扫描电子显微镜与电子探针分析资料
- 格式:pptx
- 大小:4.58 MB
- 文档页数:40
_扫描电镜与电子探针分析扫描电镜(Scanning Electron Microscope,SEM)和电子探针分析(Energy Dispersive X-ray Spectroscopy,EDS)是现代材料科学和纳米技术领域中广泛应用的两种重要分析技术。
本文将分别介绍扫描电镜和电子探针分析的原理、仪器结构和应用。
一、扫描电镜(SEM)扫描电镜是一种基于电子束的显微镜,通过聚焦的电子束对样品表面进行扫描,获得高分辨率的图像。
相比传统光学显微镜,SEM具有更高的分辨率和更大的深度聚焦能力。
SEM的工作原理如下:1.电子源:SEM使用热阴极电子枪产生的高速电子束。
电子束由一根细丝产生,经过加热后电子从细丝上发射出来。
2.透镜系统:电子束经过电子透镜系统进行聚焦和调节。
透镜系统包括几个电磁透镜,用于控制电子束的聚焦和扫描。
3.样品台:样品台用于固定样品并扫描表面。
样品通常需要涂覆导电性材料,以便电子束可以通过样品表面。
4.探测器:SEM使用二次电子和背散射电子探测器来检测从样品表面散射的电子。
这些探测器可以转化为图像。
SEM可以提供高分辨率的表面形貌图像,并通过电子束的反射和散射来分析样品的成分、孔隙结构和晶体结构等。
其应用广泛,包括材料科学、纳米技术、电子器件等领域。
二、电子探针分析(EDS)电子探针分析是一种基于X射线的成分分析技术,常与扫描电镜一同使用。
EDS可以对样品的元素成分进行快速准确的定性和定量分析。
其工作原理如下:1.探测器:EDS使用一个固态半导体探测器来测量从样品发射的X射线。
当样品受到电子束轰击时,样品中的元素原子被激发并发射出特定能量的X射线。
2.能谱仪:EDS使用能谱仪来分析探测到的X射线,该仪器能够将X 射线能量转换成电压信号,并进行信号处理和分析。
3.能量分辨率:EDS的精度取决于能谱仪的能量分辨率,分辨器的能量分辨率越高,分析结果越准确。
4.谱库:EDS使用事先建立的元素谱库进行定性和定量分析。
电子探针显微分析电子探针显微分析(Electron Probe Microanalysis,简称EPMA)是一种用于材料分析的先进技术。
它结合了扫描电子显微镜(Scanning Electron Microscopy,简称SEM)和能谱仪,能够提供高分辨率的成分分析和元素分布图像。
电子探针显微分析的原理是利用电子束和样品之间的相互作用。
首先,电子束通过集束系统聚焦到样品表面,与样品发生相互作用。
这些相互作用包括:在样品表面产生的次级电子、背散射电子和散射电子。
次级电子是从样品表面弹出的电子,背散射电子是从样品内部产生的电子,散射电子是从相互作用点散射出的电子。
次级电子和背散射电子是电子显微镜的常规成像信号,这部分信号可以用来获得样品的表面形貌和显微结构。
而散射电子则包含了样品的化学信息,通过能谱仪可以对这些散射电子进行能谱分析,获得样品的元素组成。
电子探针显微分析既可以定性分析材料中的元素,也可以定量分析元素的含量。
电子探针显微分析在材料科学、地质学、环境科学等领域广泛应用。
它可以对金属、陶瓷、半导体、岩石等各种材料进行分析。
在材料科学研究中,电子探针显微分析可以用于分析材料中的微观缺陷、晶体结构和化学成分。
在地质学研究中,它可以用于分析岩石样品中的矿物成分和地球化学元素分布。
在环境科学研究中,它可以对大气颗粒物、水体中的溶解物等进行化学成分分析。
除了成分分析,电子探针显微分析还可以进行元素的显微分布分析。
通过调整电子束的扫描区域和扫描速度,可以获得样品中元素的分布图像。
这些图像可以用来研究材料的相分离、溶质迁移和化学反应等过程。
总之,电子探针显微分析是一种强大的材料分析工具。
它提供了高分辨率、高灵敏度的成分分析和元素分布图像,对于研究材料的结构和性质具有重要意义。
未来,随着技术的不断进步,电子探针显微分析将在更多领域展示其潜力和应用价值。
扫描电子显微镜知识A—Z/SEM的构造扫描电子显微镜(ScanningElectronMicroscope:SEM)是观察样品表面的装置。
用很细的电子束(称为电子探针)照射样品时,从样品表面会激发二次电子,在电子探针进行二维扫描时,通过检测二次电子形成一幅图像,就能够观察样品的表面形貌。
SEM的构造装置的结构SEM由形成电子探针的电子光学系统、装载样品用的样品台、检测二次电子的二次电子检测器、观察图像的显示系统及进行各种操作的操作系统等构成(图1),电子光学系统由用于形成电子探针的电子枪、聚光镜、物镜和控制电子探针进行扫描的扫描线圈等构成,电子光学系统(镜筒内部)以及样品周围的空间为真空状态。
图1SEM的基本结构图2电子枪的构造图电子枪电子枪是电子束的产生系统,图2是热发射电子枪的构造图。
将细(0.1mm左右)钨丝做成的灯丝(阴极)进行高温加热(2800K左右)后,会发射热电子,此时给相向设置的金属板(阳极)加以正高压(1〜30kV),热电子会汇集成电子束流向阳极,若在阳极中央开一个孔,电子束会通过这个孔流出,在阴极和阳极之间,设置电极并加以负电压,能够调整电子束的电流量,在这个电极(被称为韦氏极)的作用下,电子束被细聚焦,最细之处被称为交叉点(Crossover),成为实际的光源(电子源),其直径为15〜20u m。
以上说明的是最常用的热发射电子枪,此外还有场发射电子枪和肖特基发射电子枪等。
热发射电子枪的阴极除使用钨丝外,还使用单晶六硼化镧(LaB6),LaB6由于活性很强,所以需要在高真空中工作。
透镜的构造光轴j飙快电子显微镜一般采用利用磁铁作用的磁透镜。
当绕成线圈状的电线被通入直流电后,会产生旋转对称的磁场,对电子束来说起着透镜的作用。
由于制作强磁透镜(短焦距的透镜)需要增加磁力线的密度,如图3所示,线圈的周围套有铁壳(辗铁),磁力线从狭窄的开口中漏浅出来,开口处被称作磁极片(极靴),经精度极高的机械加工而成。
电子探针和扫描电镜常用的标准方法电子探针和扫描电镜涉及的标准方法及技术规范共有25个,有电子探针仪检定规程(JJG901-95)、扫描电子显微镜试行检定规程(JJG 550-88)、不同类型样品的定量分析方法、样品及标样的制备方法、微米长度的扫描电镜测量方法及X射线能谱成分定量分析方法等。
各单位计量认证分析检测的项目,必须有相应的标准检测方法。
要根据标准方法进行成分分析,要采用有效的国家标准。
没有国家标准的检测项目,可以采用行业标准或地方标准。
行业标准在相应的国家标准出台后自动作废,地方标准在相应的国家标准或行业标准出台后也自动作废。
企业标准及检测机构按用户要求制定的检测条件和试验方法,只能作参考数据。
当国家标准方法不能满足某些检测要求时,例如“方法通则”,可根据方法通则制定检测实施细则,经检验机构技术负责人批准后,可以实施。
检测报告中必须有检测依据,即检测的标准方法。
所以标准方法在认证过程中和检测过程中都是必须的。
现在电子探针和扫描电镜的标准方法,还不能满足所有样品测试的要求,特别是能谱分析方法,但基本都有通则,可根据通则制定实施细则,以满足一般检测工作的需要。
(1)GB/T 4930-93 电子探针分析标准样品通用技术条件(代替GB4930-85)(2)GB/T 15074-94 电子探针定量分析方法通则(3)GB/T 15075-94 电子探针分析仪的检测方法(4)GB/T 15244-94 玻璃的电子探针分析方法(5)GB/T 15245-94 稀土氧化物的电子探针定量分析方法(6)GB/T 15246-94 硫化物矿物的电子探针定量分析方法(7)GB/T 15247-94 碳钢和低合金钢中碳的电子探针定量分析方法(8)GB/T 14593-93 山羊绒、绵羊毛及其混合纤维定量分析方法(9)GB/T 15617-95 硅酸盐矿物的电子探针定量分析方法(10)GB/T 15616-95 金属及合金电子探针定量分析方法1(11)GB/T 16594-94 微米级长度的扫描电镜测量方法(12)GB/T 17359-98 电子探针和扫描电镜X射线能谱定量分析通则 (13)GB/T 17360-98 钢中低含量Si、Mn的电子探针定量分析方法(14)GB/T 17361-98 沉积岩中自生粘土矿物扫描电子显微镜及X射线能谱鉴定方法(15)GB/T17632-98 黄金饰品的扫描电镜X射线能谱分析方法(16)GB/T17363-98 黄金制品的电子探针定量测定方法(17)GB/T17364-98 黄金制品中金含量的无损定量分析方法(18)GB/T17365-98 金属与合金电子探针定量分析样品的制备方法(19)GB/T17366-98 矿物岩石的电子探针分析试样的制备方法(20)GB/T17506-98 船舶黑色金属腐蚀层的电子探针分析方法(21)GB/T17507-98 电子显微镜-X射线能谱分析生物薄标样通用技术条件 (22)GB/T17722-99 金覆盖层厚度的扫描电镜测量方法(23)GB/T17723-99 黄金制品镀层成分的X射线能谱测量方法 此外,还有以下一些其他标准可作参考,如:(24) 分析型扫描电子显微镜检定规程(JJG 011-1996)(25) 纳米级长度的扫描电镜测量方法(国家标准讨论稿)(26) 微束分析-扫描电镜-图像放大倍率校准导则(陈振宇编译)2。
第八章 电子探针、扫描电镜显微分析中国科学院上海硅酸盐所李香庭1 概论1.1 概述电子探针是电子探针X射线显微分析仪的简称,英文缩写为EPMA(Electron probe X-ray microanalyser),扫描电子显微境英文缩写为SEM(Scanning Electron Microscope)。
这两种仪器是分别发展起来的,但现在的EPMA都具有SEM的图像观察、分析功能,SEM也具有EPMA的成分分析功能,这两种仪器的基本构造、分析原理及功能日趋相同。
特别是现代能谱仪,英文缩写为EDS(Energy Dispersive Spectrometer)与SEM组合,不但可以进行较准确的成分分析,而且一般都具有很强的图像分析和图像处理功能。
由于EDS分析速度快等特点,现在EPMA通常也与EDS组合。
虽然EDS的定量分析准确度和检测极限都不如EPMA的波谱仪(Wavelength Dispersive Spectrometer ,缩写为WDS)高,但完全可以满足一般样品的成分分析要求。
由于EPMA与SEM设计的初衷不同,所以二者还有一定差别,例如SEM以观察样品形貌特征为主,电子光学系统的设计注重图像质量,图像的分辨率高、景深大。
现在钨灯丝SEM的二次电子像分辨率可达3nm,场发射SEM二次电子像分辨率可达1nm。
由于SEM一般不安装WDS,所以真空腔体小,腔体可以保持较高真空度;另外,图像观察所使用的电子束电流小,电子光路及光阑等不易污染,使图像质量较长时间保持良好的状态。
EPMA一般以成分分析为主,必须有WDS进行元素成分分析,真空腔体大,成分分析时电子束电流大,所以电子光路、光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑,通常EPMA二次电子像分辨率为6nm。
EPMA附有光学显微镜,用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗兰园)上,以保证成分定量分析的准确度。
EPMA和SEM都是用聚焦得很细的电子束照射被检测的样品表面,用X射线能谱仪或波谱仪,测量电子与样品相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析,并可以用二次电子或背散射电子等进行形貌观察。
电子探针实验报告电子探针实验报告引言:电子探针是一种用于研究物质微观结构和性质的重要工具,它通过探测物质中的电子行为来获取有关其性质和组成的信息。
本实验旨在探究电子探针的原理、应用以及实验方法,并通过实际操作来验证其有效性。
一、电子探针的原理电子探针利用电子的波粒二象性以及其与物质的相互作用来获取信息。
其原理主要包括以下几个方面:1. 粒子性:电子作为一种粒子,具有质量和电荷,可以通过加速器获得足够的能量,进而穿透物质表面,与物质内部相互作用。
2. 波动性:电子也具有波动性,其波长与其动能有关。
通过测量电子的波长,可以推断出物质的晶格结构和间距。
3. 散射:电子与物质相互作用时,会发生散射现象。
通过测量散射角度和强度,可以了解物质的成分和结构。
二、电子探针的应用电子探针在材料科学、纳米技术、生物医学等领域具有广泛的应用。
以下是几个常见的应用案例:1. 材料分析:电子探针可以用于分析材料的成分和结构,如金属合金的成分分析、纳米材料的晶格结构分析等。
2. 表面形貌观察:电子探针可以用于观察物质表面的形貌,如纳米材料的形貌观察、生物细胞的表面形态观察等。
3. 薄膜测量:电子探针可以用于测量薄膜的厚度和成分,如薄膜的厚度测量、薄膜中元素分布的分析等。
三、电子探针实验方法本实验使用的电子探针为扫描电子显微镜(SEM),其操作方法如下:1. 样品制备:将待测样品制备成均匀的薄片或粉末,并固定在样品台上。
2. 调节参数:根据样品的性质和实验需求,调节加速电压、束流亮度等参数。
3. 扫描观察:将样品台放入SEM仪器中,通过控制电子束的扫描和探测系统,观察样品表面的形貌和特征。
4. 数据分析:根据SEM的观察结果,进行数据处理和分析,如测量样品尺寸、分析元素分布等。
四、实验结果与讨论本实验选择了一块金属合金样品进行观察和分析。
通过SEM观察,我们发现样品表面存在颗粒状的晶体结构,并且晶体之间存在一定的间隙。
通过测量晶体的尺寸和间距,我们可以推断出该金属合金的晶格结构和成分。
材料电子显微分析技术及应用X摘要:本文简单介绍了透射电子显微镜、扫描电子显微镜及电子探针分析技术的相关原理及应用。
其中包括电子衍射分技术、薄晶体衍射分析技术、二次电子成像、背散射电子成像以及电子探针的定性分析。
关键词:电镜,分析,原理,应用一透射电镜分析方法早在1927年,戴维逊(C. J. Davisson)等人就成功地进行了电子衍射实验,并从而证实了电子的波动性。
随着电子光学技术等的发展,几十年来,电子衍射已发展成为研究、分析材料结构的重要方法。
电子衍射分析方法立足于电子的波动性。
入射电子被样品中各个原子弹性散射,被各原子弹性散射的电子(束) 相互干涉,在某些方向上一致加强,即形成了样品的电子衍射波(束)。
依据入射电子的能量不同电子衍射可分为:高能电子衍射(HEED)和低能电子衍射(LEED);依据电子束是否穿透样品可分为:透射式电子衍射和反射式电子衍射;反射式与高能量结合为:反射式高能电子衍射(RHEED)。
1.高能电子衍射高能电子衍射的入射电子能量10~200keV ,电子衍射方向和晶体样品中产生衍射晶面的晶面间距及电子入射波长的关系即电子衍射,产生的必要条件也由布拉格方程描述。
高能电子衍射主要适用于薄层样品的或者薄膜的分析。
其主要应用在以下几个方面:1、微区晶体结构分析和物象鉴定,如第二相在晶体中析出过程分析、晶界沉淀物分析、弥散离子物象鉴定等;2、晶体取向分析,如析出物与晶体取向关系、惯习面指数等;3、晶体缺陷分析。
2.低能电子衍射低能电子衍射以能量为10~500eV的电子束照射样品表面,产生电子衍射。
由于入射电子能量低,因而低能电子衍射给出的是样品表面1~5个电子层的结构信息,故低能电子衍射是分析晶体表面结构的重要方法。
低能电子衍射是分析晶体表面结构的重要方法,电子束一般以10~500eV的能量入射。
其主要应用在以下几方面:(1)利用低能电子衍射花样分析确定晶体表面及吸附层二维点阵单元网格的形状与大小;(2)利用低能电子衍射谱及有关衍射强度理论分析确定表面原子位置(单元网格内原子位置、吸附原子相对于基底原子位置等)及表面深度方向(两三个原子层)原子三维排列情况(层间距、层间原子相对位置、吸附是否导致表面重构等);(3)利用衍射斑点的形状特征及相关的运动学理论等分析表面结构缺陷(点缺陷、台阶表面、镶嵌结构、应变结构、规则与不规则的畴界和反畴界)。
扫描电⼦显微镜(SEM)和电⼦探针显微分析装置(EPMA)扫描电⼦显微镜和电⼦探针显微分析仪基本原理相同,但很多⼈分不清其差异,实际上需要使⽤电⼦探针领域⽐较少,⽽扫描电镜相对普遍。
扫描电⼦显微镜(SEM),主要⽤于固体物质表⾯电⼦显微⾼分辨成像,接配电⼦显微分析附件,可做相应的特征信号分析。
最常⽤的分析信号是聚焦电⼦束和样品相互作⽤区发射出的元素特征X-射线,可⽤EDS(X-射线能谱仪)或者WDS(X-射线波谱仪)进⾏探测分析,获得微区(作⽤区)元素成分信息,⽽WDS这个电⼦显微分析附件却来源于EPMA。
另外⼀个重要信号是背散射电⼦(Bse),其中⾼能Bse还可作为晶体衍射信号,使⽤EBSD装置获取微区晶体结构取向信息,EBSD⾃1990年代发展以来,近20年应⽤发展迅速。
扫描电镜及扫描电⼦显微分析附件(EDS、WDS、EBSD)SEM作为⼀个电⼦显微分析平台,分析附件可根据⽤户需要来选配,有需要这个的,有需要那个的,因此扫描电镜结构种类具有多样性,从tiny、small、little style,to middle、large、huge style.就EDS或WDS分析技术来讲,在SEM上使⽤,基本上使⽤⽆标样分析,获得电⼦束样品作⽤区内相对粗糙的半定量结果,因此SEM配置EDS⾮常普遍,⽽配置WDS⽐较少,其中EDS可以探测到微量元素的存在,WDS可以获得痕量元素的存在。
商品化EPMA产⽣于1955年左右,⽐SEM商品化提前10年,其主要⽬的是要精确获得微⽶尺度晶粒或颗粒的成分信息,利⽤电⼦束样品作⽤区发射的特征X射线,使⽤探测分析⼿段是WDS,⼀般配置4道WDS,中⼼对称布置在电⼦束周围,基于此标配,EPMA结构⽐较单⼀,各品牌型号结构差距不⼤。
电⼦探针显微分析装置EPMA结构原理电⼦探针显微分析系统EPMAEMPA主要追求微区化学定量结果精准,因此电⼦光学分辨率设计相对宽松,电⼦显微分析对汇聚束束电流要求较⼤,束斑较粗。
4.3 扫描电镜 4.3.1 扫描电镜的特点和工作原理 自从1965年第一台商用扫描电镜问世后,它得到了迅速发展。
其原因在于扫描电镜弥补了透射电镜的缺点,是一种比较理想的表面分析工具。
透射电镜目前达到的性能虽然很高,如分辨本领优于0.2~0.3nm,放大倍数几十万倍,除放大成像外还能进行结构分析等,但其有一个最大的缺点就是对样品要求很高,制备起来非常麻烦。
而且,样品被支撑它的铜网蔽住一部分,不能进行样品欲测区域的连续观察。
扫描电镜则不然,它可直接观察大块试样,样品制备非常方便。
加之扫描电镜的景深大、放大倍数连续调节范围大,分辨本领比较高等特点,所以它成为固体材料样品表面分析的有效工具,尤其适合于观察比较粗糙的表面如材料断口和显微组织三维形态。
扫描电镜不仅能做表面形貌分析,而且能配置各种附件,做表面成分分析及表层晶体学位向分析等。
扫描电镜的成像原理,和透射电镜大不相同,它不用什么透镜来进行放大成像,而是象闭路电视系统那样,逐点逐行扫描成像。
图4.55 扫描电镜工作原理图4.55是扫描电镜工作原理示意图。
由三极电子枪发射出来的电子束,在加速电压作用下,经过2~3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。
这些物理信号的强度随样品表面特征而变。
它们分别被相应的收集器接受,经放大器按顺序、成比例地放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。
由于供给电子光学系统使电子束偏向的扫描线圈的电源也就是供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。
因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。
这样,在长余辉荧光屏上就形成一幅与样品表面特征相对应的画面——某种信息图,如二次电子像、背散射电子像等。
画面上亮度的疏密程度表示该信息的强弱分布。