信息处理的速度,解决低功耗、高速度和高容量存储器的问题。
总结巨磁阻效应从上个世纪90年代开始逐渐得到关注并得到了广泛的应用,其首次在高密度磁盘驱动器中被使用并取得了巨大的成功。
随着技术的不断发展和深入研究,巨磁阻效应展现出了越来越多的潜力,将成为未来高精度和高容量磁传感器、存储器以及自旋电子学器件的重要组成部分。
材料物理化学思考题-GZ版第一章.1材料物理-材料的电学性能1.何谓能带结构?满带,导带,价带,空带和禁带?能带结构:由于晶体中各原子间的相互影响,原来各原子中能量相近的能级将分裂成一系列和原能级接近的新能级,这些新能级基本上连成一片,形成能带(energy band)。
满带:能带中各能级都被电子填满。
导带:被电子部分填充的能带及空带(一般与价带相邻)。
价带:价电子能级分裂后形成的能带。
一般情况下,价带是被电子所填充的能量最高的能带。
空带:所有能级均未被电子填充的能带。
禁带:在能带之间的能量间隙区,电子不能填充。
2.简述绝缘体、半导体与导体的能带结构差异及对其导电性的影响;导体:分两类,一类是价带和导带交叠,加电压后电子能够很容易从价带顶部跃迁到导带底部而导电。
另一类是价带和导带不交叠,但它的价带未填满,因而加电压后电子也能够很容易从价带顶部跃迁到导带底部而导电绝缘体:价带和导带不交叠存在很大的能量间隙,且价带被填满因而加电压后电子不能够很容易从价带顶部跃迁到导带底部,故不导电。
半导体:价带和导带不交叠,但能隙很小。
1.本征半导体,当半导体两端加上外电压时,在半导体中将出现两部分电流,电子电流和空穴电流。
自由电子和空穴都称为载流子。
(1) 本征半导体中载流子数目极少, 其导电性能很差;(2) 温度愈高,载流子的数目愈多, 半导体的导电性能也就愈好。
所以,温度对半导体器件性能影响很大。
2. n型半导体,电子导电3. p 型半导体,空穴导电。
3.简述造成半导体材料与金属材料在电导温度函数上的差别原因;半导体的导电特性:即热敏性,温度愈高,载流子的数目愈多,导电能力显著增强,正比关系。
在杂质半导体中多数载流子的数量与掺杂浓度有关,而少数载流子的数量与温度有关,且当温度升高时,少数载流子的数量增多。
在P型半导体中,多数载流子为空穴,少数载流子为电子,而在N型半导体中,多数载流子为电子,少数载流子为空穴。
巨磁阻效应的原理及应用物质在一定磁场下电阻改变的现象,称为磁阻效应。
磁性金属和合金材料一般都有这种现象。
一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。
要说这种效应的原理,不得不说一下电子轨道及自旋。
种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。
表征其性质的量子数是主量子数n 、角量子数l 、自旋量子数s =1/2,和总角动量量子数j 。
主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r )而定。
平均距离会随着n 增大,因此不同量子数的量子态会被说成属于不同的电子层。
角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。
在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。
有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p 轨道,l=2的叫d 轨道,而l=3的则叫f 轨道。
磁量子数(ml= -l ,-l+1 … 0 … l-1,l )代表特征值,。
这是轨道角动量沿某指定轴的射影。
从光谱学中所得的结果指出一个轨道最多可容纳两个电子。
然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。
所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。
这假设以后能被相对论性量子力学所解释。
“我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。
然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。
这就是过渡金属电阻率高的原因。
这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。
巨磁阻效应实验人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。
后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,相关理论指出这些状态源于铁磁性原子磁矩之间的直接交换作用和间接交换作用。
量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。
化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。
直接交换作用的特征长度为0.1—0.3nm,间接交换作用可以长达1nm以上。
1nm已经是实验室中人工微结构材料可以实现的尺度,所以1970年之后,科学家就探索人工微结构中的磁性交换作用。
物质在一定磁场下电阻改变的现象,称为“磁阻效应”,磁性金属和合金材料一般都有这种磁电阻现象,通常情况下,物质的电阻率在磁场中仅产生轻微的减小;在某种条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的磁电阻值约高10余倍,称为“巨磁阻效应”(GMR);而在很强的磁场中某些绝缘体会突然变为导体,称为“超巨磁阻效应”(CMR)。
巨磁阻效应是一种量子力学和凝聚态物理学现象,磁阻效应的一种,可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到。
这种结构物质的电阻值与铁磁性材料薄膜层的磁化方向有关,两层磁性材料磁化方向相反情况下的电阻值,明显大于磁化方向相同时的电阻值,电阻在很弱的外加磁场下具有很大的变化量。
1986年德国尤利希科研中心的物理学家彼得·格伦贝格尔(Peter Grunberg)采用分子束外延(MBE)方法制备了铁-铬-铁三层单晶结构薄膜。
在薄膜的两层纳米级铁层之间夹有厚度为0.8nm的铬层,实验中逐步减小薄膜上的外磁场,直到取消外磁场,发现膜两边的两个铁磁层磁矩从彼此平行(较强磁场下)转变为反平行(弱磁场下)。
换言之,对于非铁磁层铬的某个特定厚度,没有外磁场时,两边铁磁层磁矩是反平行的。
磁性材料及巨磁电阻效应简介物理系隋淞印学号 SC11002094引言磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,人们对物质磁性的认识源远流长。
磁性材料的进展大致上分几个历史阶段:当人类进入铁器时代,除表征生产力的进步外,还意味着金属磁性材料的开端,直到l8世纪金属镍、钴相继被提炼成功,这一漫长的历史时期是3d过渡族金属磁性材料生产与原始应用的阶段;20世纪初期(1900-1932),FeSi、FeNi、FeCoNi磁性合金人工制备成功,并广泛地应用于电力工业、电机工业等行业,成为3d过渡族金属磁性材料的鼎盛时期,从此以后,电与磁开始了不解之缘;20世纪后期,从50年代开始,3d过渡族的磁性氧化物(铁氧体)逐步进入生产旺期,由于铁氧体具有高电阻率,高频损耗低,从而为当时兴起的无线电、雷达等工业的发展提供了所必需的磁性材料,标志着磁性材料进入到铁氧体的历史阶段;1967年,SmCo合金问世,这是磁性材料进入稀土—3d过渡族化合物领域的历史性开端。
1983年,高磁能积的钕铁硼(Nd—FeB)稀土永磁材料研制成功。
现已誉为当代永磁王。
TbFe巨磁致收缩材料与稀土磁光材料的问世更丰富了稀土一3d过渡族化合物磁性材料的内涵。
1972年的非晶磁性材料与1988年的纳米微晶材料的呈现,更添磁性材料新风采。
1988年,磁电阻效应的发现揭开了自旋电子学的序幕。
因此从20世纪后期延续至今,磁性材料进入了前所未有的兴旺发达时期,并融入到信息行业,成为信息时代重要的基础性材料之一。
磁性材料的分类磁性材料应用十分广泛,品种繁多,存在以下多种分类方式。
按物理性质分类:(1)按静磁特性:即根据静态磁滞回线上的参量,如矫顽力、剩磁等来确定磁性材料的类型。
例如:永磁属高矫顽力一类磁性材料;软磁属低矫顽力的一类磁性材料;矩磁属高剩磁、低矫顽力的一类磁性材料;磁记录介质属于中等矫顽力,同时,具有高剩磁的一类磁性材料,而磁头却要求低矫顽力、高饱和磁化强度。
巨磁阻效应实验人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。
后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,相关理论指出这些状态源于铁磁性原子磁矩之间的直接交换作用和间接交换作用。
量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。
化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。
直接交换作用的特征长度为0.1—0.3nm,间接交换作用可以长达1nm以上。
1nm已经是实验室中人工微结构材料可以实现的尺度,所以1970年之后,科学家就探索人工微结构中的磁性交换作用。
物质在一定磁场下电阻改变的现象,称为“磁阻效应”,磁性金属和合金材料一般都有这种磁电阻现象,通常情况下,物质的电阻率在磁场中仅产生轻微的减小;在某种条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的磁电阻值约高10余倍,称为“巨磁阻效应”(GMR);而在很强的磁场中某些绝缘体会突然变为导体,称为“超巨磁阻效应”(CMR)。
巨磁阻效应是一种量子力学和凝聚态物理学现象,是磁阻效应的一种,可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到。
这种结构物质的电阻值与铁磁性材料薄膜层的磁化方向有关,两层磁性材料磁化方向相反情况下的电阻值,明显大于磁化方向相同时的电阻值,电阻在很弱的外加磁场下具有很大的变化量。
1986年德国尤利希科研中心的物理学家彼得·格伦贝格尔(Peter Grunberg)采用分子束外延(MBE)方法制备了铁-铬-铁三层单晶结构薄膜。
在薄膜的两层纳米级铁层之间夹有厚度为0.8nm的铬层,实验中逐步减小薄膜上的外磁场,直到取消外磁场,发现膜两边的两个铁磁层磁矩从彼此平行(较强磁场下)转变为反平行(弱磁场下)。
换言之,对于非铁磁层铬的某个特定厚度,没有外磁场时,两边铁磁层磁矩是反平行的。
巨磁阻效应及其在自旋电子学方面的应用郭瑞瑞 SA08002033 物理系所谓磁电阻(magnetoresistance ,MR) 效应,是指某些铁磁性材料在受到外加磁场作用时引起电阻变化的现象。
对于传统的铁磁导体,如Fe 、Co 、Ni 及其合金等,在大多数情况下,磁电阻效应很小(约3% 或更低)。
而巨磁阻效应(giant magnetoresistance ,GMR) ,是指在磁性材料和非磁性材料相间的多层膜中,电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象. 其值较Fe 、Ni 合金各向异性磁电阻效应约大一个数量级。
巨磁阻效应现在已经成为凝聚态物理五大热点之一,2007年物理学诺贝尔奖就授予了发现巨磁阻效应得法国科学家阿尔贝.菲尔和德国科学家彼得.格林贝格尔[1]。
W.Thom son在1857年首先发现了铁磁多晶体的各项异性磁效应(AMR, Anisotrop ic Magnetoresistance)。
1988 年,法国巴黎大学的菲特教授领导的课题组和德国尤利希研究中心的格林伯格教授的课题组几乎同时独立发现了巨磁电阻效应(GMR) [2] [3]。
20世纪90年代,人们在Fe/Cu,Fe/Al,Co/Cu,Co/Ag和Co/Au等纳米结构的多层膜中观察到了显著的巨磁阻效应。
1993年,德国西门子公司的Helmolt等人在La2/3Ba1/3MnO3薄膜中观察到了60%的巨磁电阻效应,随后在La2/3Ca1/3MnO3 中观察到了105%的巨磁阻效应。
1995年熊光成等人在美国Maryland大学发现钙钛矿型锰氧化物在77K,8 T 时GMR达到了创纪录的106%。
近来在许多其他物理系统中也发现了更大的磁电阻效应及有关的物理现象, 颗粒膜磁电阻效应、隧道磁电阻效应( Tunneling Magnetoresistance , TMR) 以及锰钙钛矿化合物的庞磁电阻效应( Colossal Magnetore resistance ,CMR) 相继被发现或取得重大的进展。
巨磁电阻效应的理论解释作为自旋电子器件的基本材料,纳米磁性多层膜及其三层膜结构得到了广泛的研究和应用。
最先在“/铁磁层/非磁金属层/铁磁层”交替沉积而成的磁性多层膜系统中发现了GMR效应(巨磁电阻效应),随后在由磁性薄膜和绝缘层薄膜构成的磁隧道结(MTJ)中发现了自旋电子隧穿效应,以及自旋晶体管中存在的自旋热电子输运效应。
“/铁磁层/非磁金属层/铁磁层”层状结构薄膜是实现自旋电子效应的基本结构。
随着MRAM等自旋电子器件存储密度的增加,在降低器件尺寸的同时需要进一步提高自旋电子效应。
因此理解自旋电子在纳米磁性层状薄膜中的输运机理是理解自旋电子效应的关键,也是进一步提高自旋电子效应、优化自旋电子器件应用性能的基础。
对于普通金属,电子的自旋是简并的,费米面附近的电子态对于自旋向上和自旋向下当然也是完全一样的,因而输运过程中电子传导是自旋非极化的。
对于铁磁过渡金属来说,交换作用能与动能的平衡使系统不同自旋的子带发生交换劈裂,自旋向上的子带与自旋向下的子带发生相对位移,引起自发磁化,这样一来系统的动能虽然增加了,但由于其电子在费米面附近具有非常大的态密度,动能的增加不大,而交换作用能却大大减小,因而系统的总能量有所下降。
交换劈裂使自旋向上的子带多数自旋载流子全部或绝大部分被电子占据,而自旋向下的子带少数自旋载流子仅部分被电子占据。
图为Ni和Co等强铁磁过渡金属的能带劈裂交换模型示意图,多数和少数自旋的4s能带是对称的,而多数自旋的3d能带处于费米面以下,因而在足够低的温度下被完全填充满,两子带的占据电子总数之差正比于它的磁矩。
今天利用第一原理电子结构计算方法可以准确地计算出各种铁磁过渡金属和合金的能带结构和磁矩。
电子的散射是一切输运过程的一个根本环节。
对于普通非磁金属,电子的散射主要是自旋简并的s电子之间的散射,电子的平均自由程较大,由Drude定理σ=ne2τ/m可以非常容易地估计出金属良导体的平均自由程为10nm左右。
所谓巨磁阻效应,是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。
巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构。
这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。
当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。
当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。
上下两层为铁磁材料,中间夹层是非铁磁材料。
铁磁材料磁矩的方向是由加到材料的外磁场控制的,因而较小的磁场也可以得到较大电阻变化的材料。
利用两流模型来解释巨磁电阻效应众所周知,计算机硬盘是通过磁介质来存储信息的。
一块密封的计算机硬盘内部包含若干个磁盘片,磁盘片的每一面都被以转轴为轴心、以一定的磁密度为间隔划分成多个磁道,每个磁道又被划分为若干个扇区。
磁盘片上的磁涂层是由数量众多的、体积极为细小的磁颗粒组成,若干个磁颗粒组成一个记录单元来记录1比特(bit)信息,即0或1。
磁盘片的每个磁盘面都相应有一个磁头。
当磁头“扫描”过磁盘面的各个区域时,各个区域中记录的不同磁信号就被转换成电信号,电信号的变化进而被表达为“0”和“1”,成为所有信息的原始译码。
伴随着信息数字化的大潮,人们开始寻求不断缩小硬盘体积同时提高硬盘容量的技术。
198 8年,费尔和格林贝格尔各自独立发现了“巨磁电阻”效应,也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应。
这一发现解决了制造大容量小硬盘最棘手的问题:当硬盘体积不断变小,容量却不断变大时,势必要求磁盘上每一个被划分出来的独立区域越来越小,这些区域所记录的磁信号也就越来越弱。
借助“巨磁电阻”效应,人们才得以制造出更加灵敏的数据读出头,使越来越弱的磁信号依然能够被清晰读出,并且转换成清晰的电流变化。
最早的磁头是采用锰铁磁体制成的,该类磁头是通过电磁感应的方式读写数据。
然而,随着信息技术发展对存储容量的要求不断提高,这类磁头难以满足实际需求。
因为使用这种磁头,磁致电阻的变化仅为1%~2%之间,读取数据要求一定的强度的磁场,且磁道密度不能太大,因此使用传统磁头的硬盘最大容量只能达到每平方英寸20兆位。