热管换热器工作原理
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
热管工作原理示意图热管技术是1963年美国洛斯阿拉莫斯(Los Alamos)国家实验室的乔治格罗佛(George Grover)发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
目录基本简介热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
现在常见于cpu的散热器上。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式来看(辐射、对流、传导),其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一端为蒸发端,另外一端为冷凝端,当热管一端受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。
人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。
并采用特殊结构,保证两种流体介质不会串漏。
板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。
它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。
结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。
螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。
广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。
特别是在石油炼制和化学加工装置中,占有极其重要的地位。
换热器的型式。
管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。
它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。
钢壳内衬铜的厚度一般为1.0mm。
钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。
此阀除非定期检修是绝对不能取消的。
部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。
换热器培训教程一、引言换热器是工业生产过程中重要的热能交换设备,广泛应用于石油、化工、制药、食品、电力等领域。
换热器的设计、制造、安装和维护对企业的生产效率和经济效益具有重要影响。
为了提高换热器操作人员的技术水平,本教程将详细介绍换热器的工作原理、类型、选型、维护等方面的知识,帮助学员更好地理解和掌握换热器的操作技能。
二、换热器的工作原理换热器是利用两种不同温度的流体之间的热量交换来实现热量传递的设备。
其工作原理是利用流体的温差作为驱动力,通过传热表面的热量传递,使高温流体降温,低温流体升温。
换热器主要由壳体、管束、管板、法兰等组成。
流体在管内流动,通过管壁与壳程流体进行热量交换,完成热能的传递。
三、换热器的类型及选型1.管壳式换热器:管壳式换热器是应用最广泛的一种换热器,由壳体、管束、管板、法兰等组成。
根据管程和壳程的流体流动方式,可分为顺流、逆流、错流等形式。
2.板式换热器:板式换热器由一系列波纹形板片组成,板片之间形成流道,流体在板片间流动进行热量交换。
板式换热器具有传热效率高、占地面积小、清洗方便等优点。
3.空气冷却器:空气冷却器是利用空气作为冷却介质,对流体进行冷却的设备。
其主要由散热器、风机、电机等组成。
空气冷却器适用于高温、高压、腐蚀性等特殊工况。
4.螺旋板式换热器:螺旋板式换热器由两张波纹形板片相互缠绕而成,形成一系列螺旋形流道。
流体在螺旋形流道内流动,实现热量交换。
螺旋板式换热器具有结构紧凑、传热效率高等优点。
5.热管换热器:热管换热器利用热管技术,将热源和热汇之间的热量传递。
热管内部充满工作介质,在热源处蒸发,在热汇处凝结,实现热量传递。
热管换热器具有传热效率高、等温性好等优点。
1.流体的性质:包括流体的温度、压力、流量、粘度、密度等。
2.工艺要求:包括换热器的传热效率、压降、结构形式等。
3.设备成本:包括换热器的制造成本、安装成本、运行成本等。
4.使用寿命:换热器的材料、制造工艺、维护保养等。
热管换热器的工作原理热管换热器是一种利用液体和蒸汽的相变过程来传递热量的设备。
它主要由热管、冷凝器和蒸发器组成。
热管是热管换热器的核心部件,通常由内部镶嵌有多个鳍片的金属管组成。
热管内填充有一种称为工作介质的特殊液体,通常为蒸发液体。
热管的两端分别连接一个冷凝器和一个蒸发器。
工作原理如下:1. 脉动蒸发:当热管的蒸发器端加热时,工作介质在蒸发器内迅速汽化。
汽化的工作介质变成蒸汽,并迅速上升到热管的冷凝器端。
2. 相变传热:在冷凝器端,蒸汽与冷凝器内的冷凝介质接触,传热给冷凝介质。
蒸汽在冷凝器内冷却,并逐渐凝结成液体。
3. 导热返回:在冷凝成液体后,冷凝介质流入热管的蒸发器端,通过鳍片的导热作用,将热量传递给蒸发器。
4. 重复循环:液体工作介质在蒸发器中再次汽化,蒸汽上升到冷凝器端再次冷凝,循环往复。
热管换热器的工作原理可基于两个基本原理来解释。
第一个是相变传热原理。
当液体在蒸发器内蒸发时,蒸汽所需的潜热可以从周围环境吸收,从而降低周围环境的温度。
相对应的,在冷凝器端,蒸汽释放出潜热,将热量传递给冷凝介质。
由于相变过程的热传导非常高效,所以热管换热器的热传输效率很高。
第二个原理是液体的循环工作原理。
热管内的工作介质在蒸发器端蒸发成蒸汽后,蒸汽的上升作用和重力的配合使得液体循环并将蒸汽带到冷凝器端。
液体在冷凝器端冷却凝结后,由于重力作用,液体流回蒸发器,再次蒸发成蒸汽,循环往复完成热量的传递。
热管换热器的工作原理使其具有以下优点:1. 高热传输效率:利用相变传热和液体循环工作原理,热管换热器的热传输效率高于传统的热交换器。
2. 快速响应:由于热管内的蒸汽和液体循环快速,热管换热器能够在很短的时间内响应温度的变化。
3. 节省空间:由于热管换热器可以实现高热传输效率,所以相同换热功率的热管换热器相对较小,占用的空间较少。
4. 不需要外部电源:热管换热器的工作原理不依赖于外部电源,因此可以在没有电力供应的环境下运行。
热管换热器工作原理及特点-概述说明以及解释1.引言1.1 概述热管换热器是一种高效换热设备,利用热管作为传热介质,通过在换热器内部的传热管路中进行传热工作,实现热量的传递和换热。
热管换热器具有结构简单、能耗低、换热效率高等特点,在工程领域得到了广泛的应用。
本文将重点介绍热管换热器的工作原理、特点以及在工程应用中的优势,希望通过深入的研究和分析,能为读者提供更加全面和深入的了解,为今后热管换热器在工程实践中的应用提供借鉴和参考。
1.2 文章结构本文将首先介绍热管换热器的工作原理,包括其基本工作原理和传热过程,以帮助读者深入了解热管换热器的工作机制。
接着,我们将探讨热管换热器的特点,包括其高效换热、结构简单等优势,以便读者对热管换热器在工程中的应用有更全面的认识。
最后,我们将重点讨论热管换热器在工程应用中的优势,以展示其在实际工程中的重要性和价值。
通过对热管换热器的原理、特点和应用优势进行全面介绍,本文旨在帮助读者深入理解和应用热管换热器技术。
1.3 目的:本文旨在深入介绍热管换热器的工作原理及特点,探讨其在工程应用中的优势。
通过对热管换热器的全面解析,旨在帮助读者全面了解该换热器的优点和适用领域,为工程实践提供参考和指导。
同时,通过对热管换热器未来发展前景的展望,进一步探讨该技术在换热领域的潜力和发展方向。
希望本文能为读者提供一份全面且深入的研究参考,促进热管换热器技术的不断创新与发展。
2.正文2.1 热管换热器的工作原理热管换热器是一种利用热管换热原理实现热量转移的换热设备。
其工作原理是通过热管内介质的相变过程来实现热量的传递。
热管换热器主要包括蒸发段和冷凝段两部分。
在蒸发段,工作介质(如液态水)受热后蒸发成为蒸汽,蒸汽通过热管的热传递作用被传输到冷凝段。
在冷凝段,蒸汽失去热量后冷凝成为液态介质,释放出的热量再次通过热管传递到冷却介质。
通过这样的过程,热管换热器实现了热量的高效传递,并具有一定的节能效果。
干熄焦热管换热器的应用摘要:伴随着干熄焦技术的不断革新和发展,热管换热器也逐渐被应用在干熄焦系统之中。
干熄焦设备国产化率的提升,也使得在干熄焦设备中作用为循环气体二次降温的热管换热器提升了操作能力,降低了使用成本,工艺水平也得到稳定。
本篇文章将对热管换热器在干熄焦系统的应用展开相关的研究与探讨,并对应用环节中存有的问题进行分析和提出解决策略。
关键词:干熄焦;热管换热器;应用一、热管换热器的原理干熄焦热管换热器通常所应用的是气—液热管换热器,根据一定的行列间距值,将热管成束的安放在密闭框架壳体中,按照热辐射的原理在中部安插隔板,进行对循环气体中的余热的加热段回收以及通过热传导加热除氧,隔开水的散热端,这便是热管换热器的结构原理。
热管的一边受到热管内部的介质进行汽化,汽化后形成的蒸汽受到密度和热管自身的倾斜角度(倾斜角度为15°)问题,向另一边进行流动,蒸汽在除氧气给水遇冷下凝结并散热,散发热能,冷凝液受到密度和作用的影响出现回流。
接着受热进行汽化,按此步骤不断循环把热量从加热区运输到散热区。
热管的介质受到生产厂家的影响,各不相同。
主要组成成分为蒸馏水、防腐剂以及氢化剂等。
二、热管换热器的作用热管换热器要设置在干熄炉之前,当循环风进入到热管换热器之后,热管可以在进行吸收换热的同时使进入干熄炉的冷却焦炭温度降低,排焦温度也会在这个过程中一同降低,这也为接下来的工序进行奠定了基础。
热管由于磨损、腐蚀以及超温等情况出现泄漏,这属于单根热管失效,并不会产生冷热流体的混杂问题。
可以通过设置蒸发段和冷凝段的传热面积、吸收腐蚀性的烟气余热来对热管管壁的温度进行调节,让热管尽量避开腐蚀地方。
它自身具备的特殊传热性、可调整管壁温,降低了露点腐蚀情况的出现的概率。
三、应用热管换热器的优点(一)避免出现窜漏问题给水预热器应用的是水走管内、烟走管外的模式。
如果管道出现穿孔,管内冷却水将会发生泄漏,导致停炉。
但是在热管换热器的中间使用隔板对烟气和冷却水进行隔离后,当发生热管穿孔现象时,会产生管道内少部分的工质泄漏,冷却水内不会掺入人烟气,不会影响正常的生产工作进行。
热管换热器设计计算及设计说明书第一章热管及热管换热器的概述热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。
具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。
将热管散热器的基板与晶闸管等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。
热管传热技术于六十年代初期由美国的科学家发明[1],它是利用封闭工作腔内工质的相变循环进行热量传输,因而具有传输热量大及传输效率高等特点。
随着热管制造成本的降低,尤其是九十年代前后随着水碳钢热管相容性问题的解决,热管凭借其巨大的传热能力,被广泛应用于石油、化工、食品、造纸、冶金等领域的余热回收系统中.热管气—气换热器是最能体现热管优越性的热管换热器产品,它正在逐步取代传统的管壳式换热器。
热管气-气换热器是目前应用最广泛的一种气—气换热器.我国的能源短缺问题日趋严重,节能已被提到了重要的议事日程。
大量的工业锅炉和各种窑炉、加热炉所排放的高温烟气,用热管气—气换热器进行余热回收,所得到的高温空气可用于助燃或干燥,因此应用前景非常广阔。
据有关报道称,我国三分之二的能源被锅炉吞噬,而我国工业锅炉的实际运行效率只有65%左右,工业发达国家的燃煤工业锅炉运行热效率达85%,因此,提高工业锅炉的热效率,节能潜力十分巨大。
如果我国锅炉的热效率能够提高10%,节约的能耗则相当于三峡水库一年的发电量,做好工业锅炉及窑炉的节能工作对节约能源具有十分重要的意义[2~6].利用热管气—气换热器代替传统的管壳式气—气换热器,一方面,能够大大提高预热空气进入炉内的温度,降低烟气温度,从而大大提高锅炉的热效率;另一方面,热管气—气换热器运行压降非常小,有时甚至不需要增加引风机等设备,从而使得运行费用大大降低. 1。
1 热管及其应用热管是一种具有极高导热性能的传热元件,它通过在全封闭真空管内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
热管及热管式换热器的研究文章来源:中国换热器网添加人:admin 添加时间:2008-12-10<DIV><FONT face=Verdana>热管及热管式换热器的研究</FONT></DIV><DIV> </DIV><DIV><FONT face=Verdana> 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。
热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。
热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。
< BR> 1热管及热管式换热器的发展<BR> 1.1热管工作原理及特点<BR> 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。
热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。
<BR> 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。
热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。
热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。
其结构如图所示:热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。
蒸发段的饱和蒸汽压随着液体温度上升而升高。
在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。
放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。
冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。
如此往复,不断地将热量从蒸发段传至冷凝段。
绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。
在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。
根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。
基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。
(1) 产品展示(2) 产品参数说明项目技术参数热管长度> 100mm主体材料铜管毛细结构槽沟/烧结芯/丝网管工作介质冷媒设计工作温度30~200℃设计使用倾角> 5°传热功率50~1000w (根据实际产品规格型号) 热阻系数< 0.08℃/W (参考值)传热功率测试原理测试总体要求1)加热功率有功率调节仪控制输入;2)热管保持与水平台面α角度(根据具体应用定);3)管壁上监测点的温度变化在5min内小于0.5℃认为传热达到稳定状态,记录此时传热功率为最大传热功率。