冯伟森_栾新成_离散数学_机械工业出版社 教程课间 精品课程系列 教材离散数学(第23讲)
- 格式:ppt
- 大小:633.50 KB
- 文档页数:19
离散数学是计算机科学中的一门核心课程,它涉及到数学中的许多概念和方法。
以下是一些离散数学的经典教材:
1.《离散数学》(作者:Kozen)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常丰富,而且语言通俗易懂,是学习离散数学的好教材。
2.《离散数学及其应用》(作者:Rosen)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。
3.《离散数学教程》(作者:Kleitman)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。
4.《离散数学精讲》(作者:Sipser)
这是一本非常经典的离散数学教材,涵盖了离散数学中的许多基本概念和方法,包括集合论、图论、数理逻辑、组合数学等。
这本书的内容非常详细,而且有很多例子和练习题,可以帮助读者更好地掌握离散数学的知识。
以上是一些离散数学的经典教材,每本书都有其独特的风格和特点,读者可以根据自己的需求和兴趣选择适合自己的教材。
《离散数学》课程标准英文名称:Discrete Mathematics 适用专业:数学与应用数学学分数:4一、课程性质《离散数学》是研究离散量的结构及其相互关系的应用数学学科,是随着计算机科学的发展而逐步建立的,它形成于七十年代初期,是一门新兴的工具性学科。
《离散数学》是应用数学专业以及计算机专业的一门重要专业必修课。
二、课程理念1、课程所属学科分析离散与连续是现实世界中物质运动的对立统一的两个方面,离散数学与连续数学是描述、刻画和表达现实世界物质运动的两个重要工具。
计算机的高速发展与广泛应用,促进了信息数字化、符号化和离散化。
从目前的发展趋势来看,离散数学在现代应用科学中的作用已经超过了连续数学。
离散数学已成为计算机科学与技术的重要理论基础之一,在计算机科学与技术等领域有着广泛的应用。
2、课程授课对象分析离散数学课程是应计算机科学和技术发展的需要,综合了高等数学的多个分支而形成的。
其特点是以离散量为研究对象,内容丰富,涉及面较宽。
因此概念多、定理多、推理多,但它研究的内容均比较基础,难度不大。
本课程面对的是计算机科学与技术专业一年级的学生,。
通过本课程的学习,培养学生的抽象思维和严密的逻辑推理能力,为进一步学习专业课打好基础,并为学生今后处理离散信息,提高专业理论水平,从事计算机的实际工作提供必备的数学工具。
3、课程内容选择分析本课程研究离散型的量的结构及其相互间的关系,因而特别体现了计算机科学的离散性这一重要特征。
其内容极为广泛,不同的教材或专著在选材上通常会有较大的差异。
但都至少包含了以下四个方面内容:数理逻辑、集合论、代数系统、图论。
作为一门数学课,《离散数学》特别能体现数学的三大特性——严密的逻辑性、高度的抽象性以及广泛的应用性。
4、课程学习要求的分析在本课程的教学过程中,要坚持学生为主体、教师为主导、以人为本的教学理念,将研究性学习运用于教学中,课堂讲授、课堂讨论、课外扩展学习相结合,鼓励创新,充分体现素质教育、个性化教育等现代教育思想和观念,构建以学习者为中心,以学生实践性的自主活动为基础的动态、开放的教学过程。
四川大学离散数学(冯伟森版)课后习题答案习题参考解答(图论部分)习题十1. 设G 是一个(n ,m)简单图。
证明:,等号成立当且仅当G 是完全图。
证明:(1)先证结论:因为G 是简单图,所以G 的结点度上限max(d(v)) ≤ n-1, G 图的总点度上限为max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。
根据握手定理,G 图边的上限为max(m) ≤ n(n-1)/2,所以。
(2) =〉G 是完全图因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。
所以,G 的每个结点的点度都为n-1,G 为完全图。
G 是完全图 =〉因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数。
■2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。
证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。
与题设m = n+1,矛盾。
因此,G 中存在顶点u ,d (u )≥3。
■3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5);(2)(6,3,3,2,2)(3)(4,4,2,2,4);(4)(7,6,8,3,9,5)解:除序列(1)不是图序列外,其余的都是图序列。
因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。
可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。
最后,将奇数序列对应的点两两一组,添加连线即可。
下面以(2)为例说明:(6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5}每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1) v 1v 5v 3v 4v 2将奇数3,3 对应的结点v 2,v 3一组,画一条连线其他序列可以类式作图,当然大家也可以画图其它不同的图形。