齿轮的固有频率振动 (DEMO)
- 格式:pdf
- 大小:92.61 KB
- 文档页数:2
齿轮故障的振动诊断及案例分析齿轮故障的振动诊断及案例分析振动案例齿轮传动的常见故障有齿断裂,齿磨损,齿面疲劳,点蚀( 剥落) 和齿轮安装不当。
由结构和工作时受力条件决定,齿轮传动的振动信号较为复杂,故障诊断需同时进行时域与频域分析。
齿轮工作过程中的故障信号频率基本表现为两部分,一为啮合频率及其谐波(高频部分) 构成的载波信号;二为低频成分的幅值和相位变化所构成的调制信号。
1、啮合频率及其谐波当轮齿进入或脱离啮合时,载荷和刚度均突然增大或减小,形成啮合冲击。
齿轮啮合频率为F m=f1·z1=f2·z2当齿轮出现故障时,将引起啮合频率及其各次谐波幅值的变化。
2、幅值调制和频率调制所构成的边频带(1)幅值调制,幅值调制相当于两个信号在时域上相乘,假定载波信号为 g(t ) 调制信号为e(t) 则调制后的时域总信号为X(t)=g(t)·e(t)将上式转换到频域上, 则为X(f)=g(f)·e(f)通常幅度调制的调制频率为旋转频率。
(2)频率调制,齿轮的转速波动,若载波信号为Asin(2∏f m t+Φ0),调制信号为βsin2∏f m t;频率调制可表示为X(t)=Asin[2∏f m t+βsin(2∏f r t)+ Φ0] 频率调制不仅产生围绕啮合频率f m的一族边频带,而且在相位信号中产生一个正弦波,通常频率调制的频率为分度不均匀齿轮的转频,实际上,齿轮故障中调幅与调频现象可能同时存在,因而在频谱上得到调幅与调频综合影响下形成的边频带。
3、由齿轮转频的低次谐波构成的附加脉冲齿轮的低频故障不平衡, 不对中等也会对齿轮振动时域波形产生影响,但不会在齿轮频率两侧产生边频带4、由齿轮加工误差形成的隐含成分该成分的振动通常由加工机床分度齿轮误差造成,它对齿轮的整体运行影响很小。
以下是一个齿轮故障的案例分析。
1、某采油平台原油外输泵 '螺杆泵) 传动齿轮局部断齿(1)设备形式及参数% 电机驱动直联双螺杆泵,螺杆之间以同步齿轮传动,齿轮齿数 Z=67,电机转速 ,n=995r/min(16.57HZ)(2)故障现象泵的非驱动端(同步齿轮安装在此侧) 振动速度值增加,图 1图2是时域波形及频谱图。
齿轮振动的原因一、引言齿轮作为常见的传动元件,在机械领域中应用广泛。
然而,在使用过程中,我们常常会遇到齿轮振动的问题。
齿轮振动不仅会影响机械传动的精度和稳定性,还会加速设备磨损,甚至导致故障。
因此,深入了解齿轮振动的原因对于提高机械传动系统的可靠性和稳定性具有重要意义。
二、齿轮振动的定义齿轮振动是指在齿轮传动过程中出现的周期性运动。
这种运动通常表现为齿面间隙变化或者是整个齿轮系统产生共振等情况。
三、齿面间隙变化引起的振动1. 非均匀载荷分布在实际工作中,由于加工误差、装配误差等原因,很难做到完全均匀的载荷分布。
当负载不均匀时,就会导致某些牙面承受较大负荷而产生弹性变形,从而使得相邻牙面之间产生间隙变化。
2. 齿轮变形齿轮在传递负载时会产生变形,从而使得齿面间隙发生变化。
特别是在高速、大负荷的工作条件下,齿轮变形更加明显。
3. 润滑不良润滑不良会使得齿面磨损加剧,从而使得齿面间隙发生变化。
特别是在高温、高速等恶劣工况下,润滑不良更加明显。
4. 齿轮磨损当齿轮磨损严重时,会导致牙形减小、牙距增大等现象,从而使得齿面间隙发生变化。
四、共振引起的振动1. 频率匹配当机械系统中某个部件的固有频率与外界激励频率匹配时,就会出现共振现象。
对于齿轮传动系统来说,当其固有频率与外界激励频率相等时,就会出现共振现象。
2. 质量不平衡机械系统中部件的质量分布不均匀也会导致共振。
在齿轮传动系统中,如果齿轮的质量分布不均匀,就会导致共振现象。
3. 刚度不足机械系统中各部件的刚度不足也会导致共振。
对于齿轮传动系统来说,如果齿轮的刚度不足,就会导致共振现象。
五、结论齿轮振动是机械传动中常见的问题,其原因主要包括齿面间隙变化和共振两个方面。
在实际工作中,我们需要通过合理的设计、加工、装配以及润滑等手段来降低齿面间隙变化和共振现象,从而提高机械传动系统的可靠性和稳定性。
齿轮系统的噪声与振动控制齿轮系统作为一种常见的机械传动装置,在工业生产中得到了广泛应用。
然而,齿轮系统的运转往往伴随着噪声和振动问题,给工作环境带来一定的不适和安全隐患。
因此,对齿轮系统的噪声和振动进行控制,是一项重要的工程任务。
首先,我们来了解一下齿轮系统噪声和振动的产生原因。
齿轮系统的运转产生的主要噪声来自于以下几个方面:齿轮啮合时产生的冲击声,齿轮齿面的摩擦声以及齿轮系统内部部件的共振声。
其中,冲击声是最主要的噪声源,它由于齿轮齿面的不完全啮合而产生,会造成较大的噪声和振动。
齿轮系统的振动主要来自于齿轮自身的不平衡、摆动和振荡,以及齿轮系统内部结构的松动和失稳。
为了控制齿轮系统的噪声和振动,我们可以从以下几个方面入手。
首先,改善齿轮齿面的啮合状况。
齿轮齿面的不完全啮合是导致冲击声的主要原因,因此减小齿轮齿面的啮合间隙是一个有效的控制手段。
可以采用精密加工工艺,提高齿轮齿面的加工精度,从而减小啮合间隙,降低冲击声的产生。
此外,还可以采用齿轮模型优化设计的方法,在减小齿轮齿面啮合间隙的同时,保持足够的传动效率和承载能力。
其次,优化齿轮系统的结构和布局。
齿轮系统的结构和布局对噪声和振动的控制有着重要的影响。
合理设计齿轮系统的布局,减小相邻齿轮的传动误差和相位差,可以有效降低齿轮系统的振动。
此外,还可以采用隔振和降噪材料对齿轮箱进行包裹,从而吸收和隔离噪声和振动的传播。
再次,加强齿轮系统的润滑和降噪措施。
良好的润滑能够减小齿轮齿面的摩擦和磨损,降低噪声的产生。
可以采用高性能的润滑油,选择适当的润滑方式,如油浸润滑、喷射润滑和油雾润滑等,提高齿轮系统的润滑效果。
另外,通过加装降噪设备,如降噪罩、降噪挂钩等,可以有效降低齿轮系统的噪声和振动。
最后,进行齿轮系统的动态监测和故障诊断。
齿轮系统的噪声和振动问题常常与部件的损坏和故障相关。
通过采集齿轮系统的振动信号和声音信号,结合合适的信号处理和诊断算法,可以实现对齿轮系统的动态监测和故障诊断。
机械监测与诊断技术论文齿轮震动故障诊断与分析学院:机械与动力学院姓名:**学号:**********2015年11月4号齿轮振动故障诊断与分析一.齿轮典型故障介绍(1)磨损磨损包括磨粒磨损、腐蚀磨损和冲击磨损,磨粒磨损是常见的磨损形式,一般是由于齿的工作表面进入了金属微粒、尘埃和沙粒等所引起的齿面擦伤或者齿面材料脱落,是润滑不好的开式传动齿轮的主要故障类型。
齿轮磨损后,齿的厚度变薄,齿廓变形,侧隙变大,会造成齿轮动载荷增大,不仅会使振动和噪音加大,而且很可能导致断齿。
磨损故障大概占齿轮常见故障比例的10%。
(2)点蚀点蚀是减速箱等闭式齿轮传动系统中极其普遍的故障类型,约占齿轮常见故障比例的31%。
齿轮受啮合过程产生的循环交变应力会在表面产生微小疲劳裂纹,啮合时润滑油进入该裂纹中后被封口并受挤压产生高压,从而扩大了裂纹,最终导致齿轮表面金属的脱落形成麻点状小坑,这就是点蚀。
在齿轮表面硬度低于350HBS的闭式齿轮上,点蚀现象尤为常见。
点蚀的出现会加大齿轮表面的局部接触应力,导致点蚀现象的恶化,进而加剧齿轮啮合时的噪声、降低齿轮传动的精度。
(3)断齿断齿在齿轮故障类型中是最容易发生的,占齿轮常见故障比例的41%。
断齿故障有过载断齿、疲劳断齿和缺陷断齿三种,这里面又以疲劳断齿最为常见,它是由于齿轮工作受到周期性载荷,弯曲应力超过弯曲疲劳极限而在齿根处产生疲劳裂纹,裂纹渐渐扩大,当载荷的循环次数达到一定值时,就会致使轮齿折断。
断齿是所有齿轮故障中最严重的类型,经常会导致停工停产。
(4)胶合齿轮润滑良好时齿面间会保持一层润滑油膜作用,但是当载荷较大、齿面间压力大、工作转速高、工作表面温度较高时,润滑油膜被破坏,使金属齿面直接接触,相接触的金属材料在高温高压作用下发生粘着,相粘连的齿面由于相对滑动而被撕裂,在相对滑动方向形成划痕。
齿面的胶合故障,会加剧齿面的磨损程度和速度,从而使齿轮更加快速地失效。
这种故障类型占齿轮常见故障比例的10%。
齿轮主要振动故障特征及实测频谱案例一、齿轮故障的频谱特征1、齿的磨损、过载齿轮的均匀性磨损、齿轮载荷过大等原因引起的故障,都会在轮齿之间产生很高的冲击力,此时会产生以啮合频率的谐波频率为载波的频率,其中啮合频率的幅值相对正常状态将明显增大,但在啮合频率及其谐波周围不产生边频带。
随着齿轮磨损劣化,啮合频率及谐波幅值会继续增长。
2、断齿、齿面剥落等属于齿轮集中缺陷的局部性故障,在齿轮运行至缺陷部位时,会激发瞬时的冲击,产生一个高幅值的波峰。
此时,啮合频率将受到旋转频率的调制,在啮合频率其及谐波两侧产生一系列的边频带,其频谱特点是边频带数量多、范围广、分布均匀且较为平坦。
随着此类缺陷的扩大,边频带在宽度范围及幅值上也会增大。
3、点蚀、胶合点蚀、胶合等分布比较均匀的缺陷,同样也将产生周期性冲击脉冲和调幅、调频现象。
但是,与断齿等局部性故障不同的是,由于点蚀、胶合都属于浅表缺陷,在齿轮啮合时不会激发瞬态冲击,因此在啮合频率及其谐波两侧分布的边频带阶数少且集中,其频谱特点是边频带数量分布范围窄、幅值起伏变化大。
二、诊断实例对某减速箱的例行巡检过程中发现,该齿轮箱存在周期约为0.5s 的振动冲击,但减速箱本身振动值没有明显变化。
该减速箱为核心设备,一旦该设备出现问题停运,整条生产线将被迫停车,造成巨大的经济损失。
鉴于现场减速箱无明显振动,通过听棒听诊及振动检测等常规方式均无法判断出振动冲击的部位及形成原因,故对该减速箱进行现场振动信号采集和诊断。
查看频谱图,明显存在第三轴和第四轴四级啮合频率(28.15Hz ),且振动能量的缓慢增加,说明磨损在缓慢增长。
随着状态恶化,振动值缓慢增长,三级与四级啮合频率幅值增长明显,同时啮合频率周围开始产生以第三轴转频(2.01Hz )为间隔的边频,而且边频带体现的特征为数量多、范围广(24~60Hz )、分布均匀且较为平坦,如下图所示。
通过时域波形图可以发现,时域信号明显存在着周期约为0。
常山高级工程师尹逊民工程师(第七。
三研究所)摘要:齿轮传动装置是舰船的主要振动和噪声源之一,本文在建立传动齿轮箱体模态试验的理论模型和试验模型后。
采用移动锤击法采集各点的冲击数据和响应数据。
用最小二乘复指数法识别出箱体的模态参数,并与有限元计算结果进行了对比分析,证明本文所采用的研究齿轮传动箱振动模态的方法是行之有效的。
关键词:齿轮箱振动分析有限元模态试验锤击法随着科学技术的快速发展,对传动齿轮箱提出了越来越高的要求。
尤其是舰船用齿轮箱,既要传递功率大、体积小、重量轻,又要满足振动小、噪声低的苛刻要求。
齿轮箱的工作是否正常,将直接影响到舰艇的整体作战能力。
据所查的文献资料看,过去人们比较重视齿轮、轴承等部件的工作情况,在齿轮、轴承等的动静应力分析、疲劳分析、模态分析以及故障诊断等方面作了大量的工作。
这是由工程的实际情况决定的,因为对齿轮箱零件失效的统计表明,齿轮和轴承失效的比重最大,分别为60%和19%。
但不能因此而忽视对齿轮箱动态特性的研究。
目前,研究齿轮箱体振动模态的资料比较少见。
齿轮啮合传动中,当齿轮存在集中缺陷、分布缺陷或齿轮所在轴弯曲时,将产生转频调制啮合频率的现象。
如果轴严重弯曲或者齿轮严重故障而导致振动能量异常大时,齿轮啮合传动中的异常振动会激励起传动箱体的固有频率。
另外,齿轮箱体本身的振动以及由轴系传来的齿轮的振动都是产生辐射噪声的主要根源。
因此,准确识别齿轮箱体的振动模态及其特点具有重要的现实意义。
2有限元建模与模态计算2.1齿轮箱体建模作为计算对象的齿轮箱体由上、下两半箱体组成,上箱体尺寸为683×280×185r砌,下箱体尺寸为683×280×420mm,主体部分为铸件,另外焊接了一些筋板等以提高强度,材料采用耽1—46,箱体总重167.2kg。
上下箱体在中法兰面上用螺栓把紧。
该箱体共有三对轴承座,根据设计,选择不同的传动齿轮可以输出几种速比。
齿轮的振动测量与简易诊断一、齿轮的振动测量齿轮振动的频带很宽,而且低频和高频振动中均包含有诊断各种异常振动非常有用的信息,因此对齿轮振动的测量要求比一般机械的振动测量要高。
在对齿轮振动进行测量时,应重点注意如下几个问题:1.测点选择实际进行齿轮振动测量时,传感器的安装位置(测点)不同,所得到的测定值会有较大的差异。
因此,最好的办法是对各测点做出标记,以保证每次测定的部位不变。
另外,还应注意测定部位的表面应是光滑洁净的,避免脏物对振动传递造成衰减。
齿轮发生的异常是各种各样的,发生最大振动的方向也各不相同,因此一般应尽可能地沿水平、垂直和轴向三个方向进行测定。
2.测量参数齿轮发生的振动中,包含有固有频率、齿轮轴的旋转频率及轮齿啮合频率等成分,其频带较宽。
对这种宽带频率成分的振动进行监测与诊断时,一般情况下应将所测的振动按频带分级,然后根据不同的频率范围选择相应的测量参数。
前面已经介绍过,对于低频段进行测量时,一般选用位移传感器和振动位移参数;对于中频段进行测量时,一般选用速度型传感器和振动速度单位;对于高频段进行测量时,一般实际测量中,在同一测点位安装两种或两种以上传感器是不利的,通常在进行振动测定时选用加速度传感器,再通过积分电路转换或所需的测量参数。
3.传感器的安装方法加速度传感器可测定频率范围较宽的振动,它最终能测定的范围取决于安装方法。
关于加速度传感器的安装方法,参见相关资料。
4.测定周期定期测定是为了能够发现处于初期状态的异常,所以需要对齿轮的检测规定合适的周期。
周期太长,不利于及时发现问题;周期太短,浪费人力物力,很不经济。
比较好的办法是在设备正常时保持一定的周期,而在振动增大,达到“注意”范围内时,缩短监测周期。
二、齿轮的简易诊断方法进行简易诊断的目的是迅速判断齿轮是否处于正常工作状态,对处于异常工作状态的齿轮进一步进行精密诊断分析或采取其他措施。
当然,在许多情况下,根据对振动的简单分析,也可诊断出一些明显的故障。
齿轮箱振动信号的频域分析齿轮箱传动系统振动的频谱分析法和转子、滚动轴承的频谱分析在原理上是一致的。
因为齿轮的传动产生振动,而故障缺陷也产生振动,二者结合而产生调制,这是它的特点。
这种调制有调幅和调频。
调幅现象:由于齿面载荷波动对振幅影响形成的。
例如齿轮偏心是装配、制造中不可避免的问题,偏心相当于齿轮振动受到一个脉冲调制,齿轮一转,脉冲重复一次,它的频率fe (或ωe)等于齿轮的回转频率f(或ω),但它比齿轮的啮合频率fZ (或ωZ)要小得多,两种频率的信号互相作用而形成调制,其机理如图7.13所示。
如图7.13d所示,相当于把 e(t)的频谱E(ωe )搬到载频ωZ上。
利用上述概念,一是说明齿轮的故障信号与齿轮自身振动信号是如何作用的,二是说明可以把故障信号从检测信号分离出来。
上述原理不仅适用于像齿轮偏心的故障,也适用于可产生冲击信号的其它故障,如崩齿、齿面剥落等。
调频现象:上述调制是假定齿轮转速恒定、齿距没有误差的前提下得到的,如此二条件不能满足,啮合频率就会产生频率调制。
调频的机理也是使e(t)的频谱E(ωe )搬移,由于ωe是变动的,故搬移的频谱不再与原频谱相似。
在实际工况中,调频与调幅是同时候存在的,如果回转部件与齿轮是刚性联接,惯性越大,相对调幅而言,调频现象就不显著。
如果所检测信号的均值是时间函数,就相当于载波增加了一个附加成分。
1/2啮合频率(1)1/2啮合频率的出现是比较常见的现象,有多种原因会造成0.5倍啮合频率、1.5倍啮合频率……。
有时,正常的齿轮箱上也会看到。
(2)0.5倍啮合频率出现肯定不是齿轮油膜涡动————没有这种说法。
(3)200HZ需要确认究竟是否电气频率。
从描述看,它是0.5倍GMF的可能性大。
(4)由于两台电机都是轴向振动大,我有点怀疑电机的基础是否出了问题。
建议重点检查。
(5)根据我们的经验,球磨机的振动一般比较大,中心容易跑掉。
所以,轴系中心需要经常检查。
齿轮的固有频率振动
固有频率振动是指齿轮受到外界持续传动力的作用,产生的瞬态自由振动,并带来噪声。
齿轮将以多个固有频率振动,但测量时.具有高阶固有频率的振动多数在很短时间内就消失,只剩下基本的低阶固有频率振动。
齿轮在正常和异常状态下都将产生固有频率振动,根据齿轮振动形态的变化、就能对齿轮作出故障判断。
所以,对齿轮进行故障诊断时,必须分析固有振动频率。
一对直齿圆柱齿轮的固有振动频率就可由下列最典型的计算式求得:
齿轮的固有振动频率多为1—10kHz的高频,当这种高频振动传递到齿轮箱等机件时,高频冲击振动已衰减,多数情况下只能测到齿轮的啮合频率。
实际的自由振动频率比固有振动频率稍低。
(2)若对不对中进行诊断.应分析的频率为fm
f;若对不平衡进
r
行诊断,应分析的频率为轴频
f,;若对齿轮磨损进行诊断.应对啮
r
合频率fm的倍频进行分析;
制定正常频谱作为判断标准时,还必须根据齿轮装置过去的实际统计资料,以确定各种状态的实测值与正常值的倍数比。
对于低频振动.通常将判断标准定为:实测值达到正常值的1.5—2倍时为注意区,达4倍时为异常区。
对于高频振动,据实验结果指出:当实测值达3倍时定为注意区,6倍左右定为异常区。
应该指出的是,利用振动加速度所测定的l—10kHz频率是机械局部共振频域.除齿轮以外,轴承、电机等也会发生同样频率的振动。
特别是使用滚动轴承时,易发生误诊为滚动轴承异常的情况。
但因齿轮的固有振动频率比滚动轴承要低一些,所以,合理选择测定齿轮振动的频域,能将齿轮和滚动轴承的异常振动区分开来,以免发生误诊断。
在进行频谱分析时,要避免错误地将不相关的频率成分与故障联系在一起。
这就要求从事诊断的人员不仅要熟悉仪器的操作使用,还要深入掌握齿轮装置的结构特点和主要参数。
诊断人员应该了解的内容包括:系统的共振频率、齿轮的材料、热处理工艺、轴承的结构、齿轮的齿数和模数、齿轮运行的历史情况、同类产品的主要失效形式等等。