齿轮箱的故障类型及振动机理改
- 格式:docx
- 大小:165.89 KB
- 文档页数:4
齿轮箱常见问题原因及处理一、齿轮箱异响1、齿轮齿面上有磕碰伤造成响声情况:该问题主要反映在整机生产厂家的总装厂试验台,该种异响的特点:响声频率稳定,单向有异响,反向旋转无异响,可以通过计算低速轴的转速和异响的频率关系来确定异响发生的具体位置。
原因:装配过程中出现磕碰,由于公司在试验质量把关上存在纰漏,有极少量的齿轮箱可能会出现这样的问题。
处理:根据分析结果仔细寻找相关齿轮齿面上的碰伤处,寻找时应将齿面上的油擦拭干净,以免影响手感。
碰伤主要存在于齿顶及齿廓两侧。
2、齿轮自身周节误差过大造成的异响情况:该问题同样反映在整机生产厂家的总装厂,该种异响的特点:响声频率稳定,双向旋转均异响。
原因:齿轮加工造成的相邻齿周节变化过大产生的异响。
可以通过速比关系查找问题齿轮的齿轮检测报告。
处理:除可取出的高速轴外现场无法处理,只能回公司进行更换返修。
3、摩擦干涉的异响情况:该问题出现在维修车间的几率较大,盘车不动或者盘车困难,试车时发出摩擦声。
风场出现的原因一般为甩油环和端盖干涉,伴随着相关部位的异常发热现象。
处理:找出干涉摩擦的部件,对零件进行返修加工或者进行紧固处理。
4、轴承自身问题造成的异响情况:当出现的响声是嗡嗡声且频率较快、齿面检查正常、用速比关系计算出不是齿轮的问题时,那么极有可能就是轴承出现了问题。
原因:轴承的内圈滚道或者滚子表面有凹痕会引起轴承运转不平稳,造成异响。
处理:仔细检查轴承滚道和滚子,发现有问题更换轴承。
5、齿轮长期停放锈蚀造成的异响情况:一对齿轮副的两个齿轮上各有一个齿出现长条状锈蚀痕迹,其余齿完好。
原因:齿轮箱长期停放造成齿面锈蚀,运行不平稳产生异响。
处理:该锈蚀无法彻底消除,只能先用油石抛光,再后续跟踪。
6、非齿轮箱自身原因的异响情况:响声出现在低速端主轴或高速端刹车盘附近,经检查齿轮箱各部件完好仍有异响的情况,或者响声频率不与转速成正比。
原因:低速端有可能是轮毂或者主轴轴承出现问题,高速段可能是联轴器或者电机找正偏差所致。
齿轮箱典型故障一一、齿轮磨损齿轮磨损是齿轮箱最常见的故障之一。
当齿轮长时间运行或承受过大载荷时,齿面会逐渐磨损,导致齿轮间隙增大,严重时甚至会影响齿轮的啮合。
为了防止齿轮磨损,可以采取以下措施:定期检查齿轮的磨损情况,及时更换磨损严重的齿轮;选用耐磨性能好的齿轮材料;优化齿轮设计,提高齿轮的承载能力。
二、轴承损坏轴承是齿轮箱中的重要部件,其主要作用是支撑齿轮和其他转动部件。
当轴承出现故障时,会导致齿轮箱振动、噪声增大,严重时甚至会影响设备的正常运行。
为了防止轴承损坏,可以采取以下措施:选择质量好的轴承材料和制造工艺;定期检查轴承的运行状态,及时发现并解决轴承故障;优化轴承设计,提高轴承的承载能力和使用寿命。
三、润滑不良润滑是齿轮箱正常运行的重要保障。
当润滑不良时,齿轮和其他转动部件的摩擦会增大,导致齿轮箱温度升高、噪声增大、齿面磨损加剧。
为了改善润滑状况,可以采取以下措施:选用合适的润滑剂和润滑方式;定期检查润滑系统的运行状态,及时发现并解决润滑问题;优化润滑设计,提高润滑效果。
四、密封问题密封问题也是齿轮箱的常见故障之一。
当密封不良时,水分、杂质等物质会进入齿轮箱内部,导致齿轮和其他转动部件腐蚀、磨损加剧。
为了解决密封问题,可以采取以下措施:选用性能良好的密封材料和密封结构;定期检查密封件的磨损情况,及时更换磨损严重的密封件;优化密封设计,提高密封效果。
五、负载过大负载过大是导致齿轮箱故障的另一个重要原因。
当设备承受的载荷超过其承受能力时,齿轮和其他转动部件会受到过大的应力,导致齿轮箱损坏。
为了防止负载过大,可以采取以下措施:合理设计载荷分配,避免单个设备承受过大的载荷;定期检查设备的运行状态,及时发现并解决超载问题;优化设备结构,提高设备的承载能力。
六、机械损坏机械损坏包括齿轮、轴承、轴等主要部件的断裂、变形等故障。
这些故障通常是由于制造缺陷、安装不当、运行不当等原因导致的。
为了预防机械损坏的发生,可以采取以下措施:严格把控零部件的制造和安装过程;加强设备的维护和检修工作;及时发现并解决设备运行中的异常情况。
吊车齿轮箱的常见故障维修
齿轮箱故障主要是由于组成齿轮箱的零件失效造成的,有资料介绍:齿轮失效比重约占百分之60,轴承占百分之19,轴占百分之10,箱体占百分之7,其他占百分之4.不难看出齿轮失效是造成齿轮箱故障的主要原因。
齿轮箱使用中常见故障主要有:齿轮箱振动异常、齿轮箱严重发热、齿轮箱漏油、齿轮箱异响、变速箱自动脱挡、挡位错乱和换挡困难。
齿轮箱振动异常的原因与维修齿轮箱振动主要是齿轮啮合时产生的,这种啮合振动是齿轮承受啮合冲击和节线冲击所致。
对于稳定速度传动的齿轮,产生轻微振动是正常的。
但振动较大,即为故障。
齿轮加工精度低,没有达到要求技术要求,齿轮轴刚度不足、箱体变形,都会引起齿轮较大啮合冲击振动;齿轮实际工作中由于齿面摩擦和磨损,特别是重载时更加严重,长期循环作用会在齿面形成疲劳点蚀、
剥落,甚至生产大面积剥伤,使齿轮的啮合精度大为降低,更加增大啮合冲击振动,严重时会使齿轮箱产生强烈度大为降低,更加增大啮合冲击振动,严重时会使齿轮箱产生强烈振动,无法正常工作。
此外,轴端滚动轴承的损坏,轴承和轴颈磨损,产生配合间隙也会使齿轮摇摆和扭振;齿轮箱与相邻部件(联轴器、电动机、泵或液压马达)连接轴不对中及与基础紧固松动也会加剧齿轮箱的振动。
对齿箱振动异常,应首先仔细检查齿轮箱与相邻部件连接轴轴线是否有足够刚度,连接螺栓有无松动和损坏,对出现问题部位重新进行调整、修复和加固,振动异常一般可消除。
由于齿轮和轴承失效引起的振动异常,轻者可修齿轮和齿面,清洗轴承,清除进入轴承的异物,重者应换新齿轮和轴承。
箱体和齿轮变形的修复见齿轮箱主要零件齿轮轴和箱体的维修部分。
以上资料由济宁龙锋工程机械有限公司提供:。
齿轮箱中齿轮故障的振动分析与诊断摘要:齿轮箱常见的失效类型为齿轮箱,所以定期监控其工作状况,以减少故障率,提供预测型的检修计划。
应用结果显示,该技术能够对变速箱进行有效的判断,并能正确地判断出变速箱的故障部位和严重性,从而为船员制定相应的检修计划,降低无用维护费用,防止机械和机械的非计划停运。
关键词:风力发电机组;齿轮箱;故障诊断引言:在回转机构中,最常见的是齿轮,它的工作状态对整个机器的工作情况有很大的影响。
齿面磨损、表面接触疲劳、齿面塑性、齿面弯曲和齿面折断等是常见的失效类型。
一、齿轮箱故障诊断的意义在风力发电机组中,齿轮箱作为重要传动设备,为风能转化为电能提供源源不断的动力,发挥着十分重要的功能。
风力发电机组中的齿轮箱,不仅体积、质量较大,而且结构十分复杂,这也导致在发电机组运转过程中,齿轮箱容易发生各种故障,进而使发电机组的运行受到较大影响,甚至蒙受重大损失。
近年来,陆续爆发出多起因为齿轮箱故障而导致风力发电机组停运的实践,不仅让发电机组受到极大影响,而且带来重大经济损失。
所以说,对风力发电机组齿轮箱实施有效的故障诊断措施,从而尽发现问题,解决问题,保证其稳定性,不仅具有极大的经济意义,而且有很强的社会意义[1]。
传统的齿轮箱故障诊断主要是通过人工方式实现的,通过人工巡检加定期维护的方式,排除齿轮箱故障。
然而,这种模式,一方面带有很强的滞后性,通常都是齿轮箱发生故障以后,并且对发电机组造成影响之后,才能够去被动的应对,依然无法完全避免损失;另一方面,齿轮箱结构复杂,人工方式诊断故障,不仅准确率不高,而且耗费大量的时间和人力。
因此,通过对齿轮箱实施在线监控,并通过监控数据对齿轮箱实施故障诊断,一旦发现异常立刻予以维护、维修,只有这样,才能够真正有效的预防齿轮箱故障,将隐患消除,从而最大程度降低对风力发电机组的影响。
二、齿轮箱故障诊断机理实现齿轮箱的故障诊断,首先必须了解齿轮箱的故障机理,以此为基础选择合适的诊断技术,才能有有效保障故障诊断的及时性与准确性。
齿轮箱常见故障
齿轮箱是一种机械装置,它将一个主动轴的扭矩传递给多个从动轴,从而实现动力的分配和传递。
齿轮箱在运行过程中可能会出现一些故障,以下是一些常见的故障:
齿轮磨损:齿轮在运转过程中会不断磨损,如果磨损过度,会导致齿轮啮合不良,影响动力传递。
齿轮疲劳:齿轮在运转过程中会受到周期性的载荷,如果载荷过大或周期过快,会导致齿轮疲劳,影响动力传递。
齿轮断裂:齿轮在运转过程中可能会发生断裂,这通常是由于齿轮材料质量问题、加工工艺问题或运转过程中受到突然的冲击载荷等原因引起的。
箱体变形:箱体是齿轮箱的重要组成部分,它的变形会影响齿轮的正常运转。
箱体变形通常是由于箱体材料质量问题、加工工艺问题或运转过程中受到突然的冲击载荷等原因引起的。
润滑不良:齿轮箱需要良好的润滑,如果润滑不良,会导致齿轮磨损加剧、疲劳加剧、断裂等问题。
漏油:齿轮箱的润滑油需要保持一定的油位,如果油位过低,会导致润滑不良,同时也会导致漏油问题。
以上是齿轮箱常见的故障,不同的故障可能会导致不同的后果,因此需要及时进行检查和维修。
风力发电机组齿轮箱故障分析及检修齿轮箱是风力发电机组中非常重要的一个组成部分,它起到传递风机机组运动和与发电机连接的作用。
由于齿轮箱工作环境的特殊性和长期工作的高负荷,它可能会遇到各种各样的故障。
本文将分析几种常见的齿轮箱故障以及相应的检修方法。
1.齿轮箱振动过大:振动过大是齿轮箱故障中最常见和最重要的问题之一、当齿轮箱振动过大时,会导致齿轮磨损加剧,同时也会对其他部件造成损害。
另外,振动过大还会影响系统的运行效率和可靠性。
检修方法:-检查齿轮箱支撑结构是否完好,并进行必要的修复或更换。
-检查齿轮箱内部的齿轮轴承是否磨损,如有需要及时更换。
-检查齿轮箱油液的质量和量是否符合要求,并及时更换。
-检查齿轮箱的齿轮间隙是否过大,如有需要及时调整。
2.齿轮磨损:齿轮箱中的齿轮长期工作,会导致齿轮表面磨损。
齿轮磨损不仅会影响齿轮传动的可靠性和效率,还会增加设备的噪音和振动。
检修方法:-检查齿轮箱内部的齿轮和齿轮轴承是否磨损严重,如有需要及时更换。
-检查齿轮箱的润滑系统是否正常工作,及时添加润滑剂。
-检查齿轮箱的齿轮间隙是否适当,如不适当需进行调整。
3.轴承故障:齿轮箱中的轴承是支撑齿轮和传递力的重要部件,长期工作会导致轴承磨损和损坏。
检修方法:-检查齿轮箱中的轴承是否磨损或损坏,如有需要及时更换。
-检查轴承安装是否正确,确保轴承在运行期间不会发生偏移或过紧。
4.油液问题:齿轮箱中的油液起到润滑和冷却作用,长期使用会导致油液老化和污染。
油液老化和污染会影响齿轮、轴承和密封件的寿命。
检修方法:-检查齿轮箱内部的油液质量和量是否正常,如有需要及时更换。
-定期清洗和更换油液过滤器,避免油液中的杂质对齿轮箱的影响。
5.密封问题:齿轮箱中的密封件是避免油液泄漏和防止外部杂质进入的重要部件,长期使用会导致密封件老化和损坏。
检修方法:-定期检查和更换齿轮箱的密封件,确保密封性能正常,避免油液泄漏和杂质进入。
总结:齿轮箱是风力发电机组中一个重要的组成部分,其故障会直接影响整个系统的运行效率和可靠性。
风力发电机组齿轮箱故障诊断风力发电机组是利用风能转换成机械能或电能的设备,其中齿轮箱是风力发电机组的重要组成部分之一。
齿轮箱承担着将风车旋转产生的低速大扭矩转换成高速小扭矩,从而满足发电机的运行要求。
由于齿轮箱处于高负荷、恶劣环境工作状态下,往往容易出现故障。
及时准确地诊断齿轮箱故障,对于风力发电机组的稳定运行和维护至关重要。
一、齿轮箱故障类型1.1 齿轮箱过热齿轮箱过热是风力发电机组常见故障之一,原因可能有:(1)润滑油温度过高;(2)齿轮轴承磨损导致摩擦力过大;(3)风能过大导致齿轮箱工作负荷过重;(4)冷却系统故障。
1.2 齿轮箱振动齿轮箱振动可能是由于以下原因导致的:(1)齿轮箱内部零部件松动;(2)齿轮损伤、断齿、磨损严重;(3)齿轮箱装配误差;(4)齿轮箱轴承损坏。
1.4 齿轮箱漏油齿轮箱漏油往往是由于以下原因造成:(1)密封件老化;(2)零部件损坏;(3)冷却系统故障。
二、齿轮箱故障诊断方法2.1 观察法通过观察齿轮箱的外部表面进行故障诊断,如果发现齿轮箱有明显的油渍、磨损痕迹、裂纹等现象,就说明齿轮箱出现了问题,需要进行进一步的维修或更换。
2.2 听声法借助听觉观察齿轮箱的运行状态,判断是否有异常的噪音。
如果发现齿轮箱有异常噪音,就说明齿轮箱可能存在故障,需要进一步检查或维修。
2.3 测振法利用振动仪对齿轮箱进行振动测试,通过振动信号的分析判断齿轮箱的状态。
如果发现齿轮箱振动异常,就需要进一步排除故障原因,进行维修或更换。
2.4 润滑油分析定期对齿轮箱中的润滑油进行化验分析,检测其中的金属颗粒、酸值、碱值、水分等指标,判断齿轮箱是否存在异常磨损、腐蚀、水分等问题,并及时采取相应的措施。
2.5 热像法利用热像仪对齿轮箱进行热像测试,观察齿轮箱在运行过程中的热量分布情况,判断齿轮箱是否存在过热或磨损等问题。
2.6 拆解检查当以上方法无法明确齿轮箱的故障原因时,可以进行拆解检查,仔细检查齿轮箱内部的各个部件,找出故障原因并进行修理或更换。
风力发电机组齿轮箱故障分析及检修分解齿轮箱是风力发电机组的核心部件之一,其主要功能是将风轮通过传动装置传递给发电机,以产生电能。
由于齿轮箱在长时间运转中承受着大负荷,容易出现故障,因此对于齿轮箱的故障分析及检修分解非常重要。
一、故障分析1.齿轮磨损:由于齿轮箱长时间高速运转,容易导致齿轮之间的磨损,如果磨损过大,会导致齿轮箱传动不稳,产生异响。
2.轴承损坏:齿轮箱中的轴承承受着极大的压力和摩擦,如果润滑不良或者长时间运转,会导致轴承损坏,从而导致齿轮箱工作不正常。
3.油封漏油:齿轮箱中的油封容易因为长时间使用或者质量问题导致漏油,这会导致齿轮箱内部润滑油减少,影响齿轮的润滑和工作效果。
4.齿轮箱内部异物:在齿轮箱长期运转过程中,由于各种原因,容易进入异物,如金属粉尘、灰尘等,这些异物会加剧齿轮磨损和轴承损坏。
二、检修分解1.卸下齿轮箱:首先需要将风力发电机组的叶片停止转动,并释放动力系统的压力,然后使用专业工具将齿轮箱卸下。
2.拆卸齿轮箱壳体:将齿轮箱的壳体螺栓依次松开,小心拆下齿轮箱壳体,避免损坏内部零件。
3.检查齿轮磨损情况:清洁齿轮箱内部,使用专业工具检查齿轮的磨损情况,如果磨损严重,需要更换新的齿轮。
4.检查轴承情况:拆卸齿轮箱内部的轴承,清洗并检查轴承的磨损情况,如果磨损严重,需要更换新的轴承。
5.更换油封:检查齿轮箱油封的密封情况,如果发现漏油,需要将旧的油封拆下并更换新的油封。
6.清理异物:彻底清理齿轮箱内的异物,包括金属粉尘、灰尘等,以保证齿轮箱的正常运转。
7.组装齿轮箱:将清洗过的齿轮、轴承重新组装到齿轮箱内,并按照正确的工装和顺序进行安装,最后紧固螺栓,确保齿轮箱的完整性和稳定性。
8.完善润滑系统:重新注入适量的润滑油,并确保油封的良好密封,防止油漏。
总结:对于风力发电机组的齿轮箱故障分析及检修分解,需要细致入微地检查齿轮、轴承、油封和异物等情况,及时进行更换和清理。
只有确保齿轮箱的正常运转,才能保证风力发电机组的高效工作。
第2章齿轮箱的故障和振动信号
2.1齿轮箱故障的主要形式
齿轮箱系统是包含齿轮、轴承、传动轴及箱体等结构的复杂系统。
其中主要故障发生在齿轮、轴承和传动轴上。
在齿轮箱的诊断中,一般只给出是否产生故障及产生故障的位置,根据振动信号的特点,一般常见的典型故障形式有齿轮失效、轴和轴系失效、箱体共振和轴承疲劳脱落和点蚀等几种【5】。
在这些常见故障中,齿轮和滚动轴承的故障占齿轮箱故障的80%左右【4】。
因此,对齿轮和滚动轴承的故障类型和振动机理进行剖析,对于识别齿轮箱故障类型有重要的意义。
2.1.1齿轮的故障类型及振动机理
(1)齿轮的故障类型齿轮的故障类型大致可分为以下两种类型:
1)由制造误差和装配误差引起的故障。
具体的故障包括齿轮偏心、齿距偏差、齿形误差、轴线不对中、齿面一段接触等故障。
齿轮制造时造成的主要缺陷有:偏心、齿距偏差和齿形误差等。
齿轮装配不当,也会造成齿轮的工作性能恶化。
当齿轮的这些误差较严重时,会引起齿轮传动中忽快忽慢的转动,啮合时产生冲击引起较大的振动和噪声等【5】。
2)运行中产生的故障齿轮除上述故障外,其在本身运行过程中也会形成许多常见的故障,例如断齿、齿根疲劳裂纹、齿面磨损、点蚀剥落、严重交合等等。
齿轮预定寿命内不影响使用的磨损成文正常磨损,如果因使用不当、用材不当、接触面存在硬颗粒以及润滑油不足等原因引发早期磨损,将导致齿轮形变、重量损失、齿厚变薄、噪声增大等后果,甚至会导致齿轮失效。
其中若润滑油不足,还会导致齿面胶合,胶合一旦发生,齿面状况变差,功耗增大,从而使得振动信号变强。
(2)齿轮的振动机理一对啮合齿轮,可以看作一个具有质量、弹簧和阻尼的振动系统,其力学模型如图2-1所示。
图2-1齿轮对的力学模型
其振动方程为【4】:
M r X+CX+K(t)X=K(t)E1+K(t)E2(t)2-1式中 X——为沿作用线上齿轮的相对位移
K(t)——齿轮啮合刚度
M r——齿轮副的等效质量
M r=m1∗m2/(m1+m2)
E1——齿轮受载后的平均静弹性变形
E2(t)——齿轮的误差和异常造成的两个齿轮间的相对位移(亦称故障函数)
由式2-1可以看出,齿轮在无异常的理想状态下也是存在振动的,且其振动来源于两个方面。
第一方面为K(t)E1,它与齿轮的误差和故障无关,称为常规啮合振动。
另一方面为
K(t)E2(t),它取决于齿轮的啮合刚度和故障函数,由这一部分可以比较好地解释齿轮信号中变频的存在以及它们和故障的关系。
2.1.2滚动轴承的故障类型及振动机理
(1)故障类型齿轮箱滚动轴承在工作时,外圈与轴承座或机壳联接且固定;内圈与传动轴相联接,随轴一起转动。
在实际的诊断中,如果不考虑轴承加工和装配误差,则主要为运行故障这一内部因素所引起的振动。
滚动轴承在运行过程中出现的故障按其振动信号特征的不同可以分为【6】:
1)磨损由于滚道和滚动体的相对运动和尘埃异物会引起表面磨损,润滑不良会加剧磨损,结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了齿轮箱的运动精度,表现为振动水平及噪声的增大。
2)表面损伤当轴承元件表面有损伤时,损伤点受力会产生突变的冲击脉冲力,该脉冲力是以宽带信号,覆盖轴承系统的高频固有振动频率而引起谐振。
这就是损伤类故障引起的振动信号的基本特点。
轴承元件的工作表面损伤点在运行中反复撞击与之相接触的其他元件表面而引起低频振动成分,其频率与转速和轴承的几何尺寸有关,这一频率成为故障特征频率。
(2)振动机理滚动轴承是由内圈、外圈、滚动体和保持架等元件组成。
其中滚动体是滚动轴承的核心元件,它使相对运动表面间的滑动摩擦变为滚动摩擦。
图2-2所示为滚动轴承的结构图,图中D为轴承节径,d为滚动体直径,r1为内环滚道半径,α为接触角,z为滚动体个数,f r为内圈的旋转频率,一般为轴的转频,fα为外圈的旋转频率,ωc为滚动体的旋转角速度,ωb为滚动体的自转角速度。
图2-2滚动轴承结构图
轴承中所产生的振动是随机的,含有滚动体的传输振动,其主要频率成分为滚动轴承的特征频率。
低频段的频谱由于能量较低,常常会淹没在噪声之中,故不可用作诊断。
中频段则主要包括轴承元件表面损伤引起的轴承元件的固有振动频率,分析此频段内的振动信号可以较好地诊断出轴承的局部损伤故障。
高频段信号进行分析也可以诊断出轴承的相应故障。
2.2 齿轮箱振动信号的时域分析与频域分析
在各种齿轮箱故障分析与诊断方法中,以振动检测为基础的齿轮箱故障诊断方法具有测量简便、实时性强等优点,通过测量齿轮箱运行过程中所产生的振动信号,作为故障诊断的重要信息来源,是一种理想的齿轮箱运行监测工具【5】。
目前研究和应用的振动检测与故障诊断的方法可以分为以时域分析和频域分析两种。
2.2.1 时域分析
时域分析方法就是根据信号的时间历程记录波形,分析信号的组成和特征量。
对于离散的时序数据,常用的有量纲幅域参数有:峰值、均值和均方根值【8,9】。
峰值: X max =max|x i | 2-2 均值: |X ̅|=1n ∑|x i |n i=1 2-3
均方根值: X rms =√1n ∑x i 2n i=1 2-4 均值和均方根值都是描述动态信号强度的指标。
幅值的平方具有能量的含义,因此均值表示了单位时间内的平均功率。
无量纲幅域参数为有:峰值指标、裕度指标和峭度指标。
峰值指标: C f =X max
X rms 2-5
裕度指标: CL f =
X max [1n ∑√|x i |n i=1]2 2-6 峭度指标: K v =1n ∑x i
4n i=1X rms 4 2-7
峰值指标表示信号的变化范围,是信号强度的一种描述。
裕度和峭度对信号的冲击较敏感,可以用作齿轮箱的故障诊断,如因齿轮裂纹、滚动轴承故障等在时域波形中就可能引起相当大的脉冲。
2.2.2 频域分析
工程上所测得的信号一般为时域信号,然而由于故障的发生、发展往往会引起信号频率结构的变化,为了通过所测信号来了解、观测对象的动态行为,往往需要频域信息。
将时域信号变换至频域加以分析的方法称为频域分析。
其目的就是把复杂的时间历程波形,经傅立叶变换分解为若干单一的谐波分量来研究,以获得信号的频率结构以及各谐波幅值和相位信息。
常用的频域分析包括频谱分析、细化谱分析和解调谱分析等【7】。
(1)频谱分析 频谱分析中常用的是自功率谱。
自功率谱的定义为:
将时域信号x(t)进行傅里叶变换的:
X (f )=∫x(t)e −j2πft dt +∞
−∞ 2-8
其自功率谱为:
S xx(f)=X∗(f)X(f)2-9 式中:X∗(f)是X(f)的共轭复数。
自功率谱亦可以从自相关函数进行傅里叶积分得到。
(2)细化谱分析细化分析技术是近年来由FFT方法发展起来的一项新技术,是一种用以增加频谱中某些有限部分上的分辨能力的方法,即“局部放大”的方法,可使某些感兴趣的重点频段得到较高的分辨率。
细化分析方法很多,比如Chirp.Z变换、Yip—Zoom变换及相位补偿Zoom—FFT等等【10】,而现在应用比较广的是复调制细化方法以及它的改进算法。
(3)解调谱分析在实际齿轮箱系统中,复杂的幅值调制与频率调制是同时存在的,频谱上出现不同程度的调制边带。
在工程实际中常用复包络分析方法及其改进算法来对齿轮箱的振动信号进行解调分析。
复包络分析方法是利用希尔伯特(Hilbert)变换对齿轮啮合振动信号解调而获得调幅和调相信号,然后求出调幅和调相信号的频谱图,再根据频谱确定齿轮箱故障【11】。
2.3本章小结
对齿轮箱进行故障诊断,就必须了解其基本组成、工作原理、引起齿轮箱振动的主要原因以及振动的性质。
本章首先对齿轮箱故障的主要失效形式进行了介绍,并对齿轮和轴承的故障类型进行了简单的介绍。
随后,简单描述了对齿轮箱的振动信号的处理分析方法,并列出了所需的参数,这将在随后的章节中使用到。