水下定位与导航技术声学多普勒测速技术概述
- 格式:pptx
- 大小:2.25 MB
- 文档页数:78
海底地形地貌调查导航定位技术要求是一项重要的技术工作,它涉及到海底地形地貌的调查和导航定位系统的使用。
以下是一份海底地形地貌调查导航定位技术要求的参考内容,约800字:一、技术概述海底地形地貌调查导航定位技术是用于确定海底地形地貌位置、形态、大小等信息的测量技术。
它通过使用各种导航定位设备和方法,实现对海底地形地貌的精确测量和定位。
二、设备要求1. 导航定位设备:包括GPS接收机、北斗卫星接收机、水下声呐定位仪等,用于获取海底地形地貌的地理位置信息。
2. 测量设备:包括水下摄影设备、水下激光扫描仪、水下地形测量仪等,用于获取海底地形地貌的形态、大小等信息。
3. 数据传输设备:包括数据传输线缆、无线通信设备等,用于将测量数据传输到岸上或船上进行处理和分析。
三、操作流程1. 准备工作:包括设备检查、水下环境评估、测量方案制定等。
2. 测量实施:根据测量方案,使用相应的测量设备对海底地形地貌进行测量,记录数据。
3. 数据处理:将测量数据传输到岸上或船上,进行数据处理和分析,生成海底地形地貌的三维模型或图像。
4. 质量控制:确保测量数据的准确性和可靠性,对测量过程进行质量控制。
四、技术难点与解决方案1. 水下环境复杂:海底地形地貌复杂,水下环境不稳定,容易受到水流、洋流等影响,导致测量数据不准确。
解决方案包括使用稳定的水下定位仪、加强水下环境评估、提高测量设备的稳定性等。
2. 设备易受腐蚀:海底环境潮湿、盐分高,容易导致测量设备腐蚀损坏。
解决方案包括选择耐腐蚀的测量设备、定期对设备进行维护保养、使用防腐材料等。
3. 数据传输不稳定:水下环境复杂,容易导致数据传输不稳定或中断。
解决方案包括使用高质量的数据传输设备、加强数据传输过程中的信号监测、采用多种数据传输方式等。
五、安全要求1. 遵守相关安全规定,确保人员和设备安全。
2. 穿戴专业潜水装备或船只设备,确保在水下或船上作业时的安全。
3. 定期进行安全培训和演练,提高人员安全意识。
海底地形测量的关键技术与方法海底地形测量是一项对海洋科学和海洋工程领域至关重要的任务。
准确测量海底地形的关键技术和方法无疑对于海洋研究和资源开发具有重要意义。
本文将探讨几种重要的海底地形测量技术和方法。
1.声纳测深技术声纳测深技术是最常用的海底地形测量技术之一。
它利用声纳波束在水下传播的原理来获得海底地形的信息。
测深仪通过发送声波信号,根据声波信号的往返时间来计算海底的深度。
这种技术不仅可以精确测量海底的深度,还可以获取地形特征如海底峡谷、山脉等的描述。
声纳测深技术的主要优点是非侵入性,且适用于大范围的海域。
然而,由于声波的传播速度受到多种因素的影响,如水温、盐度和压力等,因此在进行声纳测深时需要进行校正和补偿。
2.多波束测深技术多波束测深技术是声纳测深技术的一种改进方法。
该技术利用多个声波发射器和接收器,并通过计算声波波束的散射点来推断海底地形。
相比传统的单波束测深技术,多波束测深技术能够提供更加精确和详细的海底地形信息。
多波束测深技术的应用领域广泛,包括海洋测绘、海底管道敷设和海底地质研究等。
然而,在复杂的海底地形条件下,多波束测深技术的应用可能存在一定的局限性。
3.定位技术准确的位置信息对于海底地形测量也是至关重要的。
全球定位系统(GPS)和LORAN(低频无线导航系统)是两种常用的海底定位技术。
GPS通过卫星定位技术精确测量探测器的位置,从而提供准确的海底地形测量数据。
而LORAN则利用地面和海底基站之间的时间延迟来确定探测器的位置。
这些定位技术可以与声纳测深技术结合使用,以提供更加准确和可靠的海底地形数据。
4.激光扫描技术激光扫描技术是一种近年来得到广泛应用的海底地形测量技术。
这种技术利用激光束测量海底地形的高程信息。
激光扫描技术具有高精度、高分辨率和高效率的特点,可以获取精确的海底地形数据。
通过激光扫描技术,可以获取海底地形的地形线图和三维模型,为海洋研究和工程提供重要参考。
然而,激光扫描技术在应用中需要考虑光线在海水中的传播和散射问题,因此在复杂的海底环境中可能存在一定的挑战。
自主水下航行器导航与定位技术发布时间:2023-02-03T02:36:04.888Z 来源:《科学与技术》2022年第18期作者:杜晓海[导读] 自主水下机器人(AUV)作为开发和利用海洋资源的主要载体,杜晓海海军装备部 710065摘要:自主水下机器人(AUV)作为开发和利用海洋资源的主要载体,在执行任务时需要准确的定位信息。
现有AUV主要采用基于捷联惯性导航系统(SINS),辅以声学导航和地球物理场匹配导航技术。
本文简要介绍了水下导航模式的基本原理、优缺点和适用场景;讨论了各种导航模式中的关键技术,以提高组合导航的精度和稳定性。
通过分析现阶段存在的问题,展望了水下航行的未来发展趋势。
关键词:自主水下航行器;智能导航;智能定位本文综述了目前主流的AUV水下导航关键技术,包括DVL测速技术、LBL/SBL/USBL水声定位导航技术、地形辅助导航技术、地磁辅助导航技术和重力辅助导航技术以及协同导航技术,介绍了相关导航技术的基本原理和发展,分析和总结了水下自主导航中各技术的关键问题和技术难点,最后展望了AUV水下导航技术的未来发展。
1 SINS/DVL定位技术DVL是一种利用声波多普勒效应测量载流子速度的导航仪器。
根据AUV与水底之间的相对距离,DVL有两种模式:水底跟踪和水底跟踪。
当载流子与水底的相对距离在该范围内时,声波可以到达水底,当AUV与水底之间的相对距离超过范围时,声波无法到达水底,DVL采用水跟踪模式。
根据传输波速的多少,可以分为单波束、双波束和四波束。
1.1 SINS/DVL对准技术惯性导航可以为AUV提供实时的姿态、速度、位置等导航信息。
然而,初始对准必须在使用前进行,初始对准的结果在很大程度上决定了最终的集成精度。
通常,AUV在停泊或航行于水面时接收GPS信号进行初始对准。
在特定的任务背景下,AUV需要在水下运动期间完成初始对准,因此,许多学者提出了基于DVL辅助的移动基站对准。
水声定位的原理与应用1. 引言水声定位是一种利用水中传播的声波进行目标定位的技术。
其原理基于声波在水中的传播特性以及目标反射、散射声波的物理效应,因此在海洋科学研究、海洋工程、海洋资源开发等领域有广泛的应用。
本文将介绍水声定位的原理和其在不同领域中的应用。
2. 原理水声定位基于声波在水中传播的特性,通过测量声波的传播时间和方向来确定目标的位置。
主要原理包括声速测量、时间差测量和方位角测量。
2.1 声速测量声速是水声定位的重要参数,它受到水温、盐度和压力等因素的影响。
通过测量声速可以校正和修正声波传播时间,从而提高定位的精度。
2.2 时间差测量时间差测量是水声定位中常用的测距方法。
通过在不同位置接收到声波的时间差来计算目标与接收器之间的距离。
常用的时间差测量方法包括单次时间差测量、双次时间差测量和多次时间差测量。
2.3 方位角测量方位角测量用于确定目标相对于接收器的方向。
通过接收到声波的信号强度和相位差等信息来计算目标的方位角。
常用的方位角测量方法包括声强比较法、相位差法和多基站测量法。
3. 应用水声定位在海洋科学研究、海洋工程和海洋资源开发等领域有广泛的应用。
3.1 海洋科学研究水声定位在海洋科学研究中用于测量海洋中的生物群落、底质和水柱的属性。
通过定位获取的位置信息,科学家可以研究海洋生态系统的动态变化、物种分布和迁徙规律。
3.2 海洋工程水声定位在海洋工程中用于定位和追踪海底设施,如海洋油井、海底电缆和海洋观测设备。
通过精确的定位信息,工程师可以进行维护、修复和调整工程设施,提高工作效率。
3.3 海洋资源开发水声定位在海洋资源开发中用于勘探和开采海底油气资源、矿产资源和生物资源。
通过准确的目标定位,可以提高资源开发的效率和收益,并减少对海洋环境的影响。
4. 总结水声定位是一种利用水中传播的声波进行目标定位的技术,其原理基于声波在水中的传播特性以及目标反射、散射声波的物理效应。
水声定位在海洋科学研究、海洋工程和海洋资源开发等领域有广泛的应用。
水下声学定位系统概述概述20世纪90年代以来,世界先进国家的海洋调查技术手段逐步成熟与完善,其中超短基线(简称USBL)水下设备大地定位技术也获得了长足的发展。
高精度水下定位系统具有广泛的用途,在海洋探测研究、海洋工程、水下建筑物施工、潜水员水下作业、水下考古、海洋国防建设等方面,都离不开水下定位系统为其提供高精度、高质量的定位资料,因此高精度水下定位技术对维护国家领土权益和国民经济建设都具有重要意义。
关于水下声学定位系统20世纪50~60 年代,在国际上,随着光、声、磁等技术的不断发展,在大力开发海洋自然资源和海洋工程的进程中,水下探测技术得到了较大发展,相继开发了一系列先进的、高效能的水下探测设备:在各种水下检测的光、声、磁技术中,由于水下光波衰减很快,即使是波长最长、传播最远的红外光波在水中传播到了几米以后也衰减完了,而声波和电磁波在水中有良好的传播性,因而,声呐、磁探和超短基线成为水下检测的有效方法。
声学定位系统最初是在19世纪60年代的时候被开发出来用于支持水下调查研究。
从那时起,这类系统便在为拖体,ROV等水下目标的定位中成为了重要角色。
声学定位系统能够在有限的区域内提供非常高的位置可重复精度,甚至在远离海岸。
对大多数用户来说,可重复性精度要比绝对精度重要。
水下声学定位系统分类在声学定位系统中,有3种主要的技术:长基线定位(LBL),短基线定位(SBL),和超短基线定位(SSBL/USBL),有些现代的定位系统能组合使用以上技术。
长基线(LBL):长基线定位能在宽广的区域内提供高精度的位置,它需要至少3个应答器组成的阵列部署在海底上的已知点上,水面舰只安装一个换能器。
换能器测量出到水底应答器的斜距,从而计算出自身的坐标位置。
图1短基线(SBL):短基线定位需要在舰船上安装至少3个换能器阵,换能器之间的位置关系为已知,应答器安装在需要定位的目标上,舰船上的多个换能器测量出到同一个应答器的距离,从而计算出目标的位置。
水下目标识别与声信号处理技术水下目标识别与声信号处理技术 1、目的与意义水下目标探测与识别技术对海洋资源的开发和利用以及军事方面有着极大的意义和作用。
比如海底石油的开发和探测,下水潜艇的探测,以及海底残骸,海底底质的分类等等。
目前水下目标探测的主要传感器有:微光TV、激光成像和声纳传感器。
微光TV的图像清楚,但受海水能见度影响很大,总的来说可识别的距离太近,实际应用中难以满足要求;激光成像是在近几年发展起来的新方法,比较适合水下机器人使用,其体积、重量和所需功耗都较小,成像质量远高于声学成像并类似于微光TV,作用距离比TV远,同时可提供较准确的距离信息。
然而要满足对水下目标识别的要求,仍然有不少技术难关需攻克;声学传感器(声纳)在水中作用距离远,又有一定的分辨率,所以是目前水下目标探测的主要传感器。
但是,声纳传感器受海洋环境、背景目标等影响,成像的清晰度不够,给目标探测和识别增加了难度。
智能水下机器人的视觉系统主要依靠“声视觉”。
与传统的声纳系统不同,声视觉系统不仅有声图像和声信息的获取能力,而且应该具备对图像和信息的处理、特征提取以及分类和识别的功能。
安装在机器人主体上的成像探测声纳主要有两类:(1)侧扫声纳:对机器人下方和两侧进行扫描成像的声纳系统,主要用于远距离,大范围的目标探测与定位。
(2)前视声纳:对机器人前方物体和景物声成像的声纳系统。
2、整个声视觉系统的框架为:(l)机器人前方:安装低分辨前视声纳、高分辨率前视声纳(采用声透镜技术)或三维成像声纳。
低分辨前视声纳主要用来发现前方远距离目标,在探测到可疑目标后,接近目标启动高分辨率前视声纳或三维声纳,进行目标的精细探测和识别;(2)机器人侧面:安装高分辨侧扫声纳,主要用来进行远距离海底探测,发现目标后,引导机器人下潜进行近距离识别; (3)机器人下方:安装高分辨的近距离成像声纳或三维成像声纳。
主要进行海底目标(水雷,沉船或管道等)高分辨率识别。
基于水下航行器导航定位及信息融合技术研究一、本文概述随着海洋资源的日益开发和利用,水下航行器在海洋探测、海底资源勘探、水下救援等领域的应用越来越广泛。
然而,水下环境的复杂性和不确定性,使得水下航行器的导航定位及信息融合技术成为其性能提升和广泛应用的关键。
本文旨在深入探讨水下航行器的导航定位技术及其信息融合方法,分析当前国内外研究现状,并在此基础上提出新的技术思路和改进方案,为水下航行器的性能提升和实际应用提供理论支撑和实践指导。
本文首先对水下航行器导航定位技术的基本原理和常用方法进行了详细介绍,包括声学导航、惯性导航、视觉导航等多种导航方式,以及各种导航方式的优势和不足。
在此基础上,对水下航行器信息融合技术的研究现状进行了综述,包括传感器数据融合、多源信息融合、导航与感知信息融合等方面的研究进展。
针对当前研究中存在的问题和不足,本文提出了一种基于多源信息融合的水下航行器导航定位方法。
该方法充分利用了声学、惯性、视觉等多种导航方式的优势,通过信息融合技术实现对水下航行器的高精度导航定位。
本文还提出了一种基于深度学习的水下环境感知模型,用于提高水下航行器对复杂环境的感知和适应能力。
本文对所提出的方法进行了仿真实验和性能评估,验证了其有效性和可行性。
对未来研究方向和应用前景进行了展望,以期为推动水下航行器技术的发展和进步做出贡献。
二、水下航行器导航定位技术基础水下航行器的导航定位技术是其实现精确导航与高效作业的关键所在。
该技术融合了多种学科领域的知识,包括物理学、数学、控制工程以及海洋科学等。
其核心技术主要包括声纳导航、惯性导航、视觉导航以及地磁导航等。
声纳导航:声纳(SONAR)是水下航行器最常用的导航手段之一。
它利用声波在水中的传播特性,通过发射声波并接收其反射回波,从而获取航行器与周围环境的相对距离和形状信息。
声纳导航的优点在于其工作范围广泛,不受光线条件限制,但精度受水质、水温、盐度等多种因素影响。
水下潜器组合导航定位及数据融合技术研究一、概述水下潜器组合导航定位及数据融合技术研究,是近年来海洋工程领域的重要研究方向之一。
随着水下潜器在民用和军事领域的广泛应用,其导航定位精度和可靠性成为制约其性能提升的关键因素。
传统的单一导航方式,如惯性导航、声学导航等,虽然各有其优点,但在复杂多变的水下环境中,其性能往往受到限制。
研究水下潜器组合导航定位及数据融合技术,对于提高水下潜器的导航定位精度和可靠性具有重要意义。
组合导航定位技术通过集成多种导航传感器的信息,充分利用各种导航方式的优点,克服单一导航方式的局限性。
在水下潜器组合导航定位系统中,常用的导航传感器包括惯性测量单元、多普勒计程仪、声学信标等。
这些传感器能够提供不同的导航信息,如速度、位置、姿态等,通过合理的融合算法,可以实现信息的互补和优化,提高导航定位精度。
数据融合技术是实现组合导航定位的关键。
在水下潜器组合导航定位系统中,由于各种导航传感器的工作原理和性能特点不同,其提供的数据可能存在误差、噪声和不确定性。
需要通过数据融合技术,对多源导航数据进行处理和分析,提取出有效的导航信息,抑制噪声和误差的影响,提高导航定位的稳定性和可靠性。
水下潜器组合导航定位及数据融合技术的研究已经取得了一定的进展。
仍面临着诸多挑战和问题。
如何选择合适的导航传感器进行组合,如何设计有效的融合算法以充分利用各种导航信息,如何在实际应用中实现高精度、高可靠性的导航定位等。
需要进一步深入研究水下潜器组合导航定位及数据融合技术,推动其在实际应用中的发展。
水下潜器组合导航定位及数据融合技术研究是一项具有重要意义和挑战性的研究工作。
通过深入研究和实践,有望为水下潜器的导航定位性能提升提供有效的技术支持,推动海洋工程领域的发展。
1. 研究背景与意义随着海洋经济的快速发展和国防安全需求的提升,水下潜器在海洋探测、资源开发、军事侦察等领域的应用日益广泛。
水下环境复杂多变,导航定位技术面临着诸多挑战。
水下声学通信与定位技术研究水下声学通信与定位技术研究一、引言地球表面约 70%被水覆盖,其中海洋蕴含着丰富的资源并在全球气候调节、交通运输等诸多方面扮演着极为关键的角色。
随着人类对海洋探索与开发活动的日益频繁,水下声学通信与定位技术作为实现水下信息传输与目标位置确定的核心手段,正受到越来越广泛的关注与深入的研究。
水下环境与陆地环境存在着显著差异。
水对电磁波具有强烈的吸收作用,导致电磁波在水下传播时衰减迅速,传播距离极为有限。
而声波在水中却能够相对稳定地传播较长距离,因此成为水下信息传输与目标探测的主要载体。
水下声学通信与定位技术基于声波在水中的传播特性,通过合理设计声学系统、信号处理算法等,致力于实现高效、可靠的水下信息交互以及精准的目标位置确定,这对于海洋资源开发、海洋科学研究、水下事应用等多个领域都具有不可替代的重要意义。
二、水下声学通信技术(一)水下声学通信原理水下声学通信主要是利用声波在水中的传播来传递信息。
发送端将待传输的信息(如数据、语音、图像等)进行编码和调制,加载到声波信号上,然后通过换能器将电信号转换为声波信号向水中发射。
声波在水中传播,经过一定的传播路径后到达接收端。
接收端的换能器将接收到的声波信号转换为电信号,再经过解调、解码等处理过程,恢复出原始的信息。
在这个过程中,声波在水中的传播特性对通信效果有着至关重要的影响。
例如,声波的传播速度在海水中约为1500m/s 左右,且会随着水温、盐度、深度等因素的变化而发生改变。
此外,声波在传播过程中会发生衰减、散射、多径传播等现象。
衰减会导致信号强度随着传播距离的增加而逐渐减弱,限制了通信的有效距离;散射会使信号向不同方向扩散,造成信号能量的分散;多径传播则会使同一信号经过不同路径到达接收端,产生时延扩展和信号失真,这些因素都给水下声学通信带来了巨大的挑战。
(二)水下声学通信调制技术为了提高水下声学通信的效率和可靠性,多种调制技术被应用于水下通信系统中。