电力线载波通信
- 格式:doc
- 大小:173.00 KB
- 文档页数:13
电力线路载波通讯随着社会的进步和科技的发展,电力供应已经成为人们生活中不可或缺的部分。
为了提高电力系统的安全性和可靠性,电力线路的通讯系统也逐渐发展起来。
其中,电力线路载波通讯技术因其高效、可靠的特点而备受关注。
本文将从电力线路载波通讯的基本原理、应用领域以及未来发展趋势等方面进行探讨。
一、基本原理电力线路载波通讯是一种将电力线路作为传输介质的通信方式,利用电力线路本身的特性进行数据传输。
其基本原理是利用频率高于电力系统运行频率的载波信号,通过调制、解调等技术手段,在电力线路中传输通信信号。
通过在电力线路上布设载波通信设备,可以实现在电力线路上双向传输数据。
在电力线路载波通讯中,主要采用的载波信号频段有低频载波和高频载波两种。
低频载波一般选择在2kHz到150kHz的频段,适用于远程距离传输;高频载波则选择在5MHz到150MHz的频段,适用于局域网和近距离传输。
通过合理的选择载波信号频段,可以满足不同距离、不同应用场景下的通讯需求。
二、应用领域电力线路载波通讯广泛应用于电力系统中的各个环节,为电力系统的运行提供了重要的支持。
1.远程监控和控制电力线路载波通讯可实现对电力设备的远程监控和控制。
通过在电力线路上部署载波通信终端设备,可以对电力系统中的关键设备进行实时监测,并实现对其进行远程控制。
这种方式不仅提高了电力系统的运行效率,还减少了维护人员的工作量。
2.电力信息采集电力线路载波通讯广泛应用于电力信息采集系统中。
通过在电力线路上安装载波通信设备,可以实现对电量、功率因数等关键数据的采集。
这些数据可以帮助电力公司实时监测电力负荷,满足用户不同需求,并进行合理的电网调度。
3.智能电网随着智能电网的发展,电力线路载波通讯也越来越重要。
通过在电力线路上布设载波通信设备,可以实现对电力系统中各个环节的智能化管理。
智能电表、智能变电站等智能设备的使用,大大提高了电力系统的安全性和稳定性。
三、未来发展趋势电力线路载波通讯技术在未来还有很大的发展空间。
电力线载波通信技术在电力系统中的应用现状引言:电力线载波通信技术是一种基于电力线路的通信方式,通过利用电力线路传输数据和信息,为电力系统的监控、控制、通信等提供了一种有效的途径。
电力线载波通信技术不仅可以降低通信成本,提高通信效率,还能够实现对电力系统的远程监控和智能化控制。
本文将探讨电力线载波通信技术在电力系统中的应用现状。
一、电力线载波通信技术的原理电力线载波通信技术是利用电力线路作为传输介质,通过在电力线上叠加或注入高频(20kHz-500kHz)的载波信号来实现通信的一种技术。
其原理是将数据和信息转换为模拟载波信号,通过电力线路传输到目标位置,再解调得到原始数据和信息。
电力线载波通信技术可以在不干扰电力供电的同时,实现电力系统内部各个终端之间的通信。
二、电力线载波通信技术在电力系统监控中的应用1. 数据采集与监测:电力线载波通信技术可以实时采集和传输电力系统中各种数据,如电压、电流、功率、频率等,为电力系统的监测和分析提供有力支持。
通过电力线载波通信技术,可以实现对配电变压器、电能表等设备的远程监控,大大提高了电力系统监测的效率和准确性。
2. 故障检测与定位:电力线载波通信技术能够实时监测电力系统中的故障和异常,如短路、过载等,并通过传输的载波信号进行定位。
利用电力线载波通信技术,可以准确判断故障位置,快速采取必要的措施,提高电力系统的可靠性和安全性。
3. 负荷控制与管理:电力线载波通信技术可以对电力系统中的负荷进行控制和管理。
通过传输载波信号,可以实现分布式电力控制,对负荷进行精确控制,提高电力系统的供电质量和效率。
此外,基于电力线载波通信技术,还可以实现对电力负荷进行智能调度和优化,提高电力系统的能源利用率。
三、电力线载波通信技术在电力系统通信中的应用1. 电力系统间通信:电力线载波通信技术可以实现不同电力系统之间的通信。
例如,通过在输电线路上注入载波信号,可以实现电力系统之间的远程通信。
电力载波原理电力载波通信是指利用电力线作为传输介质,通过在电力线上叠加高频载波信号来进行通信的一种技术。
它主要应用于电力系统的远程监控、通信和自动化控制等领域。
电力载波通信具有传输距离远、成本低、布线方便等优点,因此在电力系统中得到了广泛的应用。
电力载波通信的原理是利用电力线作为传输介质,通过在电力线上叠加高频载波信号来进行通信。
在电力系统中,电力线本身就是一根导线,可以传输电能,而且已经普遍铺设在城乡各个角落。
因此,利用电力线进行载波通信可以充分利用现有的电力线资源,不需要单独铺设通信线路,降低了通信系统的建设成本。
电力载波通信的原理主要包括三个方面,载波信号的叠加、信号的调制解调和信号的传输。
首先,通过载波发射设备将高频载波信号叠加到电力线上,这些载波信号可以携带各种信息,如语音、数据、图像等。
然后,接收端的载波接收设备对叠加在电力线上的信号进行解调,提取出所需的信息。
最后,经过解调后的信号再经过滤波、放大等处理后,送达用户终端设备,完成整个通信过程。
在电力载波通信中,载波信号的叠加是关键的一步。
通过载波发射设备对要传输的信号进行调制,将其叠加到电力线上的载波信号上。
这样,就可以利用电力线作为传输介质,将信号传输到远处的接收端。
在接收端,载波接收设备对叠加在电力线上的信号进行解调,提取出原始的信号。
这样就实现了信号的传输,完成了通信的过程。
电力载波通信的原理虽然简单,但是在实际应用中也面临着一些挑战。
首先,由于电力线本身就是一根导线,会受到各种干扰,如电力负载的变化、电磁干扰等,这些都会影响载波信号的传输质量。
其次,电力线的传输特性也会对载波信号的传输产生影响,如衰减、延迟等。
因此,在实际应用中需要对信号进行衰减补偿、抗干扰处理等,以保证通信的可靠性和稳定性。
总的来说,电力载波通信作为一种利用电力线进行通信的技术,具有成本低、传输距离远、布线方便等优点,因此在电力系统中得到了广泛的应用。
通过对电力载波通信的原理进行深入的研究和理解,可以更好地应用和推广这项技术,为电力系统的远程监控、通信和自动化控制等领域提供更好的服务。
电力线载波通信技术的研究与应用电力线载波通信技术是指在电力线路上通过载波信号进行数据通信的一种技术。
该技术具有成本低、建设方便、传输距离远、覆盖面广等优点,在现代化电网建设中得到了广泛的应用。
本文将从电力线载波通信技术的基本原理、应用现状和研究进展等方面进行探讨。
一、基本原理电力线载波通信技术的基本原理是在电力线路上通过载波信号传输数据。
电力线路本身就是一根导线,其所搭载的电能具有高能量、低频率、低速度等特点,因此可以通过将调制后的高频载波信号“嫁接”到电力线路上,利用电力线路本身的传输特性实现数据的传输。
载波信号通常是在电网某个区域内发射,通过电缆线路、变电所、配电网等设备进行传输,最终达到目的地。
电力线路上的载波信号传输主要有两种方式:频率分割多路复用和时分多路复用。
前者是将不同频段的信号进行分割,分别对应不同的数据通道,实现数据的同时传输;后者是将不同信号在时间上进行分时,也能较好地实现数据的传输。
不同的传输方式选择应结合具体的情况,常用的方式是时分多路复用。
二、应用现状电力线载波通信技术已广泛应用于电力自动化、智能电网、远程监测等领域。
其应用成本低廉、覆盖面广泛、传输速度较快,且适应于各种复杂环境的需要,因此在现代化电网建设中处于非常重要的地位。
目前,我国的电力线载波通信技术已经比较成熟,主要应用于以下几个方面:(一)远程监测系统利用电力线载波通信技术可以实现对电力系统的远程监测,包括对输配电设备的监控、远程抄表等。
通过远程监测,可以及时掌握电网运行情况,为电力安全运行提供保障,也为能源管理提供更好的支持。
(二)智能电网系统电力线载波通信技术在智能电网建设中具有重要的作用,可以实现智能家居、智能用电、分布式发电等诸多功能,提高能源利用效率和运行效率。
(三)电力自动化系统电力自动化系统利用电力线载波通信技术,可以实现自动化调控、设备控制、保护等各种功能。
通过传输控制信号,可以实现对电网设备的远程控制,提高电力运行的自动化水平和系统的稳定性。
第一章绪论●架空明线实用传输频带最高频率可达300 kHz●对称电缆可达600 kHz●同轴电缆可达60MHz●电力线高频通道可达500kHz●频带平移:上边带话音三角形与调制器输入调制信号的话音三角形方向一致频带倒置:下边带的话音三角形的方向与输入调制信号话音三角形的方向相反载波通信的基本过程:一变二分三还原变,就是用调制器把话音频带变换到高频频带;分,就是频率分割,即在收信端用滤波器把各路信号从群信号中分割出来;还原,就是利用解调器把高频频带还原成话音频带。
载波机中必须包括以下几种基本部件:●(1)调制器(或解调器):实现频率变换。
●(2)载波振荡器:产生载频信号。
●(3)滤波器:完成选频与频率分割作用。
●(4)放大器:提高信号电平。
两种现象:解决收后重发添加差接系统:差接系统能把用户方向的二线电路与载波机的收、发信支路的四线电路连接起来,同时能使收信支路与发信支路彼此隔离,切断“收后重发”通路。
这是因为差接系统具有信号在邻端方向传输衰减小,对端衰减大的性能。
解决自发自收用以下两个方案:1、双频带二线制双向通信所谓双带二线制,指的是在一对通信线路的两个方向上,采用两个不同的线路传输频带,利用方向滤波器把收、发两个方向的线路传输频带分开,切断“自发自收”通路,从而实现双向通信。
这种方法主要用在线路传输线对较少的载波通信系统中。
如架空明线、电力线载波通信系统中都采用这种通信方式。
2、单边带四线制双向通信所谓单边带四线制,指的是在线路上收、发信两个传输方向上采用相同的传输频带,而用两对导线(四根导线)来各自传输一个方向的信号,从而切断了“自发自收”通路。
这种方法主要用于对称电缆和同轴电缆载波通信系统。
载波机特点与技术要求⏹发信功率较大⏹有较快调节速度和较大调节范围的自动电平调节系统⏹大多是单路机⏹能适应不同电压等级的电力线通信需要⏹具有自动交换系统,并提供优先权配置方向滤波器:分割收发频带线路滤波器:过滤信号频带,隔离载波通路与音频通路多级变频与标准转接频谱⏹一次变频:把原始信号通过一次变频搬移到线路传输频带⏹多级变频:把原始信号通过多次变频,搬移到线路传输频带⏹通路变频:把音频信号变频为上、下边带或将上、下边带还原成音频⏹群变频:把由若干路边带信号所组成的群信号送到一个变频器进行变频⏹多级变频的优点⏹有利于调制器后带通滤波器的设计与制造⏹减少滤波器和载频种类⏹实现较好的变频方案,减少串扰⏹便于得到标准转接频谱,有利于机型统一和群间转接CCITT建议的标准频谱通路(0~4kHz) 指每路信号允许通过的频率范围,一般取为4kHz.前群(12~24kHz) 由3个话路信号分别经12, 16kHz和20kHz载波变频,取上边带,组成12~24kHz 的3路群信号,称为前群。
基群(60~108kHz) 由12个电话通路组成的60~108kHz的标准群,称为基群。
超群(312~552kHz) 由5个基群组成的312—552kHz的60路标准群,称为超群。
主群(812~2044kHz) 由5个超群组成的812~2044kHz的标准300路群称为主群。
超主群由3个主群组成的8516~12388kHz标准的900话路的,大于900话路的巨群。
获得基群标准频谱的方法:一次调制法12个话路频带通过一次调制直接搬到基群频谱上二次调制法把12个话路分成若干组,经二次变频,搬移到基群频谱上单晶滤波器法频谱参差利用多个不同的线群调制载波频率,使得线路传输频谱互相错开。
采用频谱参差可使解调后所得到的串扰话音信号变为不可懂串音,这样可以防止失密,并使分散通话者注意力的影响减轻,从而在效果上相当于减少了串音的影响。
频谱倒置在同杆两对传输线路上的两台载波机,所采用的线路传输频谱相同,但一台机采用上边带,一台机采用下边带,把可懂串音变为不可懂串音电力线高频通道包括:结合滤波器JL(结合设备)、耦合电容器C、阻波器GZ(加工设备)和电力线路。
耦合装置:包括结合设备、加工设备及耦合电容结合设备JL连接在耦合电容C的低压端和载波机的高频电缆GL之间。
图中排流线圈1对工频信号呈现低阻抗,对载波信号呈现高阻抗,它的作用是给通过耦合电容的工频电流提供接地通路,从而将耦合电容器连接结合设备JL端子的电位限制在安全电压范围以内。
接地刀闸2是为了满足在维修和其它需要时,可将结合设备输入端子可靠接地,以保证人身和设备的安全。
主、副避雷器3.6是限制来自电力线雷电感应脉冲和工频操作过电压的冲击,以保护载波设备。
匹配变量器4用来实现电力线路与高频电缆之间的阻抗匹配。
耦合电容器C连接在结合设备JL和高压电力线路之间,它的作用是传输高频信号,阻隔工频电流,并在电气性能上与结合设备中的调谐元件配合,形成高通滤波器或带通滤波器。
耦合电容器的容量一般为3000—10000pF线路阻波器GZ与电力线路串联,接于耦合电容器在线路上的连接点和变电所之间。
线路阻波器GZ主要由强流线圈、保护元件及相应的电感、电容与电阻等调谐元件组成。
线路阻波器的电感量一般为0.1—2mH。
在结合设备JL的输出端子和载波机之间一般用高频电缆GL连接,由于载波机的型号不同,高频电缆可以是不平衡电缆或平衡电缆。
连接电缆的阻抗一般为75Ω(不平衡)和150Ω(平衡)。
电力线载波机ZJ:实现调制与解调耦合电容器C和结合滤波器JL组成一个带通滤波器:通过高频载波信号,阻止工频高压和工频电流线路阻波器GZ:是通过电力电流、阻止高频载波信耦合方式:耦合方式有三种:相—相耦合方式,相一地耦合方式和相一相,相一地混合耦合方式。
相一地耦合方式将载波设备连接在一根相导线和大地之间。
它的特点是只需一个耦合电容器和一个阻波器,在设备的使用上比较经济,因而得到了广泛的应用。
但这种方式所引起的衰减比相—相耦合方式大,而且在相导线发生接地故障时高频衰减增加很多。
需要指出的是,这种方式虽然耦合是一相对地,但实际的信号传输却包括其它两相在内,以复杂的相间波方式进行着。
相—相耦合方式需要两个耦合电容器和两个阻波器,耦合设备费用约为相一地耦合方式的两倍。
但相—相耦合方式的优点是高频衰减小,并且当电力线路故障时,由于80%的故障属于单相故障,所以具有较高的安全性。
⏹载波频率范围:40~500kHz⏹基本载波频带:4kHz⏹标称载波频带:基本载波频带整数倍⏹标称阻抗指设计输入、输出电路所选取的,以及在使用条件下所适用的阻抗值。
在载波机外线侧载波输出端的标称阻抗应为75Ω(不平衡式)或150Ω(平衡式),要求在标称载波频带内发送方向的回波衰减应不小于10dB。
在话音及信号输入、输出端,应采用平衡式电路,标称阻抗为600Ω,且有效传输频带内的回波衰减应不小于14dB。
乱真发射乱真发射指在标称载波频带以外的一个或多个频率处的功率发射,它的电平可以减低而不影响信息的传输。
乱真发射包括谐波、寄生信号和交调产物。
带阴影的倒漏斗线代表在标称载波频带以外的各个频率处所允许的乱真发射的最高电平值。
BN表示标称载波频带,B表示距离标称载波频带的间隔。
纵坐标尺A1适用于标称载波功率小于或等于40W的电力线载波机,它的坐标刻度值代表实测乱真发射电平Lsp。
纵坐标尺A2适用于标称载波功率大于40W的电力线载波机。
A2纵坐标尺的刻度值为相对电平值,它表示实测乱真发射电平Lsp ,与电力线载波机标称载波功率电平Ln 之差。
对于某一台具体载波机,当将其实测得到的乱真发射电平值(或其相对值)标注在图中时,若其值于倒漏斗线以下时则为合格,否则其乱真发射指标不合格。
例如,对于标称载波功率大于40W的载波机,应选用A2纵坐标尺,并由此可确定在紧邻频率(OB )处所允许的最高乱真发射电平为-56dB,而在间隔1B处为-68dB,而在问隔2B处为-80dB 。
单边带电力线载波机的体系结构电力线载波机通常由下列各部分组成:(1)话音信号传输系统。
它是载波机骨干电路,包括发信支路和收信支路,用于完成话音信号以及二次复用信号的频率搬移、发送和接收。
(2)远动信号复用系统。
作为远动装置与载波机之间的接口电路,完成平衡电路与不平衡电路的转换,以及信号接口电平的配合与调整,用以保证载波机的正常工作和音频远动信号通过载波通路顺利传输。
(3)呼叫信号系统(振铃系统)。
包括呼叫发送电路和呼叫接收电路两部分,用以完成直流呼叫信号与音频呼叫信号的转换。
(4)优先强拆信号系统。
用以完成自动交换系统中直流强拆信号与载波通路中音频强拆信号的相互转换。
(5)高频保护信号复用系统。
未复用高频保护的电力线载波机无此系统。
(6)载频供给系统。
用以产生各种载频和导频。
(7)自动电平调节系统(导频系统)。
主要用于补偿高频通道在运行过程中衰减的变化,保证收信端传输电平稳定。
(8)电源供给系统。
(9)告警系统。
(10)自动交换系统。
国外电力线载波机一般不带自动交换系统,而是采用由数台载波机共用一台自动电话小交换机的办法来提高载波通路的利用率。
中频转接的特点:1,中频转接是在中频段进行的,中频信号含有话音和远动信号,因此,这种转接方式可以将话音和远动通信同时进行转接。
2,在中频转接过程中,信号仅通过一次调制和一次解调,因此由转接引起的信号失真比较小3,中频转接后,送往高频通道的高频信号频率发生了变化,但经放大都获得了增益。
因此,中频转接实际上起到了频率变换式增音的作用4,中转站B1,B2两台单路机中频转接时,只起到一台增音机的作用,他们的音频部分平时无用,但当通信电路维护检修时,中转站可以利用音频部分分别和A,C站实现通话,所以保留B1,B2机的音频部分是有实际价值的中频转接的不足:中转机必须防止导频信号二次发送,否则,将会造成对方自动电平调节系统工作混乱。
解决的办法是,在中频转接时,可以用中频带通滤波器或采取其他办法对导频信号加以抑制。
终端站的载波机不能采用最终同步法实现音频信号的最终同步。
绝缘地线载波通信包含:架空地线G,线路设备和载波机ZJ组成。
架空地线的线路设备包括放电间隙P,接地排流线圈L,混合电容器C和阻抗匹配变量器T.放电间隙P起防雷击等作用。
接地排流线圈L的作用是在电力线正常运行和非正常运行时,将架空地线上因电磁感应产生的大电流(含工频电流、由故障产生的感应过电流和雷击电流等)排入大地。
另外排流线圈的电感和耦合电容C构成一个高通滤波器,以阻止工频高次谐波的干扰进入载波机。
阻抗匹配变量器B用于将架空地线的特性阻抗(线地耦合架空地线的特性阻抗为5000Ω)与高频电缆的特性阻抗(75Ω)实现阻抗匹配。
绝缘地线载波通信优点:(1)绝缘地线载波的线路设备简单,不需要高频阻波器和高压耦合电容器,因此对工程施工和设备制造均带来方便,并具有经济意义。
(2)架空地线上感应的工频电流和电压大大低于相导线上的值,因此地线载波通道中的杂音干扰电平比电力线通道中的杂音干扰电平低许多(约低5~10dB)。