当前位置:文档之家› 二氧化硅与信息材料

二氧化硅与信息材料

二氧化硅与信息材料
二氧化硅与信息材料

二氧化硅与信息材料

专题3:第三单元含硅矿物与信息材料――二氧化硅与信息材料【学海导航】 1、知道二氧化硅的物理性质和化学性质。了解二氧化硅制品在高科技信息产业中的应用。 2、认识单晶硅的使用给人类文明进程所带来的重大影响。【主干知识】一、二氧化硅(SiO2) 1、存在:二氧化硅广泛存在于自然界中,与其他矿物共同构成了岩石。天然二氧化硅的矿物有:硅石、水晶、石英、玛瑙、石英砂等。 2、物理性质:①状态:;②熔、沸:;③硬度:;

④水溶性。 3、化学性质:(1)结构:二氧化硅晶体与金刚石结构相似,具有高硬度、高熔沸点特征。(2)具有酸性氧化物的通性;①二氧化硅与氧化钙(高温): SiO2+CaO―― ②二氧化硅与氢氧化钠溶液: SiO2+NaOH―― 〖思考〗实验室盛放碱液的试剂瓶常用塞,不用塞,就是为了防止玻璃受碱液腐蚀生成Na2SiO3而使瓶口和塞子粘在一起。写出反应的离子方程式:。③二氧化硅与碳酸钠(高温): SiO2+Na2CO3―― (3)不跟酸(除外)反应: SiO2+HF―― (雕刻玻璃、腐蚀玻璃)(4)与C反应(高温):①SiO2+C―― ②SiO2+C―― 4、用途:即为硅石、水晶、石英、玛瑙、石英砂等的用途。用于制造光导纤维、石英玻璃、电子光学仪器、精密仪器轴承、耐磨器皿等。二、硅 1、物理性质:晶体硅是色、有金属光泽、硬而脆的固体,熔点和沸点都很,硬度也很大(因为它的结构类似于金刚石),是良好的材料,广泛应用于电子的各个领域。 2、化学性质:很稳定(1)常温下不与O2、Cl2、H2、浓H2SO4、浓HNO3等反应。(2)加热或高温时有强还原性: Si + O2?D?D Si+ C?D?D Si+ Cl2?D?D (3)常温下能与氟气(F2)、氢氟酸(HF)反应: Si十 F2?D?D Si十 HF?D?D 3、硅的制备工业上用炭自在高温下还原二氧化硅的方法,制得含有少量杂质的粗硅。将粗硅在高温下跟氯气气反应生成四氯化硅,四氯化硅经提纯后,再用氢气还原,就可以得到高纯度的硅。工业制法:二氧化硅-→粗硅-→四氯化硅-→精硅(写出化学方程式)(1)SiO2+ C?D?D (制粗硅)(2) Si+ Cl2?D?D (分馏、提纯)(3) SiCl4+ H2?D?D +(制纯硅)【课堂练习1】地

壳中含量第一和第二的两元素形成的化合物,不具有的性质 ( ) A、

熔点很高 B、能与水反应生成对应的酸 C、可与纯碱反应 D、与碳在高温下反应可制取两元素中的一种单质【课堂练习2】将30gSiO2

和足量的碳在高温下发生反应SiO2+2C == Si+2CO↑,下列叙述中正确的是 ( ) A.有0.5molSiO2参加反应 B.反应中有12g碳被还原 C.反应中生成了2.24LCO(标准状况) D.反应中有0.5×6.02×1023个

电子发生转移【达标提高】 1下列物质中在一定条件下能与SiO2

起反应的是( ) ①浓H2SO4;②H2O;③浓硝酸;④氢氟酸;⑤KOH

溶液;⑥氧化钙;⑦碳酸钠 A、①②⑥ B、②④ C、④⑤⑥⑦ D、③④⑤⑥ 2下列各组物质间,不能发生反应的是 ( ) A、二氧化硅与氧化钙(高温) B、二氧化硅与氢氧化钠(常温) C、二氧化硅与碳(高温) D、二氧化硅与浓硝酸(常温) 3、关于硅的说法不正确的是 ( ) A、晶体硅是非金属元素,它的单质是灰黑色的有金属光泽的固体 B、晶体硅的导电性介于金属和绝缘体之间,是良好的半导体 C、硅的化学性质不活泼,常温下不与任何物质反应 D、加热到一定温度时,硅能与碳、氧气等非金属反应 4、关于硅的说法中,不正确的是 ( ) A、硅是地壳中含量较丰富的元素 B、在自然界里,硅存在于各种矿物质和岩石中的形式是硅酸 C、晶体硅的结构与金刚石相似,都具有较高的熔沸点 D、晶体硅是良好的半导体材料 5、工业上制造金刚砂(SiC)的化学方程式是SiO2+3C==SiC+2CO↑,在这个氧化还原反应中,氧化剂和还原剂的物质的量之比是 ( ) A、1?U2 B、2?U1 C、1?U1 D、3?U5 6、用光导纤维制造内窥镜,探视病人内脏疾病,这是利用了光导纤维下列性能中的( ) A.不发生广辐射

B.能传输大量信息,且不怕腐蚀

C.无论怎样绕曲,都能很好的传导

光线 D.熔点高,耐高温 7、下列物质中,不能用玻璃瓶来盛装的是( ) A.烧碱溶液B.浓硫酸 C.氢氟酸 D.碳酸钠溶液 8、下列物质中,主要成分不是二氧化硅的是

( ) A.金刚砂 B.玛瑙 C.水晶 D.石英 9、要除去SiO2中混有的少量CaO杂质,最适宜的试剂是

( ) A.纯碱溶液 B.盐酸 C.硫酸

D.苛性钠溶液 10、15gSiO2和足量的C在高温下发生反应:SiO2+3C==SiC+2CO↑。下列叙述正确的() A、氧化剂和还原剂的质量比为1:2 B、SiO2是还原剂 C、反应中有6gC被氧化D、反应中生成了28gCO 1 2 3 4 5 6 7 8 9 10

11、有A、B、C、D、E五种都含硅元素的物质,它们能发生如下变化:(1)C受热后失水生成D;(2)A溶液与钙盐溶液反应生成白色沉淀E;(3)D烧碱反应生成A和水;(4)B在空气中燃烧生成D;(5)D 在高温下于碳酸钙反应生成E和一种气体;(6)A溶液与盐酸反应可生成白色胶状沉淀;(7)D在高温下与碳反应生成单质B。试推测A、B、C、D、E各为何物?并写出(1)-(7)各个变化的化学方程式。

12、硅可与浓烧碱溶液反应,其化学方程式为:Si+2NaOH+H2O==Na2SiO3+2H2↑ (1)将7克硅跟足量的浓烧碱溶液反应,在标准状况下放出氢气多少升?(2)将上述反应得到的溶液跟足量的盐酸反应,生成的沉淀经高温灼烧,可得到固体多少克?

介孔二氧化硅纳米颗粒应用于可控药物释放

介孔二氧化硅纳米颗粒应用于可控药物释放 摘要通过对介孔二氧化硅纳米粒子(MSN)载药机理、药物控释机理(PH响应、光响应、温度响应、酶响应及竞争性结合响应)、靶向方法(配体靶向、磁靶向、量子点应用于靶向)的介绍,对MSN 在可控药物传输系统中的应用加以综述。 关键词介孔二氧化硅纳米粒子;药物传输;控制释放;靶向;量子点。 近年来,介孔材料由于其独特的优异性能成为了研究开发的热点,在催化、吸附分离、药物释放等领域的应用前景更使其备受关注。1992年,Kresge等,首次在Nature杂志上报道了一类以硅铝酸盐为基的新颖的介孔氧化硅材料,M41S,其中以命名为MCM-41的材料最引人注目其特点是孔道大小均匀、六方有序排列、孔径在1。5-10nm 范围可以连续调节,具有高的比表面积和较好的热稳定及水热稳定性,从而将分子筛的规则孔径从微孔范围拓展到介孔领域这对于在沸石分子筛中难以完成的大分子催化、吸附与分离等过程,无疑展示了广阔的应用前景。 可控药物传输系统可以实现药物在病灶部位的靶向释放,有利于提高药效,降低药物的毒副作用,在疾病治疗和医疗保健等方面具有诱人的应用潜力和广阔的应用前景,已成为药剂学、生命科学、医学、材料学等众多学科研究的热点[1-6]。许多药物都具有较高的细胞毒性,在杀死病毒细胞的同时,也会严重损伤人体正常细胞。因此,理想的可控药物传输系统不仅应具有良好的生物相容性,较高的载药率和包

封率,良好的细胞或组织特异性——即靶向性;还应具有在达到目标病灶部位之前不释放药物分子,到达病灶部位后才以适当的速度释放出药物分子的特性。 介孔SiO2纳米粒子(mesoporous silica nanoparticles,MSN)具有在2~50 nm范围内可连续调节的均一介孔孔径、规则的孔道、稳定的骨架结构、易于修饰的内外表面和无生理毒性等特点,非常适合用作药物分子的载体。同时,MSN 具有巨大的比表面积(>900 m2/g)和比孔容(>0。9 cm3/g),可以在孔道内负载各种药物,并可对药物起到缓释作用,提高药效的持久性。因此,近年来MSN 在可控药物传输系统方面的应用日益得到重视,本文通过对MSN 载药机理[7]、药物控释机理[8]和靶向方法[9-14]的介绍,对MSN 在可控药物传输系统中的应用[15-17]加以综述。 1、介孔二氧化硅纳米颗粒 1992年,Kresge等首次合成出MCM-41型介孔分子筛,这种具有规则孔道结构的介孔纳米微球立即吸引了广泛的关注,并得到了快速的发展。MSN是利用有机分子(表面活性剂或两亲性嵌段聚合物)作为模板剂,与无机硅源进行界面反应,形成由二氧化硅包裹的规则有序的组装体,通过煅烧或溶剂萃取法除去模板剂后,保留下二氧化硅无机骨架,从而形成的多孔纳米结构材料。通过选择不同的模板剂和采用不同的合成方法可得到不同结构特征的介孔材料。 1。1 MSN的生物相容性

纳米二氧化硅表面改性及其 补强天然胶乳研究

万方数据

万方数据

万方数据

纳米二氧化硅表面改性及其补强天然胶乳研究 作者:邱权芳, 彭政, 罗勇悦, 李永振, Qiu Quanfang, Peng Zheng, Luo Yongyue, Li Yongzhen 作者单位: 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2009,36(11) 被引用次数:0次 相似文献(10条) 1.期刊论文邱权芳.彭政.罗勇悦.李永振.Qiu Quanfang.Peng Zheng.Luo Yongyue.Li Yongzhen"胶乳共混法"制备天然橡胶/二氧化硅纳米复合材料及其性能-广东化工2009,36(4) 采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性纳米二氧化硅(SiO2),然后通过乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA),再将其与甲基丙烯酸甲酯(MMA)改性的天然胶乳,通过胶乳共混法制备天然橡胶/二氧化硅纳米复合材料,结果显示,纳米二氧化硅表面接枝上了PMMA,二氧化硅在橡胶基体中分散良好,粒径在60~100 nm之间,得到的胶膜力学性能有很大的提高. 2.期刊论文魏福庆.李志君.殷茜.邵月君.段宏义.Wei Fuqing.Li Zhijun.Yin Qian.Shao Yuejun.Duan Hongyi纳米SiO2对天然橡胶/聚丙烯共混型热塑性弹性体的改性-合成橡胶工业2006,29(3) 在双辊电热式塑炼机上采用动态硫化法制备了天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPV).考察了纳米SiO2的加入顺序及其用量对NR/PP TPV力学性能的影响,研究了纳米SiO2填充改性TPV的耐溶剂性能和耐热变形性能,并用扫描电镜(SEM)观察了其两相结构和断面形貌.结果表明,纳米SiO2先与NR混炼均匀,再加入小料和硫黄所得的NR母炼胶与PP制备的TPV力学性能较好,且最佳的纳米SiO2加入量为3份;纳米SiO2改性的NR/PP TPV具有良好的耐溶剂性能和耐热变形性能;纳米SiO2提高了NR与PP相间结合强度. 3.期刊论文李志君.魏福庆.LI Zhijun.WEI Fuqing接枝和交联对纳米SiO2改性NR/PP共混型热塑弹性体的影响-高分子学报2006(1) 动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体"就地"熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2 TPE的力学性能、耐溶剂性能和耐热变形性能最佳 .MAH/St/DCP"就地"接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善. 4.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu NR-g-(GMA-co-St)与nano-SiO2协同增强增韧PVC的研究-弹性体2009,19(2) 研究了甲基丙烯酸缩水甘油酯(GMA)/苯乙烯(St)多单体熔融接枝天然橡胶(NR)[NR-g-(GMA-co-St)]与nano-SiO2协同增强增韧PVC的力学性能,并通过SEM、TG-DTG表征了改性PVC的相结构及耐热分解性能.结果表明,当NR-g-(GMA-co-St)和nano-SiO2的质量分数分别为5%和3%时,相界面的结合强度明显提高,达到较好的协同增强增韧效果;与未改性PVC相比,增强增韧PVC的缺口冲击强度和断裂拉伸强度分别提高了78.9%和50.5%,并且具有较好的耐热分解性能. 5.期刊论文李志君.魏福庆NR-g-(MAH-co-St)对纳米SiO2改性NR/PP共混型热塑性弹性体的影响-弹性体 2004,14(6) 研究了马来酸酐/苯乙烯(MAH/St)多单体熔融接枝NR[NR-g-(MAH-co-St)]对纳米SiO2改性天然橡胶/聚丙烯动态硫化共混型热塑性弹性体(NR/PP TPV)力学性能的影响;采用SEM分析了TPV的断面形貌.结果表明:纳米SiO2的质量分数为0.03时,NR-g-(MAH-co-St)通过改善纳米SiO2分散的均匀性和细化交联NR分散相,使NR与PP两相的相容性得到明显改善,两相界面结合强度明显提高,NR/PP/纳米SiO2 TPV的力学性能提高. 6.会议论文鹿海华.刘岚.罗远芳.贾德民胶粉中原位生成SiO2及其在天然胶的应用研究2007 通过溶胶-凝胶法在胶粉中原位生成纳米SiO2网络,利用傅立叶变换红外(FTIR)、热重分析(TGA)等技术,证实了溶胶-凝胶反应中在胶粉表面过渡层中原位生成了约3%~5%wt的-O-Si-O-类似SiO2的网络结构;改性胶粉表现出更好的热稳定性,失重5%对应的温度提高了72.4℃.将50份改性胶粉添加到天然橡胶(NR)中,考察了反应前驱体及有机硅氧烷用量等对NR/改性胶粉复合材料性能的影响。研究发现,NR/改性胶粉复合材料仍具有较好的力学性能及动态性能。 7.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu原位接枝NR与nano-SiO2协同增韧PVC的研究-塑料2009,38(3) 研究了原位接枝NR与nano-SiO2协同增韧PVC的力学性能和耐溶剂性,通过SEM表征了增韧PVC的相结构.结果表明:当原位接枝NR和nano-SiO2的质量分数分别为5%和3%时,与未增韧PVC相比,相界面的结合强度明显提高,增韧PVC的缺口冲击强度和拉伸强度分别提高了102%和35.11%,并且具有较好的耐溶剂性能,达到较好的协同增韧增强效果. 8.会议论文李志君.魏福庆.符新NR/PP共混型热塑性弹性体的改性技术2004 动态硫化制备NR/PP/纳米SiO2共混型热塑性弹性体(TPV).通过力学性能的测定,确定了TPV的最佳加工工艺条件;研究了纳米SiO2改性和马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝、交联改性对TPV力学性能、耐溶剂性能和耐热性能的影响.结果表明:MAH/St/DCP"就地"接枝、交联改性NR/PP/纳米SiO2TPV的力学性能最好,耐溶剂性能和热稳定性最佳.纳米SiO2的最佳质量分数为0.03;MAH/St/DCP的最佳质量分数为3.75/1.875/0.375. 9.期刊论文魏福庆.刘义.王卓妮.殷茜.李志君.林秀娟.Wei Fuqing.Liu Yi.Wang Zhuoni.Yin Qian.Li Zhijun. Lin Xiujuan马来酸酐和苯乙烯接枝改性对天然橡胶/聚丙烯共混物物理机械性能的影响-合成橡胶工业 2007,30(1) 用动态硫化法制备了天然橡胶(NR)/聚丙烯(PP)热塑性弹性体(TPV).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝交联改性及纳米二氧化硅用量对NR/PP TPV物理机械性能的影响,讨论了NR/PP TPV的重复加工性能.结果表明,当MAH/St/DCP用量为3.750/1.875/0.375质量份、纳

纳米二氧化硅颗粒价格

价格是影响顾客购买的重要因素,也是营销活动中最难以确定的因素,定价要求企业既要考虑企业的成产成本,又要考虑顾客对价格的接受程度,而纳米二氧化硅颗粒价格也在随着行情不断变化,具体价格行情可以直接点击官网恒力特新材料进行在线咨询。下面为您介绍下它的相关知识,希望能给您带来帮助。 纳米二氧化硅是无机粉体中的“半边天”,她的微颗粒表面带负电,不但亲水,而且亲和各种粉体,阴阳平衡,流动如水,具有高分散性,是典型的“干粉改性剂” 纳米二氧化硅表面负电性化学活性高,是粉体材料中少有的酸性氧化物。她与碱结合,可在水中速凝固,她在世界瞩目的墨西哥湾漏油事故中,解决了世界性堵漏难题。因此首先出生中国的纳米二氧化硅便成了世界油田的“女神”,因为特轻质,中国石油业又给她取了绰号——“减轻剂”。

纳米二氧化硅在高性能混凝土中添加水泥用量的1~6%,可使抗压强度提高1倍,并可改善混凝土工作性——可塑性、泵送性、保水性、防泌水性、抗渗性、抗冻性等。适量加入水泥中改性使用,她与游离钙结合即生成硅酸钙凝胶,填充水泥石结构缝隙,使短命的水泥混凝土成为耐久的人造石。 纳米二氧化硅复合少量钛白粉、氧化锌等可成为高分散轻质活性补强粉体,加入橡胶中可生产优质飞机、汽车轮胎。配制功能性纳米复合材料,可广泛应用于新型建材、橡塑制品、油漆涂料、玻璃钢、工程陶瓷、纺织人革、胶粘剂、炼钢脱氢剂、水晶制品…… 恒力特新材料是集科技研发、生产、销售为一体的高新技术企业,是国内和华东地区橡胶助剂骨干企业,恒力特牌橡胶防老剂 8PPD-35、BLE、BLE-W、BLE-C、SP、SP-C、AW、DFC-34等系

列,抗疲劳剂PL-600、橡胶耐磨剂SL-A、橡胶助剂EVR、抗热氧剂RW、阻燃剂、橡胶粘合剂HLT-301、HLT-501系列,橡胶促进剂DTDM、DBM系列,橡胶补强剂FH、FHT系列,都得到了轮胎、胶带、胶管及橡胶制品企业的认可。 公司坐落在安徽阜阳颍州经济开发区,生产工艺先进,检测仪器齐全,产品性能稳定,本着“和谐、诚信、奋进”的企业精神,遵循以“过硬的产品、更好的服务”为宗旨,以更好的性价比为橡胶制品行业提供更多、更优的选择。如果您想进一步了解,可以直接点击官网恒力特新材料进行在线咨询。

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

纳米二氧化硅的表面改性研究

第4期王云芳等:纳米二氧化硅的表面改性研究383SizeofSi02grain(nm) 图1水溶胶中Si05颗粒的大小分布 Fig.1 SizedistributionofSi02graininhydrosol可以看出,所制得的二氧化硅水溶胶中,二氧化硅成纳米状态分布,粒径为50—127rim,其电子显微镜照片如图2所示。另外,从二氧化硅水溶胶的红外光谱(图3(a))可以看出,2900cmd为SiOH的吸收峰;3433emd为吸附的水峰;1216em’1为Si—O—Si的不对称伸缩峰;958cmd为SiOH的伸缩峰;471cmd为O—Si?O的畸变吸收峰,说明纳米二氧化硅表面还有大量羟基,因此它可以和许多有机官能团发生作用。 2.2表面羟基值的测定【l列 采用离心干燥分离、醇洗,反复5次使溶胶中的二氧化硅分离,1000C真空干燥48h,得到纳米二氧化硅粉体,其红外光谱如图3(a)所示。称取该粉体29放入100mL的锥形瓶中,加入0.05mol/L的NaOH溶液80mL,密封搅拌24h。离心分离二氧化硅颗粒后的溶液体积为C毫升(一80mL),从分离的C毫升溶液中量取10mL,用A毫升0.05moL/L的HCl溶液滴定至中性,剩余溶液(C一10mL)用同样的方法滴定至中性所用HCl溶液为B毫升,根据下式可计算出单位重量二氧化硅颗粒表面的羟基含量(x)u引。 茗:盟笔华≈7.8mmol/g 茗2——广2Lg 上式中,A一中和分离溶液10mL所消耗0.05moL/LHCl溶液的体积数;B一滴定剩余溶液(约70mL)至中性所用0.05mol/LHCI溶液的体积数;w一纳米二氧化硅粉体的克重数。 2.3纳米二氧化硅的表面改性及分析 配制2.0wt%纳米二氧化硅水溶胶100mL,并用冰醋酸调节溶液的pH=3.5—4.5,随后加入 图2改性前纳米Si02粒子的TEM图片 Fig.2TEMphotographsofnano—silica particlesbeforemodification 400¥0012001600200024002800320036004000 Wavcntunber“gnrl 图3si02(a),cr,rMS(b)和 GPTMS改性Si02(c)的红外光谱 Fig.3FTIRgpl圮-q:raof(a)silica,(b)CPa'MS and(c)CPTMS—modifiedsilica 2mL偶联剂GPTMS(未水解前的红外光谱如图3(b)所示),磁力搅拌,常温反应2.5h后得到纳米二氧化硅改性溶胶(改性后纳米颗粒溶液的透射电子显微镜显微分析如图4所示)经离心干燥后醇洗(重复五次),常温干燥24h,然后在200℃真空干燥48h得到改性纳米SiO:粉体,其红外图谱如图3(c),从图谱可以看出:纳米二氧化硅接枝GPTMS后,二氧化硅的物理吸附水(3433cm。)和表面的硅醇羟基Si.OH(958em~,3744emd)明显减少,还有明显的亚甲基(2944em4)的吸收峰,但二氧化硅的特征吸收峰(1100cm~,797—805em~,471cm4)无明显变化,只是Si.O.Si键的伸缩振动吸收峰(1100—1216em。1)变宽增强。分析表明,在二氧化硅颗粒表面接枝硅烷偶联剂并未改变二氧化硅的物质组成和结构,只是SiO:表面羟基与硅烷偶联剂水解产生的童SiOH基团缩合,硅烷偶

二氧化硅与信息材料

二氧化硅与信息材料 专题3:第三单元含硅矿物与信息材料――二氧化硅与信息材料【学海导航】 1、知道二氧化硅的物理性质和化学性质。了解二氧化硅制品在高科技信息产业中的应用。 2、认识单晶硅的使用给人类文明进程所带来的重大影响。【主干知识】一、二氧化硅(SiO2) 1、存在:二氧化硅广泛存在于自然界中,与其他矿物共同构成了岩石。天然二氧化硅的矿物有:硅石、水晶、石英、玛瑙、石英砂等。 2、物理性质:①状态:;②熔、沸:;③硬度:; ④水溶性。 3、化学性质:(1)结构:二氧化硅晶体与金刚石结构相似,具有高硬度、高熔沸点特征。(2)具有酸性氧化物的通性;①二氧化硅与氧化钙(高温): SiO2+CaO―― ②二氧化硅与氢氧化钠溶液: SiO2+NaOH―― 〖思考〗实验室盛放碱液的试剂瓶常用塞,不用塞,就是为了防止玻璃受碱液腐蚀生成Na2SiO3而使瓶口和塞子粘在一起。写出反应的离子方程式:。③二氧化硅与碳酸钠(高温): SiO2+Na2CO3―― (3)不跟酸(除外)反应: SiO2+HF―― (雕刻玻璃、腐蚀玻璃)(4)与C反应(高温):①SiO2+C―― ②SiO2+C―― 4、用途:即为硅石、水晶、石英、玛瑙、石英砂等的用途。用于制造光导纤维、石英玻璃、电子光学仪器、精密仪器轴承、耐磨器皿等。二、硅 1、物理性质:晶体硅是色、有金属光泽、硬而脆的固体,熔点和沸点都很,硬度也很大(因为它的结构类似于金刚石),是良好的材料,广泛应用于电子的各个领域。 2、化学性质:很稳定(1)常温下不与O2、Cl2、H2、浓H2SO4、浓HNO3等反应。(2)加热或高温时有强还原性: Si + O2?D?D Si+ C?D?D Si+ Cl2?D?D (3)常温下能与氟气(F2)、氢氟酸(HF)反应: Si十 F2?D?D Si十 HF?D?D 3、硅的制备工业上用炭自在高温下还原二氧化硅的方法,制得含有少量杂质的粗硅。将粗硅在高温下跟氯气气反应生成四氯化硅,四氯化硅经提纯后,再用氢气还原,就可以得到高纯度的硅。工业制法:二氧化硅-→粗硅-→四氯化硅-→精硅(写出化学方程式)(1)SiO2+ C?D?D (制粗硅)(2) Si+ Cl2?D?D (分馏、提纯)(3) SiCl4+ H2?D?D +(制纯硅)【课堂练习1】地

纳米二氧化硅价格

在我们的认知里,厂家进行直接销售是有利于顾客进行购买的,首先没有了繁琐的分销渠道费用,也少了中间商赚取差价的机会,所以其性价比高的价格优势得以体现,也让很多顾客一直在寻找厂家价格。下面由纳米二氧化硅厂家恒力特新材料为您介绍下它的相关知识,能够帮助您在购买此产品时有全面的认知。 纳米二氧化硅在高性能混凝土中添加水泥用量的1~6%,可使抗压强度提高1倍,并可改善混凝土工作性——可塑性、泵送性、保水性、防泌水性、抗渗性、抗冻性等。适量加入水泥中改性使用,她与游离钙结合即生成硅酸钙凝胶,填充水泥石结构缝隙,使短命的水泥混凝土成为耐久的人造石。 纳米二氧化硅复合少量钛白粉、氧化锌等可成为高分散轻质活性

补强粉体,加入橡胶中可生产优质飞机、汽车轮胎。配制功能性纳米复合材料,可广泛应用于新型建材、橡塑制品、油漆涂料、玻璃钢、工程陶瓷、纺织人革、胶粘剂、炼钢脱氢剂、水晶制品…… 纳米二氧化硅的“海绵体”轻质特性,可作为活性载体,分散吸纳各种颜料、药物、化工材料等,生产各种功能材料制品,如隐形飞机涂料、防辐射抗紫外线材料、屏蔽电磁波、降解涂料中甲醇等有害物,抗菌、抗静电、导电、储能电池、医药制药赋形、化工催化促进、纺织保健……。 纳米二氧化硅是新材料革命的“女神”,也是“为民造福的基础原材料”,电子时代的战备物资、太阳能电池的储能材料。它的用途和潜在市场可改变一个国家,一个地区的经济结构! 恒力特新材料是集科技研发、生产、销售为一体的高新技术企业,是国内和华东地区橡胶助剂骨干企业,恒力特牌橡胶防老剂 8PPD-35、BLE、BLE-W、BLE-C、SP、SP-C、AW、DFC-34等系

纳米二氧化硅修饰-改性文献总结

一、单分散纳米二氧化硅微球的制备及羧基化改性赵存挺,冯新星,吴芳,陈建勇2009年第 11期(40)卷 采用改进工艺条件的St ber法制备纳米SiO2微球 用KH-550硅烷偶联剂和丁二酸酐对纳米二氧化硅表面羧基化改性。结果表明,纳米二氧化硅表面成功接枝了羧基官能团。 2.1主要试剂 正硅酸乙酯(TEOS,AR);无水乙醇(AR);氨水,含量为25%~28%;去离子水;硅烷偶联剂KH-550, 纯度≥95%;丁二酸酐(AR)。 2.2二氧化硅微球的制备 将一定量无水乙醇、去离子水和氨水混合磁力搅拌约20min成均匀溶液。将4ml正硅酸乙酯分散在20ml无水乙醇中,磁力搅拌约30min混合成均匀溶液。然后将上面两种溶液混合在100ml单口烧瓶中,在一定温度下恒温磁力搅拌5h即生成二氧化硅微球溶胶。小球经多次醇洗离心分离后,即得SiO2小球样品。 2.3二氧化硅微球表面羧基化改性 将等摩尔的KH-550和丁二酸酐均匀分散在一定量的DMF中,一定温度下磁力搅拌3h后,往该

体系中加入经过超声分散的约20ml二氧化硅的DMF悬浊液,同时加入2ml去离子水。 在相同温度下继续磁力搅拌5h后,用超高速离心机分离出纳米二氧化硅,多次醇洗离心分离后,即得到羧基化改性后的纳米二氧化硅。改性的纳米SiO2标为样品S1,未改性的标为S0。 SiO2表面羧基的引入不仅提高了纳米粒子与基体的界面相容性,更重要的是羧基宽广的反应范围和易于离子化的特性赋予了纳米粒子很高的反应活性,使之可以广泛地应用于纳米粒子自组装[5]、高分子材料改性剂、水处理剂、催化剂和蛋白质载体、微胶囊包埋等领域[6] 二、二氯二甲基硅烷改性纳米二氧化硅工艺研究唐洪波李萌马冰洁精细石油化工 第24卷第6期2007年11月 以纳米二氧化硅为原料,乙醇为溶剂,二甲基二氯硅烷为改性剂,水为改性助剂,较佳工艺条件为:二甲基二氯硅烷用量15%,预处理温度120℃,预处理时间50min,回流温度130℃,回流时间50min,水用量4%。 称取纳米二氧化硅29置于三口瓶中,搅拌,加热至一定温度,并恒温。另称取一定量乙醇置于三口瓶中,配制成纳米二氧化硅质量分数为4.8%的乳液,继续搅拌分散10min后,一次性加人全部改性剂二甲基二氯硅烷,同时缓慢滴加一定量的改性助剂,当改性助剂加完后,升温至回流温度。反应结束后,将悬浮液用乙醇离心洗涤3一4次,经干燥至恒重即得产物。 3、氟烷基改性的二氧化硅纳米球的制备与应用研究郭庆中,周书祥,伍双全,喻湘华有机硅 材料, 2009, 23(4): 238~241 以浓氨水为催化剂、正硅酸乙酯(TEOS)为原料,通过种子生长法制得二氧化硅纳米球;进一步以十三氟辛基三乙氧基硅烷(F-8261)对二氧化硅纳米球的表面进行改性,得到氟烷基改性二氧化硅纳米球。利用IR、UV、TEM等手段对氟烷基改性纳米球进行了表征。有机基多为甲基或长碳链烷基,究其本质是亲油性的 1·5 mL TEOS、1·7 mL浓氨水(25% ~28% )、1mL去离子水和50 mL乙醇加入到250 mL的圆底烧瓶中,在40℃下缓慢搅拌3 h;然后再加入1mLTEOS,继续搅拌水解3 h;离心,水洗至pH=7,

纳米二氧化硅表面改性条件优化

纳米二氧化硅表面改性条件优化 【摘要】引入微波有机合成技术对纳米SiO2进行表面改性,考察了偶联剂、微波功率和辐照时间、浓硫酸用量等对纳米SiO2表面处理的影响,并通过红外光谱和热失重测试考察了粉体表面化学结构及改性情况。实验得出的纳米SiO2表面处理的最佳工艺条件为:偶联剂的用量为6%(质量百分含量),微波功率为320W,硫酸用量为1.25%(质量百分含量),微波辐射反应时间为15min。 【关键词】纳米二氧化硅;表面处理;微波 对于用熔融共混法制备的纳米复合材料而言,无机粒子能在聚合物中作纳米级的原生粒子分散是决定材料性能改善的最重要因素之一。粒子在塑料中分散粒径大小及分散均匀性对填充改性塑料的性能及其均匀性影响很大。因此解决自身团聚很强的纳米粒子在材料中的分散性问题,成为制备性能优良复合材料的关键点,也是难点之所在。 纳米SiO2为无定形白色粉末,是一种无毒、无味、无污染的无机非金属材料,其呈现出絮状和网状的准颗粒结构。由于纳米SiO2表面能大,易于团聚,通常以二次聚集体的形式存在,限制了其超细效应的充分发挥,在有机相中难以浸润和分散。 目前,对纳米SiO2的改性方法有多种,通常采用的是硅烷偶联剂法。硅烷偶联剂由于具有双反应功能团[1],能使填料与聚合物的结合界面以化学键相连,从而提高填料的补强性能[2~4]。 微波是一种波长从1mm到1m左右的超高频电磁波,具有物理、化学、生物学效应。在电磁场中,体系介质产生极化取向,相邻分子间由于分子热运动产生强烈的相互作用,极性分子产生“变极”效应,由此产生了类似摩擦作用,使极性分子瞬间获得能量,以热量形式表现出来,介质整体温度同时随之升高。微波还存在一种不是由温度引起的非热效应,微波作用下的有机反应,改变了反应动力学,降低了反应活化能。以上特性使得微波加热有机反应具有传统加热法所无法具备的优点,反应速度快,效率高。 本文作者采用微波法对纳米SiO2进行表面改性,考察了偶联剂用量、微波功率、硫酸用量对改性效果的影响,探讨了最佳表面改性条件,并对改性后的纳米SiO2进行了表征。 1 实验部分 1.1 主要试剂与仪器 纳米二氧化硅:粒径<100nm,购自海川化工有限公司,硅烷偶联剂SCA-1603:分析纯,哈尔滨化工研究所实验厂产品;浓硫酸:分析纯,购自莱

纳米二氧化硅

纳米二氧化硅 简介: 为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。 应用范围 由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。纳米二氧化硅是应用较早的纳米材料之一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。 4.1在涂料领域 纳米二氧化硅具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。在建筑内外墙涂料中,若添加纳米氧化硅,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters 等用溶胶凝胶法合成了含纳米二氧化硅SP30的全透明的耐温涂料 H.Schmidt 等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。明显增强了涂料的弹性和强度。

纳米二氧化硅的用途

纳米二氧化硅的用途 , 纳米二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。 (一)、电子封装材料 有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(>105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60?至100?以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温

功能化介孔二氧化硅纳米材料的应用

Hans Journal of Nanotechnology纳米技术, 2019, 9(3), 93-100 Published Online August 2019 in Hans. https://www.doczj.com/doc/293953569.html,/journal/nat https://https://www.doczj.com/doc/293953569.html,/10.12677/nat.2019.93011 Application of Functionalized Mesoporous Silica Nanomaterials Zhengdong Yan*, Xiaolei Liang, Huiling Tang, Qiang Xiao Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institution of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua Zhejiang Received: Jul. 28th, 2019; accepted: Aug. 9th, 2019; published: Aug. 16th, 2019 Abstract Mesoporous silica nanomaterials have a unique structure and are easy to be modified by surface functionalities. They can be combined with materials of different functions to form a new type of material with specific purposes and have a wide range of uses. In this review, we discuss several methods for synthesizing functionalized mesoporous silica and its special nanostructures. Com-bined with the latest literature, we introduced some applications of functionalized mesoporous si-lica nanoparticles in environmental protection, industrial catalysis, and as drug carriers. Keywords Mesoporous Silica, Nanomaterials, Functionalization, Application 功能化介孔二氧化硅纳米材料的应用 闫正东*,梁晓蕾,汤会玲,肖强 浙江师范大学,含氟新材料研究所,先进催化材料教育部重点实验室,浙江金华 收稿日期:2019年7月28日;录用日期:2019年8月9日;发布日期:2019年8月16日 摘要 介孔二氧化硅纳米材料结构独特,易于表面功能化修饰,能够结合不同功能的材料形成具有特定用途的新型材料,用途极为广泛。这篇综述讨论了几种合成功能化介孔二氧化硅的方法,以及其特殊的纳米结构。还结合最新文献,介绍了一些功能化介孔二氧化硅纳米粒子在环境保护、工业催化以及作为药物载体等领域的应用。 *通讯作者。

纳米二氧化硅的制备

纳米二氧化硅的制备 专业:凝聚态学号:51110602021 作者:张红敏 摘要 本文简单综述了一下纳米二氧化硅的各种制备方法,包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法,并对未来制备纳米二氧化硅的方法提出了一点展望。 关键词:纳米二氧化硅,制备,展望

1. 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的无机非金属材料,其颗粒尺寸小,粒径通常为20~200nm,化学纯度高,分散性好,比表面积大,耐磨、耐腐蚀,是纳米材料中的重要一员。由于纳米二氧化硅表面存在不饱和的双键以及不同键合状态的羟基,具有常规粉末材料所不具备的特殊性能,如小尺寸效应、表面界面效应、量子隧道效应、宏观量子隧道效应和特殊光电性等特点[1],因而表现出特殊的力学、光学、电学、磁学、热学和化学特性,加上近年来随着纳米二氧化硅制备技术的发展及改性研究的深入, 纳米二氧化硅在橡胶、塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用。 2. 纳米二氧化硅的制备 经过收集资料,查阅一些教科书籍和文献,发现二氧化硅有各种形形色色不同的制备方法, 主要包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法等等。现在一个个介绍如下: 2.1. 化学沉淀法 化学沉淀法是目前生产纳米二氧化硅最主要的方法。这种方法的基本原理是利用金属盐或碱的溶解度, 调节溶液酸度、温度、溶剂, 使其产生沉淀, 然后对沉淀物进行洗涤、干燥、热处理制成超细粉体[2]。 可以采用硅酸钠和氯化铵为原料, 以乙醇水溶液为溶剂, 采用化学沉淀法制备得到纳米SiO2[3]。将去离子水与无水乙醇以一定浓度混合盛于三口瓶中, 加入一定质量的硅酸钠和少量分散剂, 置于恒温水浴中, 凋节至40±1℃, 搅拌状态下加入氯化铵溶液, 即出现乳白色沉淀, 洗涤, 抽滤, 100℃烘干,置于马弗炉450 ℃焙烧1h, 得到白色轻质的SiO2 粉末。所得SiO2颗粒为无定形结构, 近似球形, 粒径30~50nm, 部分颗粒间通过聚集相互联结, 表面有蜂窝状微孔。 以水玻璃(模数为3.3)和盐酸为原料[4],在超级恒温水浴中控制在40~50℃左右进行沉淀反应, 控制终点pH 值5~6, 得到的沉淀物采用离心法洗涤去掉Cl-, 然后在110℃下干燥12 h, 再于500℃进行焙烧即可得到产品。制得SiO2粒

二氧化硅与信息材料教案

二氧化硅与信息材料 一、教学目标: 1.知识与技能: ⑴了解硅在自然界的存在形式,了解硅及二氧化硅的重要性质。 ⑵了解工业上高纯硅的制备方法。 ⑶了解硅、二氧化硅在信息技术、材料科学等领域的应用和与人类文明发展的关系,激发学生研究、开发新材料的意识。 2.过程与方法目标: 通过碳与硅,二氧化碳与二氧化硅的对比学习,培养学生的推理、归纳、迁移能力。 3.情感与态度目标: 通过硅和二氧化硅的用途的学习,让学生体会到化学与社会的紧密联系,增强学生学习化学的情感需要。 三、教学重点与难点 重点:硅和二氧化硅的化学性质 难点:硅和二氧化硅的化学性质 三、教学用具: 多媒体辅助教学沙子玛瑙饰品、石英钟、。 四、教学方法: [教师]:展示沙子和日常生活中的玛瑙饰品、石英钟等。 [提问]:你知道这些东西有什么共同点吗?有什么关系吗? [学生]从化学角度讲主要成分都是二氧化硅。 [教师]幻灯片展示:芯片 [教师]提问:芯片中的主要材料是? [学生]二氧化硅。 [教师]关于SiO2的性质及用途,我们还不是很了解,下面我们就来进一步学习二氧化硅。 [板书]二氧化硅与信息材料 [教师]:沙子是我们最常见到的二氧化硅之一,结合日常生活常识,日常所见的沙子在哪里?沙子有什么样的性质,基本上就是二氧化硅的性质。首先,沙子能否溶于水,能否与水反应,能否与空气反,加热时能否与氧气反应? [学生]:沙子很坚硬,熔沸点高,可以耐高温;不溶于水也不与水反应,加热是也不与氧气反应,常温时与常见的酸也不反应。 [教师]很好,大家都说了很多二氧化硅的物理性质和化学性质,而且都很正确。那么二氧化硅还有哪些性质,结合课本的知识,对二氧化硅有一个全面的了解。 [教师]好,现在请归纳二氧化硅的相关的信息。 学生归纳,教师板书 板书:一、二氧化硅 1、存在形式 沙子、石英、水晶、硅藻土等。 2、空间结构: 正四面体的立体网状结构。

纳米二氧化硅的发展现状及前景

纳米二氧化硅的发展现状及前景 范文斌 (2010级电信2班) 摘要:对纳米二氧化硅的制备技术进行了全面介绍,对各种制法的优缺点进行了评述:阐明了改性机理,列举了常见的改性方法;对具体的应用,尤其是近年来各新兴领域的应用作了简要的概括,分别叙述了纳米SiO2有各个应用领域所表现的优越性和一些奇异特性。 关键词:纳米SiO2: 1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO2是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎涉及到所有应用SiO2粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成功开发出纳米材料家庭的重要一员——纳米SiO2[1],从而使我国成为继美、英、日、德国之后,国际上第五个能批量生产此产品的国家。纳米SiO2 的批量生产为其研究开发提供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO2的生产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5]

介孔二氧化硅纳米粒的功能化修饰及其在药物研究中的应用

介孔二氧化硅纳米粒的功能化修饰及其在药物研究中的应用 目的:提高介孔二氧化硅纳米粒作为药物载体的性能,促进其在药物治疗中的应用。方法:以“介孔二氧化硅纳米粒”“功能化修饰”“药物”“Mesoporous silica nanoparticles”“Functionalized modification”“Drug”等为关键词,组合查询2012年1月-2018年3月在中国知网、万方数据、维普网、PubMed、SpringerLink、Elsevier 等数据库中的相关文献,主要对介孔二氧化硅纳米粒的肿瘤靶向性修饰、内源性刺激响应性修饰、外源性刺激响应性修饰及其在药物研究中的应用进行论述。结果与结论:共检索到相关文献292篇,其中有效文献43篇。根据肿瘤部位的靶向受体(包括叶酸受体、线粒体受体、透明质酸受体等)和肿瘤内部微环境(包括酸性pH环境、还原性环境、多种酶环境等)以及外部环境刺激(包括温度变化、光和磁场等),采用肿瘤靶向性材料(如叶酸、线粒体靶向肽三苯基膦、转铁蛋白等)、内源性刺激响应性材料(如pH敏感性接头、二硫键、酶响应性材料等)、外源性刺激响应性材料(如温敏性材料聚N-异丙基丙烯酰胺、光敏性材料偶氮苯、超顺磁性四氧化三铁等)对介孔二氧化硅纳米粒进一步功能化修饰,可实现药物的特异性递送,避免药物提前释放,提升药物的抗肿瘤效率,提高药物的生物利用度。介孔二氧化硅纳米粒要应用于临床,还需要解决其大规模生产问题、稳定性问题以及在动物实验中的良好效果能否在临床重现的问题,此外对其毒性和体内分布、代谢过程也需进行深入研究。 关键词介孔二氧化硅纳米粒;功能化修饰;药物;靶向性修饰;刺激响应性修饰 介孔二氧化硅纳米粒(Mesoporous silica nanoparticles,MSNs)因其独特的介孔结构和高比表面积,在药物传递系统(Drug delivery system,DDS)中显示出优于其他纳米载体(如脂质体、纳米球、聚合胶束等)的特点[1]。且MSNs 粒径可控、稳定性和生物相容性强,药物负载能力强[2],在过去的10年中,以二氧化硅为基础的介孔材料成为研究热点[3]。在当前的肿瘤治疗中,主要采用手术治疗、放射治疗、化学药物治疗等方法,但却会产生严重的副作用。而纳米载体可通过实体瘤的高通透性和滞留效应(EPR效应)被动靶向[4]或功能化修饰后主动靶向到肿瘤组织,使药物在肿瘤组织中富集,而对正常组织不产生过多的破坏[5]。MSNs作为纳米载体,对药物分子的负载主要是利用氢键、物理吸附、静电作用和p-p堆积来实现,而这些作用力普遍较弱[6]。介孔二氧化硅纳米粒拥有内外两个表面,通过表面功能化的方法在内外表面修饰功能性基团以改善客体分子与表面之间的作用力[7],不但能有效地控制药物负载量,还能改善药物释放速度[6],满足不同的运载需要[8]。近年来,研究者们积极探究基于MSNs药物载体的功能化修饰,以改善未修饰前MSNs生物降解速度较快、半衰期短[9]、药物与MSNs之间作用力弱[7]、对疏水性抗癌药物的负载和释放能力弱[10]等缺点。笔者以“介孔二氧化硅纳米粒”“功能化修饰”“药物”“Mesoporous silica nanoparticles” “Functionalized modification”“Drug ”等为关键词,组合查询2012年1 月-2018年3月在中国知网、万方数据、维普网、PubMed、SpringerLink、Elsevier 等数据库中的相关文献。结果,共检索到相关文献292篇,其中有效文献43篇。现对MSNs的肿瘤靶向性修饰、内源性刺激响应性修饰、外源性刺激響应性修饰

相关主题
文本预览
相关文档 最新文档