电力线载波通信系统(C
- 格式:pdf
- 大小:246.72 KB
- 文档页数:2
电力系统中的电力线载波通信技术引言电力通信被普遍应用在电力系统中,其主要目的是实现电力信息传输、监测和控制。
而电力线载波通信技术作为其中一种重要的通信手段,具有广泛的应用前景。
本文将探讨电力线载波通信技术在电力系统中的原理、应用和发展趋势,为读者提供更深入的了解。
一、电力线载波通信技术的原理电力线载波通信技术利用电力线作为传输介质,通过将高频信号耦合到输电线路上,实现信息传输的目的。
其原理基于电力线的双重工作特性,即输电和通信,并通过频分复用技术使其同时进行。
首先,信号的耦合。
在电力线输电过程中,由于电力系统的特性,存在着一定的电压和电流波动。
电力线载波通信技术利用这种波动作为信号传输的载体,通过改变电流和电压的幅度和频率来传递信息。
这种耦合不仅能提高信息传输的可靠性,还能减少系统对外部环境的干扰。
其次,频分复用技术。
电力线系统中,除了电力信号外,还有其他频率的干扰信号存在。
为了有效地区分不同信号,电力线载波通信技术引入了频分复用技术。
通过将不同频段的信号分配给不同的用户或功能,实现数据的同时传输和分离。
二、电力线载波通信技术的应用1. 电力数据传输电力线载波通信技术在电力系统中最常见的应用就是实现电力数据的传输。
通过将监测仪器、数据采集设备等连接到电力线上,可以将实时电力数据传输到中央控制中心,实现对电力系统的远程监测和管理。
这种应用不仅提高了电力系统的运行效率,还能预防和处理电力故障。
2. 智能电网随着电力系统的现代化发展,智能电网的建设成为当今的热点。
电力线载波通信技术在智能电网中起到了重要的作用。
通过将智能设备与电力线相连,可以实现对电力负荷、电能质量和安全等参数的实时监测和管理。
并且通过数据的传输和处理,可以实现电力系统的智能化运营和优化调度。
3. 家庭电力信息管理电力线载波通信技术还可以应用于家庭电力信息管理。
通过在家庭电力表中集成通信模块,可以实现对电力用量、功率因数等信息的实时监测和统计。
电力线载波的原理和应用1. 电力线载波概述电力线载波(Power Line Carrier,简称PLC)是一种基于电力线传输的通信技术,通过将高频信号叠加在电力线上,实现数据传输和通信的目的。
电力线载波技术广泛应用于电力系统的监测、控制和通信网络中,具有传输速度快、成本低、扩展性好等优势。
2. 电力线载波原理电力线载波技术的实质是利用电力线路本身具有传输高频信号的特性进行通信。
具体原理如下:•电力线是一种具有较好导电性能的传输介质,可以传输高频信号。
电力线上的两根导线构成了传输信号的载体。
•电力线上的载波信号通过耦合器、滤波器等设备与电力线相连接。
通过调制器对原始数据进行调制,将调制后的信号通过功率放大器放大后,叠加到电力线上。
•在电力线上传输的信号受到电力线传输特性的影响,会出现噪声、衰减等问题。
因此,需要使用解调器和滤波器对接收到的信号进行解调和滤波,还原出原始数据。
3. 电力线载波应用领域3.1 电力系统监测与控制•电力线载波技术可以实现对电网的监测和控制。
通过将监测设备与电力线相连,将监测到的数据通过电力线传输给控制中心。
控制中心可根据数据分析电力系统的运行情况,实现对电力系统的远程监测和控制。
•电力线载波技术可以实现对电力设备的状态监测和故障诊断。
通过在电力设备上布置传感器,获取设备的工作状态信息。
将传感器采集到的数据通过电力线传输,供监测和诊断系统进行分析,及时发现设备故障并采取相应措施。
3.2 室内电力线通信•电力线载波技术可以提供家庭或办公室内的宽带通信服务。
通过将电力线与电力线载波通信模块相连,家庭用户可以通过插座就能够使用宽带网络,无需布线和接入设备。
•室内电力线通信还可以支持电力线智能家居系统的搭建。
通过将智能家居设备与电力线相连,实现智能家居设备之间的通信和互联,实现智能家居系统的远程控制和管理。
3.3 智能电网传输•电力线载波技术在智能电网中有广泛应用。
通过在配电线路、变电站和智能电表中布置载波模块,实现对电力系统的监测、控制和数据传输。
电力线通信设备美国FCC标准要求解读文/陈昱 马文生 侯涛[摘要] 美国联邦通信委员会(FCC)标准中对于电力线通信设备也有相关的要求。
对比欧盟标准,其在产品定级划分、测试参数指标设定上又存在着差异性。
在测试方法的设计和操作上,更是引入了安装场地的测试方式对电力线通信设备进行真实工作状况的模拟。
笔者对该标准涉及PLC产品的测试项目及测试方法进行介绍,也对更真实还原实际工作状态的测试手段及方法进行了探索。
[关键词] 电力线载波通信 FCC 电磁兼容一、FCC 认证依据概述1. 涉及标准及文档电力线通信设备在美国F C C标准以及相应的文档内,将之称为BPL(Broadband over PowerLine)设备,使用电力线通信的系统也称为Carrier Current System。
BPL设备已在2006年7月被纳入到美国认证管理的监管范围内。
针对这一类产品的认证,需要参考FCC PART 15标准的多个章节以及其他的相关文档,见表1。
2. 类别界定在FCC 11-160的文档中,对BPL产品进行了两种分类。
A类(Access BPL):除了BPL 设备外,还需要包含有相应的耦合器、信号注入器、信号提取器、扩展器、增压器等设备组成。
B类(In-House BPL):指室内使用的电力线通信设备,如一般的家用产品。
本文的测试介绍主要是针对In-House BPL设备进行讲解。
二、限值要求FCC的电磁兼容(EMC)测试要求,一般只需要测试产品的电磁干扰(EMI)特性(测试辐射和电源传导)。
针对In-House BPL设备,PLC产品分别要以电脑周边(personalcomputer peripheral)的标准以及载波电流系统(Carrier currentsystem)的标准进行测试。
以下的章节分别对辐射和电源传导测试在这两个状态下的限值进行说明。
1. 电源传导电源传导测试,使用一个50μH/50ohm的线性阻抗稳定网络(LISN)来进行测试,分别测量L线和N线对地的共模信号。
摘要电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。
电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。
本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。
以及我们对噪声的滤波耦合等。
并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。
课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。
文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。
实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。
PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。
这样一个系统阶完成了接收与发送信号,形成了一个通信系统。
关键字:电力线载波通信系统SSC1641 调制解调1、绪论1.1设计任务及要求电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。
根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。
系统至少具备以下特性:1)开关量输入和输出各5路; 2)系统24V供电;3)具有通信状态指示功能; 4)有232、485或USB有线通信接口;5)断电继续工作能力; 6)其他自己发挥的功能。
电力线载波通信的原理电力线载波通信是一种在电力配电线路上通过载波通信技术进行信号传输的通信方式。
它利用了电力线路的导线和设备构成的传输媒介,通过将通信信号叠加到电力信号中进行传输,实现信息在电力线上的传输和接收。
电力线载波通信的基本原理是将需要传输的通信信号通过特定的调制技术调制到一定频率范围内的载波信号中,然后将这个载波信号通过耦合装置耦合到电力线上,利用电力线本身的导电性质将载波信号传输到接收端。
接收端通过相应的解调技术将接收到的载波信号解调还原为原始的通信信号。
电力线载波通信主要包括三个基本要素:调制、耦合和解调。
调制是将需要传输的通信信号调制到载波信号上的过程。
该过程中,通信信号被转换成适合传输的频率范围内的调制信号。
调制技术包括幅度调制(AM)、频率调制(FM)和相位调制(PM)等。
耦合是将调制后的载波信号耦合到电力线上的过程。
这一过程需要借助耦合装置将载波信号注入到电力线中。
一般来说,耦合装置可以分为无源耦合装置和有源耦合装置。
无源耦合装置主要有串联电容、并联电容和电力线电容耦合器等,有源耦合装置则利用调制器与信号源直接相连。
通过耦合装置的作用,载波信号可以与电力信号共同传输。
解调是将接收到的载波信号恢复为原始的通信信号的过程。
在接收端利用解调技术,将接收到的载波信号进行解调,去除载波信号中的调制信息,恢复出原始的通信信号。
在电力线载波通信中,为了保证通信信号的传输效果,需要充分考虑实际环境的影响。
一方面,电力线可能存在各种噪声干扰,如电力设备的开关噪声、电力谐振噪声等。
为了抑制这些噪声的影响,可能需要采用滤波和降噪等技术。
另一方面,电力线的传输特性也会对通信信号的传输造成一定的影响,比如信号衰减和传播延迟等。
因此,需要在设计中充分考虑电力线特性,并采用合适的调制和解调技术来提高通信信号的传输质量。
电力线载波通信具有一定的优势和应用前景。
首先,电力线网覆盖广泛,可以方便地实现信息的传输。
电力线载波通信原理电力线载波通信是一种利用电力线作为传输介质进行通信的技术,它可以在不需要额外布线的情况下,实现数据传输和通信功能。
在现代智能电网建设中,电力线载波通信技术被广泛应用,为电力系统的监测、控制和通信提供了便利。
本文将介绍电力线载波通信的原理及其应用。
电力线载波通信利用电力线作为传输介质,通过在电力线上叠加高频载波信号来进行通信。
其原理是利用电力线本身的传输特性,将高频信号叠加在电力线上,通过电力线传输到各个终端,再经过解调器解调出原始信号。
这样就实现了在不需要额外布线的情况下,进行数据传输和通信的功能。
电力线载波通信的原理主要包括三个部分,调制、传输和解调。
首先是调制,即将要传输的信号转换成适合在电力线上传输的高频载波信号。
然后是传输,将调制后的高频载波信号叠加在电力线上进行传输。
最后是解调,即在接收端通过解调器将传输过来的高频载波信号解调出原始信号。
通过这三个步骤,就实现了在电力线上传输数据和进行通信的功能。
电力线载波通信技术在电力系统中有着广泛的应用。
首先,在智能电网建设中,电力线载波通信可以实现电力系统的远程监测和控制,提高了电力系统的自动化水平。
其次,在电力线通信网中,可以实现各种类型的数据传输,包括语音、图像、视频等多媒体数据的传输。
此外,在家庭电力网络中,也可以利用电力线进行局域网的组网,实现家庭网络的覆盖。
总的来说,电力线载波通信技术是一种利用电力线作为传输介质进行通信的技术,它利用电力线本身的传输特性,实现了在不需要额外布线的情况下进行数据传输和通信的功能。
在智能电网建设、电力系统监测控制、多媒体数据传输等方面有着广泛的应用。
随着技术的不断发展,电力线载波通信技术将会在电力系统中发挥越来越重要的作用。
电力载波转can
电力载波转CAN是一种通信方式,它利用电力线作为传输介质,将信息从一种通信协议(如电力载波)转换为另一种通信协议(如CAN总线协议)。
在电力载波通信中,信息是以高频信号的形式加载到电力线上进行传输的。
在接收端,通过专用的电力线调制解调器(PLC Modem)将高频信号从电力线上分离出来,并还原为原始信息。
然后,这些信息需要通过一定的转换方式,将其转换为CAN总线协议可以识别的信号,以便在CAN总线网络中进行传输。
电力载波转CAN的实现方式可能因具体的应用场景和设备而有所不同。
一种常见的方式是通过专门的转换设备或模块,将电力载波信号转换为CAN总线信号。
这些设备或模块通常具有电力载波接收和CAN总线发送的功能,可以将接收到的电力载波信号转换为CAN总线信号,并将其发送到CAN总线网络中。
电力载波转CAN的应用场景通常包括电力系统自动化、智能家居、工业自动化等领域。
例如,在电力系统自动化中,电力载波通信可以用于远程抄表和电能质量检测等应用,而CAN总线则可以用于电力系统中的各种设备和传感器之间的通信。
通过将电力载波信号转换为CAN总线信号,可以实现不同通信协议之间的互联互通,提高通信的可靠性和效率。
需要注意的是,电力载波通信和CAN总线通信具有不同的
特点和应用场景,因此在选择通信方式时需要根据具体的需求和场景进行综合考虑。
同时,在实际应用中,还需要考虑通信的可靠性、安全性、实时性等因素,以确保通信的质量和稳定性。
1.电力线载波电力载波通讯即PLC,是英文Power line Communication的简称。
电力载波是电力系统特有的通信方式,电力载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。
最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。
目前常见的且有国际标准/联盟支持的电力线载波通讯协议有2种-Prime or G3,这里先介绍Prime,G3另外开贴再表。
2. Prime 网络结构Prime的网络结构大体如下3. 物理层Prime协议没有免俗,使用了时下最流行的OFDM(正交频分复用)技术。
像G3 PLC或者更为大众所熟知的LTE,也都使用了OFDM这项技术。
关于OFDM的具体细则这里就不做展开了。
Prime PLC工作在42-89 kHz Band A or 100-500 kHz FCC(Prime 1.4新加入)以下以Band A为例子:物理层的OFDM调制工作在41.992kHz~88.867kHz,在这个频段上共有97个子载波(等距子载波)子载波的间隔Δf=0.488kHz(488.28125Hz)。
一个Prime OFDM symbol时间为1/Δf+192μs (循环前缀)=2240μs4. MAC层4.1 MAC FrameMAC Frame是Prime网络的立身之本,决定了各节点对Prime网络的使用MAC Frame的定义是–Time is divided into composite units of abstraction for channel usage。
MAC Frame在1.36和1.4中的定义分别如下4.1.1 CFPCFP-Contention Free Part: 在CFP period内只有被授权的节点才能使用网络关于CFP的时间1.36中CFP并不是一定需要的,可以为0,在1.4中CFP时间至少为(MACBeaconLength1 + 2 x macGuardTime)一般情况下CFP时间是通过CFP MAC control packet获得的,在1.4中CFP这种特权会在中继节点转发Beacon-Slot时获得。
电力载波通信原理_电力载波通信的优缺点电力线载波通信简介电力线载波通信(powerlinecarriercommunication)以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
载波通信方式(1)电力线载波通信。
这种通信具有高度的可靠性和经济性,且于调度管理的分布基本一致。
但这种方式受可用频谱的限制,并且抗干扰性能稍差。
(2)绝缘架空地线载波通信。
这种通信设备简单、造价低,可扩展电力线载波通信频谱,送电线路检修接地期间可以不中断通信,受系统短路接地故障影响较小,易实现长距离通信。
其缺点是易发生瞬时中断。
电力载波通信的优点只需要两端加上阻波器等少量设备即可实现通讯、远传等功能,投资小!电力线载波通信的缺点1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送;2、三相电力线间有很大信号损失(10dB-30dB)。
通讯距离很近时,不同相间可能会收到信号。
一般电力载波信号只能在单相电力线上传输;3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。
线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用;4、电力线存在本身因有的脉冲干扰。
目前使用的交流电有50HZ和60HZ,则周期为20ms 和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。
有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交。
电力线载波通信系统(C题)
【大二、大三组】
一、背景
电力线载波(Power Line Carrier,PLC)通信是利用电力线作为信息传输媒介,并通过载波方式将模拟或数字信号进行高速传输的一种特殊通信方式。
自20世纪20年代推出以来,PLC已经有效地应用于电力系统,它具有通信可靠性高,抗破坏能力强,投资少,不需要架设专门线路等优点。
随着物联网的兴起,电力线载波又和智能家居联系起来成为一个热点。
要求设计一个简易的电力线载波通信系统,以实现数字信号的发送与接收,系统如下图。
二、基本要求
(1)设计完成电力线载波发射模块,要求实现数字信号FSK调制并将调制信号耦合到电力线上。
预留出调制后信号测试端,要求能明显看出FSK调制信号(0和1对应频率不同)。
(2)设计完成电力线载波接收模块,要求实现对(1)中电力线上调制信号的接收。
预留解调信号测试端,能观察到从电力线上接收到的FSK信号。
(3)利用矩阵键盘对数字0-9编码,数字编码信号经过FSK调制后发射,接收模块接收数字信号完成解调,并在液晶上显示键盘被按下的数字。
三、发挥部分
(1)在发射模块上添加温度传感器,采集温度信息并调制发射。
接收端液晶显示接收并解调后的温度信息。
(2)设计一个100以内简易计算器(包含+-*),在发射端的键盘上输入数据,数据经电力线传输,在接收端液晶上显示计算结果。
(3)其它。
四、说明
(1)要求用分立元件搭建系统,不能使用电力载波集成芯片。
(2)为了安全起见,电力线采用变压器次级的正负12V的50Hz交流信号。
(3)建议采用4*4矩阵键盘。
五、评分标准。