高考数学一本通第二轮复习用书
- 格式:pdf
- 大小:19.85 MB
- 文档页数:116
高中数学一轮复习好用的教辅书推荐高考,从来不是一个人孤单的旅行,在高考的这条路上,有千千万万的教辅书陪伴着你,马山就要到高考了,有的人进入了紧张的冲刺阶段,为高考做着最后的努力。
有的人进入了一轮复习,准备明年的高考。
有的人沉浸在高一的兴奋中,不知不觉间就进入到了高二。
数学作为三大主科之一,是高考必考的一门科目,对于马上就要进入到一轮复习的高考小可爱们,跟着来看一看有哪些好用的数学一轮教辅书吧!《蝶变必刷题》内容介绍:蝶变家的这本数学教辅书是专题加考点进行题型的分布,包含高中三年所有的知识点,契合新高考命题理念和规律,内容详细,知识点清晰,题型经典,贴近高考。
蝶变家的这本数学必刷题比较适合数学基础薄弱的考生在数学一轮复习的时候作为主要的复习资料。
同时这本数学教辅书里面的考点既综合又贴近高考,突出基础知识和重点难点,帮助我们指明学习重点。
以练为主,专项专练,精析考点。
同时蝶变家的这本数学教辅书包含五年的高考真题和模拟练习题,在刷题的同时,还可以训练思维让你掌握学习的方法。
这本数学教辅书也采用线装的装订方式,方便读者练习和书写。
《刷题狗》内容介绍:这本数学教辅书里面的题型包括基础题、模拟题、高考题、易错题、高频题、综合题六部分。
是按照知识点加题型进行内容排版的。
数学知识点内容全面,题量全,题型大,值得注意的是,这本数学教辅书是大数据挑选题目。
答案单独成册。
但是这本教辅书要有一定基础的同学,平时做题会,一考试就懵的同学。
《600分考点700考法》内容介绍:67这本教辅书是采用考点加专题加全章专项训练。
系统的练习知识点,将知识点连成线。
适用于数学一轮复习。
67系列主打考点和考法。
考点就是高考考哪些数学知识点、用哪些题型来考、哪些是高频考点等;考法就是某个知识点会出什么样的题、解题的步骤有哪些、考点的关键点是什么等。
它通过对历年数学高考真题的分析与研究,让你从知道知识、理解知识到最后运用知识,也就是会用这个知识点解决题目。
高考数学复习一本全目录前言 (2)第一章高中数学解题基本方法 (3)一、配方法 (3)二、换元法 (7)三、待定系数法 (14)四、定义法 (19)五、数学归纳法 (23)六、参数法 (28)七、反证法 (32)八、消去法………………………………………九、分析与综合法………………………………十、特殊与一般法………………………………十一、类比与归纳法…………………………十二、观察与实验法…………………………第二章高中数学常用的数学思想 (35)一、数形结合思想 (35)二、分类讨论思想 (41)三、函数与方程思想 (47)四、转化(化归)思想 (54)第三章高考热点问题和解题策略 (59)一、应用问题 (59)二、探索性问题 (65)三、选择题解答策略 (71)四、填空题解答策略 (77)附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。
而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。
高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。
我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
数学思想方法与数学基础知识相比较,它有较高的地位和层次。
高中数学压轴小题教辅
高考数学必刷小题,以下教辅书值得推荐:
•《蝶变小题必刷》:此书旨在通过小题训练,帮助同学们牢牢掌握高中数学知识点,争取在做题时看到即选。
•《小题狂做》:此系列图书已经出版多年,凭借其出众的品质、显著的效率和良好的服务,一直受到广大师生的喜爱。
•《新高考数学真题全刷》基础2000题:这是一本适合数学基础较差的学生先刷的教辅,当把所有基础题消化吸收之后再接着刷超难1000题。
此外,《一遍过》和《53题霸》也是值得推荐的教辅,前者模拟题居多,难度逐渐增加,适合基础较弱的学生;后者真题较多,难度大些,适合需要挑战的学生。
请注意,以上推荐仅供参考,具体选择哪本书籍还需结合自身实际情况和学习需求。
除了以上提到的教辅书,还有《知识清单》和《五三题库》等,都是不错的选择。
《知识清单》主要是用于复习基础知识的教辅,内容全面、条理清晰,非常适合夯实基础。
而《五三题库》则是一个题量非常大的刷题教辅,里面的题目难度较高,适合提升解题能力和思维水平。
最后,选择教辅书时,建议结合自身的学习情况、学习需求和目标,选择适合自己的教辅。
同时,也要注意合理安排时间,不要因为刷题而影响了其他学科的学习。
适合基础较差的高中数学教辅
适合基础较差的高中数学教辅,可以考虑以下几本:
《高中知识清单》:这本书将高中数学知识点串联起来,构建了一个完整的知识体系。
正文里采用了四种颜色来区分知识的重要程度,黄色荧光部分是重点,手写笔记是蓝黑色的,复习时更有针对性。
《知识清单》:作为一本工具书,通过思维导图、表格等帮助建立知识之间的联系和区别,适合记笔记耗时较长的同学。
《真题全刷基础2000题》:这本书适合基础薄弱的同学,结合了知识点整理和例题及解题方法总结,但缺乏练习题,因此需要搭配其他练习题进行学习。
请注意,这些教辅只是参考,建议根据自身情况选择合适的教辅。
此外,上课认真听讲、晚上保持充足的睡眠也非常重要。
高考数学理科二轮复习资料全套一、集合与常用逻辑用语(理科数学)1.集合(1)集合的运算性质:①A∪B=A⇔B⊆A;②A∩B=B⇔B⊆A;③A⊆B⇔∁U A⊇∁U B.(2)子集、真子集个数计算公式:对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n -1,2n-2.(3)数轴和Venn图是进行交、并、补运算的有力工具,在具体计算时不要忘记集合本身和空集这两种特殊情况.补集思想常运用于解决否定型或正面较复杂的有关问题.2.四种命题及其相互关系(1)(2)互为逆否命题的两命题同真同假.3.含有逻辑联结词的命题的真假(1)命题p∨q:若p、q中至少有一个为真,则命题为真命题,简记为:一真则真.(2)命题p∧q:若p、q中至少有一个为假,则命题为假命题,p、q同为真时,命题才为真命题,简记为:一假则假,同真则真.(3)命题綈p与命题p真假相反.4.全称命题、特称命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称命题綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),其否定为全称命题綈p:∀x∈M,綈p(x).5.充分条件和必要条件(1)若p⇒q且q⇏p,则p是q的充分不必要条件;(2)若p⇏q且q⇒p,则称p是q的必要不充分条件;(3)若p⇔q,则称p是q的充要条件;(4)若p⇏q且q⇏p,则称p是q的既不充分也不必要条件.1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.4.空集是任何集合的子集.由条件A⊆B,A∩B=A,A∪B=B求解集合A时,务必分析研究A=∅的情况.5.区分命题的否定与否命题,已知命题为“若p,则q”,则该命题的否定为“若p,则綈q”,其否命题为“若綈p,则綈q”.6.在对全称命题和特称命题进行否定时,不要忽视对量词的改变.7.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3B.0或3C.1或 3D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2}B.{a|a≤1}C.{a|a≥1}D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5}B.{x|-5<x<5}C.{x|x<-5或x>-3}D.{x|x<-3或x>5}答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1B.2C.3D.4答案 D解析满足题意的集合A可以为{a},{a,b},{a,c},{a,b,c},共4个.5.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁U B)等于()A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)答案 D解析B={x|x2-2x<0}=(0,2),A∪(∁U B)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.下列命题正确的是()(1)命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,20x ≤0”;(2)l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α;(3)给定命题p ,q ,若“p ∧q 为真命题”,则綈p 是假命题;(4)“sin α=12”是“α=π6”的充分不必要条件. A.(1)(4) B.(2)(3) C.(1)(3) D.(3)(4)答案 C解析 命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,20x ≤0”;l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α或l ⊂α;给定命题p ,q ,若“p ∧q 为真命题”;则p 且q 是真命题,綈p 且綈q 是假命题;“sin α=12”是“α=π6”的必要不充分条件,因此(1)(3)为真,选C. 7.设命题p :∃x 0∈R ,使x 20+2x 0+a =0(a ∈R),则使得p 为真命题的一个充分不必要条件是( )A.a >-2B.a <2C.a ≤1D.a <0答案 D解析 设f (x )=x 2+2x +a ,则p 为真命题⇔f (x )在R 内有零点⇔Δ≥0⇔a ≤1.8.已知命题p :在△ABC 中,若AB <BC ,则sin C <sin A ;命题q :已知a ∈R ,则“a >1”是“1a <1”的必要不充分条件.在命题p ∧q ,p ∨q ,(綈p )∨q ,(綈p )∧q 中,真命题的个数为( )A.1B.2C.3D.4答案 A解析 由题意得,在△ABC 中,若AB <BC ,即c <a ,由正弦定理可得sin C <sin A ,所以p 真,又已知a ∈R ,则“a >1”是“1a <1”的充分不必要条件,所以q 假,只有p ∨q 为真命题,故选A.9.已知命题p :∀m ∈[0,1],x +1x≥2m ,则綈p 为( ) A.∀m ∈[0,1],x +1x<2m B.∃m 0∈[0,1],x +1x ≥20mC.∃m 0∈(-∞,0)∪(1,+∞),x +1x≥20m D.∃m 0∈[0,1],x +1x <20m答案 D解析 根据全称命题与特称命题的关系,可知命题p :∀m ∈[0,1],x +1x ≥2m ,则綈p 为“∃m 0∈[0,1],x +1x <20m ”,故选D.10.下列结论正确的是________.(1)f (x )=a x -1+2(a >0,且a ≠1)的图象经过定点(1,3);(2)已知x =log 23,4y =83,则x +2y 的值为3; (3)若f (x )=x 3+ax -6,且f (-2)=6,则f (2)=18;(4)f (x )=x (11-2x -12)为偶函数; (5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,则m 的值为1或-1.答案 (1)(2)(4)解析 (1)当x =1时,f (1)=a 0+2=1+2=3,则函数的图象经过定点(1,3),故(1)正确;(2)已知x =log 23,4y =83,则22y =83,2y =log 283,则x +2y =log 23+log 283=log 2(83×3)=log 28=3,故(2)正确; (3)若f (x )=x 3+ax -6,且f (-2)=6,则(-2)3-2a -6=6,即a =-10,则f (2)=23-2×10-6=-18,故(3)错误;(4)函数的定义域为{x |x ≠0},关于原点对称,f (x )=x (11-2x -12)=x ·1+2x 2(1-2x ), 则f (-x )=-x ·1+2-x 2(1-2-x )=-x ·2x +12(2x -1)=x ·1+2x2(1-2x )=f (x ), 即有f (x )为偶函数,则f (x )=x (11-2x -12)为偶函数,故(4)正确; (5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,当m =0时,B =∅,也满足条件,故(5)错误,故正确的是(1)(2)(4).11.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________. 答案 (-∞,-2)∪[5,+∞)解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5,∴5∉M 时,a <-2或a ≥5. 12.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z},集合P ={a ,b ,c }⊆M ,则(1)“好集”P 中的元素最大值为________;(2)“好集”P 的个数为________.答案 2 012 1 006解析 因为a =-2b ,c =4b ,若集合P 中元素a 、b 、c 既是调和的,又是等差的,则1a +1b =2c 且a +c =2b ,故满足条件的“好集”为形如{-2b ,b ,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,P 中元素的最大值为4b =4×503=2 012.符合条件的b 值可取1 006个,故“好集”P 的个数为1 006.13.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________.答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a ,∵q 是p 的必要不充分条件,∴a ≤-4,∴a ∈(-∞,-4].14.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m 的取值范围是________.答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3; ∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0⇔1-m <x <1+m ,∴q :1-m <x <1+m .∵p 是q 的充分不必要条件,∴[-1,3]是(1-m ,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3,解得m >2.二、函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域;③在实际问题中应使实际问题有意义.(2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ;②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎡⎭⎫4ac -b 24a ,+∞,a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R|y ≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期.3.关于函数周期性、对称性的结论(1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.③若函数y =f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b 2对称. 4.函数的单调性函数的单调性是函数在定义域上的局部性质.①单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数. ②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性.5.函数图象的基本变换(1)平移变换:y =f (x )――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换:y =f (x )――→x 轴y =-f (x ),y =f (x )――→y 轴y =f (-x ),y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质(1)定点:y =a x (a >0,且a ≠1)恒过(0,1)点;y=log a x(a>0,且a≠1)恒过(1,0)点.(2)单调性:当a>1时,y=a x在R上单调递增;y=log a x在(0,+∞)上单调递增;当0<a<1时,y=a x在R上单调递减;y=log a x在(0,+∞)上单调递减.7.函数与方程(1)零点定义:x0为函数f(x)的零点⇔f(x0)=0⇔(x0,0)为f(x)的图象与x轴的交点.(2)确定函数零点的三种常用方法①解方程判定法:即解方程f(x)=0.②零点定理法:根据连续函数y=f(x)满足f(a)f(b)<0,判断函数在区间(a,b)内存在零点.③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解.8.导数的几何意义(1)f′(x0)的几何意义:曲线y=f(x)在点(x0,f(x0))处的切线的斜率,该切线的方程为y-f(x0)=f′(x0)(x-x0).(2)切点的两大特征:①在曲线y=f(x)上;②在切线上.9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f(x)的定义域;②求导函数f′(x);③由f′(x)>0的解集确定函数f(x)的单调增区间,由f′(x)<0的解集确定函数f(x)的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f(x)在区间M上单调递增,则f′(x)≥0(x∈M)恒成立;若可导函数f(x)在区间M上单调递减,则f′(x)≤0 (x∈M)恒成立;②若可导函数在某区间上存在单调递增(减)区间,f′(x)>0(或f′(x)<0)在该区间上存在解集;③若已知f(x)在区间I上的单调性,区间I 中含有参数时,可先求出f(x)的单调区间,则I是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f′(x)=0;③判断f′(x)在方程f′(x)=0的根x0两侧的符号变化:若左正右负,则x0为极大值点;若左负右正,则x0为极小值点;若不变号,则x0不是极值点.(2)求函数f(x)在区间[a,b]上的最值的一般步骤:①求函数y=f(x)在(a,b)内的极值;②比较函数y=f(x)的各极值与端点处的函数值f(a)、f(b)的大小,最大的一个是最大值,最小的一个是最小值.1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y =a x (a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x -4,x >0,则f [f (1)]等于( ) A .-10 B .10 C .-2 D .2答案 C解析 由f [f (1)]=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞)B .[1,32) C .[1,2)D .[32,2) 答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x, 由f ′(x )=0,得x =12.利用图象可得, ⎩⎪⎨⎪⎧ k -1<12<k +1,k -1≥0,解得1≤k <32,故选B. 3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( ) A .(94,3) B .[94,3) C .(1,3)D .(2,3)答案 D 解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.函数y =x ·2x|x |的图象大致形状是( )答案 A解析 y =⎩⎪⎨⎪⎧2x ,x >0,-2x ,x <0, y =2x 在(0,+∞)上单调递增,且y =2x >0,排除B ,D ;又y =-2x 在(-∞,0)上单调递减,排除C.5.(2016·课标全国甲)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D解析 函数y =10lg x 的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x ,故选D.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( )A .2B .0C .-1D .-2答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.已知函数f (x )=⎝⎛⎭⎫15x -log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)的值( )A .恒为正值B .等于0C .恒为负值D .不大于0 答案 A解析 由题意知f (x )为(0,+∞)上的减函数,又f (x 0)=0,x 1<x 0,∴f (x 1)>f (x 0)=0,故选A.8.设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b . 9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________.答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1, 即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.(2016·天津)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 答案 3解析 因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3.11.设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________. 答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ),可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f (-32)=f (12)=-14, ∴f (3)+f (-32)=-14. 12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________.答案 -7解析 ∵f ′(x )=3x 2+2ax +b , 由已知可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得a =4,b =-11或a =-3,b =3,经验证,a =4,b =-11符合题意,故a +b =-7.13.已知函数f (x )=x +1e x(e 为自然对数的底数). (1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减, 若t ∈(t,1],φ′(x )>0,φ(x )在(t,1)上单调递增, ∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t <max{1,3-t e}.(*)由(1)知,g (t )=2·t +1e t 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.三、三角函数、平面向量1.准确记忆六组诱导公式 对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式 sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0). 3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ).4.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.5.三种三角函数的性质6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换:y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c 2R. a ∶b ∶c =sin A ∶sin B ∶sin C . 8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号.2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ. 5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解.6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件; a·b <0是〈a ,b 〉为钝角的必要不充分条件.1.2sin 45°cos 15°-sin 30°的值等于( ) A.12 B.22 C.32 D.1 答案 C解析 2sin 45°cos 15°-sin 30°=2sin 45°cos 15°-sin(45°-15°)=2sin 45°cos 15°-(sin 45°cos 15°-cos 45°sin 15°)=sin 45°cos 15°+cos 45°sin 15°=sin 60°=32.故选C. 2.要得到函数y =sin 2x 的图象,可由函数y =cos(2x -π3)( )A.向左平移π6个单位长度得到B.向右平移π6个单位长度得到C.向左平移π12个单位长度得到D.向右平移π12个单位长度得到答案 D解析 由于函数y =sin 2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x -π3)向右平移π12个单位长度得到函数y =sin 2x 的图象,故选D.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A.3B.932C.332 D.3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.4.(1+tan 18°)(1+tan 27°)的值是( ) A. 3 B.1+ 2 C.2 D.2(tan 18°+tan 27°) 答案 C解析 由题意得,tan(18°+27°)=tan 18°+tan 27°1-tan 18°tan 27°,即tan 18°+tan 27°1-tan 18°tan 27°=1, 所以tan 18°+tan 27°=1-tan 18°tan 27°,所以(1+tan 18°)(1+tan 27°)=1+tan 18°+tan 27°+tan 18°tan 27°=2,故选C.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案 B解析 ∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.已知A ,B ,C 是锐角△ABC 的三个内角,向量p =(sin A ,1),q =(1,-cos B ),则p 与q 的夹角是( ) A.锐角 B.钝角 C.直角 D.不确定 答案 A解析 ∵A 、B 、C 是锐角△ABC 的三个内角,∴A +B >π2,即A >π2-B >0,∴sin A >sin(π2-B )=cos B ,∴p·q =sin A -cos B >0.再根据p ,q 的坐标可得p ,q 不共线,故p 与q 的夹角为锐角. 7. f (x )=12sin(2x -π3)+32cos(2x -π3)是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数答案 C解析 f (x )=12sin(2x -π3)+32cos(2x -π3)=sin(2x -π3+π3)=sin 2x ,是最小正周期为π的奇函数,故选C.8.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a 与b 的夹角为( )A.0B.π4C.2π3 D.π答案 D解析 |b |=12|a |=52,而(a +2b )·(2a -b )=0⇒2a 2-2b 2+3b·a =0⇒b·a =-52,从而cos 〈b ,a 〉=b·a |b|·|a |=-1,〈b ,a 〉=π,故选D.9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 有下列命题: ①若A >B >C ,则sin A >sin B >sin C ;②若cos A a =cos B b =cos Cc ,则△ABC 为等边三角形; ③若sin 2A =sin 2B ,则△ABC 为等腰三角形; ④若(1+tan A )(1+tan B )=2,则△ABC 为钝角三角形; ⑤存在A ,B ,C 使得tan A tan B tan C <tan A +tan B +tan C 成立. 其中正确的命题为________.(写出所有正确命题的序号). 答案 ①②④解析 若A >B >C ,则a >b >c ⇒sin A >sin B >sin C ; 若cos A a =cos B b =cos C c ,则cos A sin A =cos Bsin B⇒sin(A -B )=0⇒A =B ⇒a =b ,同理可得a =c ,所以△ABC 为等边三角形;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,因此△ABC 为等腰或直角三角形;若(1+tan A )(1+tan B )=2,则tan A +tan B =1-tan A tan B ,因此tan(A +B )=1⇒C =3π4,△ABC 为钝角三角形;在△ABC 中,tan A tan B tan C =tan A +tan B +tan C 恒成立, 因此正确的命题为①②④.10.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析 由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A=1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去).11.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案 25解析 ∵tan θ=3,∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25.12.已知单位向量a ,b ,c ,且a ⊥b ,若c =ta +(1-t )b ,则实数t 的值为________. 答案 1或0解析 c =ta +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2=1⇒t =0或t =1.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ). (1)求角B 的大小;(2)求函数f (x )=2sin 2x +sin(2x -B )(x ∈R)的最大值. 解 (1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin 2x +sin 2x cos2π3-cos 2x sin 2π3=32sin 2x -32cos 2x =3sin(2x -π6), 即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.14.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值. 解 (1)f (x )=2sin x cos x -2cos 2x +1 =sin 2x -cos 2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z),得k π-π8≤x ≤k π+3π8(k ∈Z),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角,∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a = 5.四、数 列1.牢记概念与公式 等差数列、等比数列2.活用定理与结论(1)等差、等比数列{a n }的常用性质(2)判断等差数列的常用方法 ①定义法:a n +1-a n =d (常数) (n ∈N *)⇔{a n }是等差数列. ②通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. ③中项公式法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. ④前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. (3)判断等比数列的三种常用方法①定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.②通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. ③中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和.(2)形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列,利用错位相减法求和. (3)通项公式形如a n =c (an +b 1)(an +b 2)(其中a ,b 1,b 2,c 为常数)用裂项相消法求和.(4)通项公式形如a n =(-1)n ·n 或a n =a ·(-1)n (其中a 为常数,n ∈N *)等正负项交叉的数列求和一般用并项法.并项时应注意分n 为奇数、偶数两种情况讨论.(5)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(6)并项求和法:先将某些项放在一起求和,然后再求S n .1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.易混淆几何平均数与等比中项,正数a ,b 的等比中项是±ab .3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,已知S n T n =n +12n +3,求a n b n时,无法正确赋值求解.4.易忽视等比数列中公比q ≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论.6.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项.7.裂项相消法求和时,分裂前后的值要相等, 如1n (n +2)≠1n -1n +2,而是1n (n +2)=12⎝⎛⎭⎫1n -1n +2.8.通项中含有(-1)n 的数列求和时,要把结果写成分n 为奇数和n 为偶数两种情况的分段形式.1.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n 等于( ) A.2n +1 B.2n C.2n -1 D.2n -2答案 A解析 a n +1=S n +1-S n =2a n +1-4-(2a n -4)⇒a n +1=2a n ,再令n =1,∴S 1=2a 1-4⇒a 1=4,∴数列{a n }是以4为首项,2为公比的等比数列,∴a n =4·2n -1=2n +1,故选A.2.已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,S n 为数列{a n }的前n 项和,则S 2 016的值为( ) A.0 B.2 C.5 D.6 答案 A解析 由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴数列{a n }是周期为6的周期数列,而2 016=6·336,∴S 2 016=336S 6=0,故选A. 3.已知等差数列{a n }的前n 项和为S n ,若a 5=14-a 6,则S 10等于( ) A.35 B.70 C.28 D.14答案 B解析 a 5=14-a 6⇒a 5+a 6=14, S 10=10(a 1+a 10)2=10(a 5+a 6)2=70.故选B. 4.已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则使S n +63a n 取得最小值时n 的值为( )A.7B.7或8C.172 D.8答案 D解析 a 2=4,S 10=110⇒a 1+d =4,10a 1+45d =110⇒a 1=2,d =2,因此S n +63a n =2n +n (n -1)+632n =n 2+632n +12,又n ∈N *,所以当n =8时,S n +63a n 取得最小值.5.等比数列{a n }中,a 3a 5=64,则a 4等于( ) A.8 B.-8 C.8或-8 D.16 答案 C解析 由等比数列的性质知,a 3a 5=a 24, 所以a 24=64,所以a 4=8或a 4=-8.6.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=52,且a 2+a 4=54,则S n a n 等于( )A.4n -1 B.4n -1 C.2n -1 D.2n -1答案 D解析 设等比数列{a n }的公比为q ,则⎩⎨⎧a 1(1+q 2)=52,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=2,q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=2×(1-12n )1-122×(12)n -1=2n -1.故选D. 7.设函数f (x )=x a +ax 的导函数f ′(x )=2x +2,则数列{1f (n )}的前9项和是( )A.2936B.3144C.3655D.4366 答案 C解析 由题意得函数f (x )=x a +ax 的导函数f ′(x )=2x +2,即ax a -1+a =2x +2,所以a =2,即f (x )=x 2+2x ,1f (n )=1n (n +2)=12(1n -1n +2),所以S n =12(1-13+12-14+13-15+…+1n -1n +2)=12(1+12-1n +1-1n +2).则S 9=12(1+12-110-111)=3655,故选C.8.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为( ) A.4 B.3 C.23-2 D.92答案 A解析 据题意由a 1,a 3,a 13成等比数列可得(1+2d )2=1+12d ,解得d =2,故a n =2n -1,S n =n 2,因此2S n +16a n +3=2n 2+162n +2=n 2+8n +1=(n +1)2-2(n +1)+9n +1=(n +1)+9n +1-2,据基本不等式知2S n +16a n +3=(n +1)+9n +1-2≥2(n +1)×9n +1-2=4,当n =2时取得最小值4. 9.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于________. 答案 4解析 由等比数列的性质有a 1a 8=a 2a 7=a 3a 6=a 4a 5,所以T 8=lg a 1+lg a 2+…+lg a 8=lg(a 1a 2…a 8)=lg(a 4a 5)4=lg(10)4=4.10.已知数列{a n }满足a n +1=a n +2n 且a 1=2,则数列{a n }的通项公式a n =__________. 答案 n 2-n +2 解析 a n +1=a n +2n ,∴a n +1-a n =2n ,采用累加法可得∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1, =2(n -1)+2(n -2)+…+2+2=n 2-n +2.11.若数列{a n }满足a n =3a n -1+2(n ≥2,n ∈N *),a 1=1,则数列{a n }的通项公式为a n =____________. 答案 2×3n -1-1解析 设a n +λ=3(a n -1+λ),化简得a n =3a n -1+2λ, ∵a n =3a n -1+2,∴λ=1, ∴a n +1=3(a n -1+1), ∵a 1=1,∴a 1+1=2,∴数列{a n +1}是以2为首项,3为公比的等比数列, ∴a n +1=2×3n -1, ∴a n =2×3n -1-1.12.数列113,219,3127,4181,51243,…的前n 项之和等于________________.答案n (n +1)2+12[1-(13)n ] 解析 由数列各项可知通项公式为a n =n +13n ,由分组求和公式结合等差数列、等比数列求和公式可知前n项和为S n =n (n +1)2+12[1-(13)n ].13.设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,且λ≠-1),且a 1,2a 2,a 3+3为等差数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和.解 (1)方法一 ∵a n +1=λS n +1(n ∈N *), ∴a n =λS n -1+1(n ≥2).∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0, 又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,以λ+1为公比的等比数列, ∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n =2n -1,b n =1+3(n -1)=3n -2. 方法二 ∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)+1=λ2+2λ+1. ∴4(λ+1)=1+λ2+2λ+1+3, 整理得λ2-2λ+1=0,得λ=1. ∴a n +1=S n +1 (n ∈N *), ∴a n =S n -1+1(n ≥2),∴a n +1-a n =a n ,即a n +1=2a n (n ≥2),又a 1=1,a 2=2, ∴数列{a n }为以1为首项,以2为公比的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2. (2)设数列{a n b n }的前n 项和为T n , a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1.①∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n .②①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n .整理得T n =(3n -5)·2n +5.14.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *), (1)求证:数列{a n }是等差数列;(2)设b n =1S n,T n =b 1+b 2+…+b n ,若λ≤T n 对于任意n ∈N *恒成立,求实数λ的取值范围.(1)证明 ∵S n =a n (a n +1)2 (n ∈N *),①∴S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1), ∵数列{a n }的各项均为正数,∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2).当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解 由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2(1n -1n +1),∴T n =2[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2(1-1n +1)=2n n +1,∵T n =21+1n ,∴T n 单调递增,∴T n ≥T 1=1,∴λ≤1.故λ的取值范围为(-∞,1].五、不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小.2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R)当且仅当a =b 时取等号. ②a +b2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号. (2)几个重要的不等式:①ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R); ②a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立). ③a +1a ≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f (x )g (x )≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0. 4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x (x <0)时应先转化为正数再求解. 5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解. 6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.。
高中比较好的数学资料
以下是一些适合高中学生使用的数学资料:
1.《蝶变图书-小题必做》
这本书共分为50组,每组40题,一共2000道典型题,题量大、题型全,考点覆盖整个高中系统。
结合高考命题新规律精心编排高考数学小题形态短小、分值高,但知识综合强、跨度大、覆盖面广,考查目标集中却又灵活多变。
2.《五年高考三年模拟》
这是一本经典的高中数学资料书,涵盖了高中数学的主要内容,包括知识点、例题和习题。
这本书还提供了历年高考真题,帮助你熟悉高考题型。
3.《高中数学教材全解》
这本资料书针对每个章节的知识点,提供详细的讲解和例题分析。
适合在高中学习过程中遇到困难的同学使用,可以帮助你巩固知识点。
4.《蝶变高考考点必刷题》
这本书会把高中知识点列举出来,适合基础一般的同学相当于同一个考点不同类型的考题都练到了,做的多了,考试遇到各种题都不怕了。
5.《高考数学真题全刷:基础2000题》
适合高三党刷题用,里面的真题是按难度排列的,并且关联性强的排在一起,方便集中练习。
它的一大亮点就是所有真题都配有视频
讲解,这一点就很贴心了。
里面的重点也很突出,对于中低段的同学来说相当友好。
6.《高考数学题型与技巧》
这本书难度有难有容易,适合大部分高中同学,适合数学基础不好、解题没思路的适合,按题型分类的,每个题型会有对应知识点和解题策略,写的比较容易懂。
这本书不是刷题的,题量不大,主要是梳理知识点。
分题型排版,辅导书中精选各地高考题和优秀模拟题,答案单独成册,答题空间很充分。
以上资料仅供参考,建议根据自己的学习情况选择合适的资料。
高考数学复习一本全目录前言 (2)第一章高中数学解题基本方法 (3)一、配方法 (3)二、换元法 (7)三、待定系数法 (14)四、定义法 (19)五、数学归纳法 (23)六、参数法 (28)七、反证法 (32)八、消去法………………………………………九、分析与综合法………………………………十、特殊与一般法………………………………十一、类比与归纳法…………………………十二、观察与实验法…………………………第二章高中数学常用的数学思想 (35)一、数形结合思想 (35)二、分类讨论思想 (41)三、函数与方程思想 (47)四、转化(化归)思想 (54)第三章高考热点问题和解题策略 (59)一、应用问题 (59)二、探索性问题 (65)三、选择题解答策略 (71)四、填空题解答策略 (77)附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。
而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。
高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。
我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
数学思想方法与数学基础知识相比较,它有较高的地位和层次。
专题强化突破专题一集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式及线性规划第一讲集合与常用逻辑用语本部分内容在备考时应注意以下几个方面:(1)紧紧抓住集合的代表元素的实际意义,掌握集合问题的常见解法,活用数学思想解决问题.(2)明确命题的条件和结论之间的关系,关注逻辑联结词和命题,明确命题的否定和否命题的区别.(3)掌握必要条件、充分条件与充要条件的概念及应用. 预测2019年命题热点为:(1)集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、值域、方程的解集等知识结合在一起考查.(2)与函数、数列、三角函数、不等式、立体几何、解析几何、概率统计等知识结合在一起考查.Z 知识整合hi shi zheng he1.集合的概念、关系及运算(1)集合元素的特性:确定性、互异性、无序性. (2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C . (3)空集是任何集合的子集.(4)含有n 个元素的集合的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个. (5)重要结论:A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.充要条件设集合A ={x |x 满足条件p },B ={x |x 满中条件q },则有A B B A3.简单的逻辑联结词(1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.(2)命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ). 4.全(特)称命题及其否定(1)全称命题p :∀x ∈M ,p (x ).它的否定綈p :∃x 0∈M ,綈p (x 0).(2)特称命题p :∃x 0∈M ,p (x ).它的否定綈p :∀x ∈M ,綈p (x ).,Y 易错警示i cuo jing shi1.忽略集合元素互异性:在求解与集合有关的参数问题时,一定要注意集合元素的互异性,否则容易产生增根. 2.忽略空集:空集是任何集合的子集,是任何非空集合的真子集,在分类讨论时要注意“空集优先”的原则.3.混淆命题的否定与否命题:在求解命题的否定与否命题时,一定要注意命题的否定是只对命题的结论进行否定,而否命题既对命题的条件进行否定,又对命题的结论进行否定.1.(文)(2018·全国卷Ⅰ,1)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( A ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}[解析] A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}. 故选A .(理)(2018·全国卷Ⅰ,2)已知集合A ={x |x 2-x -2>0},则∁R A =( B ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}[解析] ∵ x 2-x -2>0,∴ (x -2)(x +1)>0,∴ x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B .2.(文)(2018·全国卷Ⅲ,1)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( C ) A .{0} B .{1} C .{1,2}D .{0,1,2}[解析] ∵ A ={x |x -1≥0}={x |x ≥1},∴ A ∩B ={1,2}. 故选C .(理)(2018·全国卷Ⅱ,2)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( A )A .9B .8C .5D .4[解析] 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A .3.(文)(2018·天津卷,3)设x ∈R ,则“x 3>8”是“|x |>2”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由x 3>8⇒x >2⇒|x |>2,反之不成立, 故“x 3>8”是“|x |>2”的充分不必要条件. 故选A .(理)(2018·天津卷,4)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] 由“⎪⎪⎪⎪x -12<12”得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”;由“x 3<1”得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”/⇒“⎪⎪⎪⎪x -12<12”.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A.4.(2018·浙江卷,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( A )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析]∵若m⊄α,n⊂α,且m∥n,则一定有m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.故选A.5.(文)(2018·北京卷,4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( B )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析]a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.故选B.(理)(2018·北京卷,6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( C ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析]由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.又a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 故选C .6.(文)(2017·全国卷Ⅰ,1)已知集合A ={x |x <2},B ={x |3-2x >0},则( A ) A .A ∩B ={x |x <32}B .A ∩B =∅C .A ∪B ={x |x <32}D .A ∪B =R[解析] 由3-2x >0,得x <32,∴B ={x |x <32},∴A ∩B ={x |x <2}∩{x |x <32}={x |x <32},故选A .(理)(2017·全国卷Ⅰ,1)已知集合A ={x |x <1},B ={x |3x <1},则( A ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1} D .A ∩B =∅ [解析] 由3x <1,得x <0, ∴B ={x |3x <1}={x |x <0}.∴A ∩B ={x |x <1}∩{x |x <0}={x |x <0},故选A .7.(2017·全国卷Ⅱ,2)设集合A ={1,2,4},B ={x |x 2-4x +m =0},若A ∩B ={1},则B =( C )A .{1,-3}B .{1,0}C .{1,3}D .{1,5} [解析] ∵A ∩B ={1},∴1∈B , ∴1是方程x 2-4x +m =0的根, ∴1-4+m =0,∴m =3.由x 2-4x +3=0,得x 1=1,x 2=3, ∴B ={1,3}.8.(文)(2017·山东卷,5)已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是( B )A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)[解析]∵一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,∴x2-x+1>0恒成立,∴p为真命题,綈p为假命题.∵当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,∴q为假命题,綈q为真命题.根据真值表可知p∧(綈q)为真命题,p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题.故选B.(理)(2017·山东卷,3)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是( B )A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)[解析]∵x>0,∴x+1>1,∴ln(x+1)>ln 1=0.∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.命题方向1集合的概念及运算例1 (1)(文)设集合M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( A ) A.[1,2)B.[1,2]C.(2,3] D.[2,3][解析]∵M={x|-3<x<2},N={x|1≤x≤3},∴M∩N={x|1≤x<2},故选A.(理)已知集合A={x|x>2},B={x|x<2m},且A⊆∁R B,那么m的值可以是( A )A.1 B.2C.3 D.4[解析]∵B={x|x<2m},∴∁R B={x|x≥2m},又∵A⊆∁R B,∴有2m≤2,即m≤1.由选项可知选A.(2)(文)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( B )A.1 B.2C.3 D.4[解析]A∩B={1,2,3,4}∩{2,4,6,8}={2,4},∴A∩B中共有2个元素,故选B.(理)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( B ) A.3 B.2C.1 D.0[解析]集合A表示以原点O为圆心,半径为1的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.结合图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.(3)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( C ) A.77 B.49C.45 D.30[解析] 由题得A ={(-1,0),(0,0),(1,0),(0,1),(0,-1)},如下图所示:因为B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },由A ⊕B 的定义可得,A ⊕B 相当于将A 集合中各点上下平移或左右平移0,1,2个单位,如下图所示:所以A ⊕B 中的元素个数为7×7-4=45. 故选C . 『规律总结』(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.G 跟踪训练en zong xun lian1.(文)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( C ) A .3 B .4 C .5D .6[解析] 由集合A ={x |-2≤x ≤2},易知A ∩Z ={-2,-1,0,1,2},故选C . (理)设集合M ={x |-2<x <3},N ={x |2x +1≤1}则M ∩(∁R N )=( D )A .(3,+∞)B .(-2,-1]C .[-1,3)D .(-1,3)[解析] 集合N ={x |2x +1≤1}={x |x +1≤0}={x |x ≤-1}.故∁R N ={x |x >-1},故M ∩∁R N ={x |-1<x <3}.故选D .2.(文)已知集合U =R ,A ={x |x ≤1},B ={x |x ≥2},则集合∁U (A ∪B )=( A ) A .{x |1<x <2}B .{x |1≤x ≤2}C .{x |x ≤2}D .{x |x ≥1}[解析] A ∪B ={x |x ≤1}∪{x |x ≥2}={x |x ≤1或x ≥2},所以∁U (A ∪B )={x |1<x <2}. (理)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( A ) A .{-1,0} B .{0,1} C .{-1,0,1}D .{0,1,2}[解析] 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0},故选A .3.(文)已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( B ) A .1个 B .2个 C .4个D .8个[解析] |a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±3(舍),即A 中只有一个元素2,故A 的子集只有2个.(理)已知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( D )A .A ⊆B B .B ⊆AC .A ∩∁R B =RD .A ∩B =∅[解析] 因为x 2-3x +2<0, 所以1<x <2,又因为log 4x >12=log 42,所以x >2, 所以A ∩B =∅.命题方向2 命题及逻辑联结词例2 (1)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( B )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 [解析] 若z 1=a +b i ,则z 2=a -b i. ∴|z 1|=|z 2|,故原命题正确、逆否命题正确. 其逆命题为:若|z 1|=|z 2|,则z 1,z 2互为共轭复数,若z 1=a +b i ,z 2=-a +b i ,则|z 1|=|z 2|,而z 1,z 2不为共轭复数.∴逆命题为假,否命题也为假. (2)已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论: ①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是假命题; ③命题“(綈p )∨q ”是真命题; ④命题“(綈p )∨(綈q )”是假命题. 其中正确的结论是( A ) A .②③ B .②④ C .③④ D .①②③[解析] ∵52>1,∴命题p 是假命题. ∵x 2+x +1=(x +12)2+34≥34>0,∴命题q 是真命题,由真值表可以判断“p ∧q ”为假,“p ∧(綈q )”为假,“(綈p )∨q ”为真,“(綈p )∨(綈q )”为真,所以只有②③正确,故选A .『规律总结』(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断依据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无关.(3)形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定. (4)全称命题与特称(存在性)命题真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可,否则,这一特称(存在性)命题就是假命题.G 跟踪训练en zong xun lian1.设a ,b ,c 是非零向量.已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( A )A .p ∨qB .p ∧qC.(綈p)∧(綈q) D.p∨(綈q)[解析]由题意知命题p为假命题,命题q为真命题,所以p∨q为真命题.故选A.2.以下四个命题中,真命题的个数是( C )①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题;②存在正实数a,b,使得lg(a+b)=lg a+lg b;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC中,A<B是sin A<sin B的充分不必要条件.A.0 B.1C.2 D.3[解析]对于①,原命题的逆命题为:若a,b中至少有一个不小于1,则a+b≥2,而a =2,b=-2满足a,b中至少有一个不小于1,但此时a+b=0,故①是假命题;对于②,根据对数的运算性质,知当a=b=2时,lg(a+b)=lg a+lg b,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,故③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知A<B⇔a<b(a,b为角A,B所对的边)⇔2R sin A<2R sin B(R为△ABC外接圆的半径)⇔sin A<sinB,故A<B是sin A<sin B的充要条件,故④是假命题,选C.3.(2018·北京卷,1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( A )A.{0,1} B.{-1,0,1}C.{-2,0,1,2} D.{-1,0,1,2}[解析]∵A={x||x|<2}={x|-2<x<2},∴A∩B={0,1}.故选A.命题方向3充要条件的判断例3 (1)设θ∈R,则“|θ-π12|<π12”是“sinθ<12”的( A )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析]∵|θ-π12|<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A .(2)若p 是q 的充分不必要条件,则下列判断正确的是( C ) A .綈p 是q 的必要不充分条件 B .綈q 是p 的必要不充分条件 C .綈p 是綈q 的必要不充分条件 D .綈q 是綈p 的必要不充分条件[解析] 由p 是q 的充分不必要条件可知p ⇒q ,q ⇒ / p ,由互为逆否命题的两命题等价可得綈q ⇒綈p ,綈p ⇒ / 綈q ,∴綈p 是綈q 的必要不充分条件,故选C .(3)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析] 设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q )<0,即q <-1,故q <0是q <-1的必要而不充分条件.故选C .(4)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( A ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1][解析] 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.『规律总结』1.判定充分条件与必要条件的3种方法(1)定义法:正、反方向推,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p⇒q ,且q ⇒/ p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件):若A =B ,则是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.提醒:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .G 跟踪训练en zong xun lian1.(文)(2018·娄底二模)“a <-1”是“直线ax +y -3=0的倾斜角大于π4”的( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 设直线ax +y -3=0的倾斜角为θ,则tan θ=-a ,若a <-1,得θ角大于π4,由倾斜角θ大于π4得-a >1,或-a <0即a <-1或a >0.(理)“a 2=1”是“函数f (x )=lg(21-x +a )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] a 2=1⇒a =±1,f (x )=lg(21-x +a )为奇函数等价于f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=0⇔(21-x +a )(21+x +a )=1化简得a =-1,故选B . 2.(文)若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( C ) A .a >-2 B .a ≤-2 C .a >-1D .a ≥-1[解析] 由x 2-x -2<0知-1<x <2, 即A ={x |-1<x <2}.又B={x|-2<x<a}及A∩B≠∅知a>-1.(理)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的( B ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[解析]由3a>3b>3,知a>b>1,所以log3a>log3b>0,所以1log3a<1log3b,即log a3<log b3,所以“3a>3b>3”是“log a3<log b3”的充分条件;但是取a=13,b=3也满足log a3<log b3,不符合a>b>1.所以“3a>3b>3”是“log a3<log b3”的充分不必要条件.A组1.(文)(2018·天津卷,1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( C )A.{-1,1}B.{0,1}C.{-1,0,1} D.{2,3,4}[解析]∵A={1,2,3,4},B={-1,0,2,3},∴A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.故选C.(理)(2018·天津卷,1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( B ) A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}[解析]全集为R,B={x|x≥1},则∁R B={x|x<1}.∵集合A={x|0<x<2},∴A∩(∁R B)={x|0<x<1}.故选B.2.(2018·蚌埠三模)设全集U={x|e x>1},函数f(x)=1x-1的定义域为A,则∁U A=( A )A.(0,1] B.(0,1)C.(1,+∞) D.[1,+∞)[解析]全集U={x|x>0},f(x)的定义域为{x|x>1},所以∁U A={x|0<x≤1}.3.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( C ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0[解析] 全称命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是特称命题“∃x 0∈[0,+∞),x 30+x 0<0”.4.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( B ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4[解析] 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题. 对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R , 则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题. 5.已知命题p :在等差数列{a n }中,若a m +a n =a p +a q (m ,n ,p ,q ∈N *),则有m +n =p +q ,命题q :∃x 0>0,2-x 0=e x 0,则下列命题是真命题的是( C )A .p ∧qB .p ∧綈qC .p ∨qD .p ∨綈q[解析] 命题p 是假命题,因为当等差数列{a n }是常数列时显然不成立,根据两个函数的图象可得命题q 是真命题,∴p ∨q 是真命题,故选C .6.设集合M ={x |x 2+3x +2<0},集合N ={x |(12)x ≤4},则M ∪N =( A )A .{x |x ≥-2}B .{x |x >-1}C .{x |x ≤-1}D .{x |x ≤-2}[解析] 因为M ={x |x 2+3x +2<0}={x |-2<x <-1},N =[-2,+∞),所以M ∪N =[-2,+∞),故选A .7.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( D ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析] 取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b |,故由|a |=|b |推不出|a +b |=|a -b |.由|a +b |=|a -b |,得|a +b |2=|a -b |2,整理得a·b =0,所以a ⊥b ,不一定能得出|a |=|b |,故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D .8.下列四个命题中正确命题的个数是( A )①对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1>0; ②m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充要条件; ③已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则线性回归方程为y ^=1.23x +0.08;④若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4.A .1B .2C .3D .4[解析] ①错,应当是綈p :∀x ∈R ,均有x 2+x +1≥0;②错,当m =0时,两直线也垂直,所以m =3是两直线垂直的充分不必要条件;③正确,将样本点的中心的坐标代入,满足方程;④错,实数x ,y ∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x 2+y 2<1所表示的平面区域的面积为π,所以满足x 2+y 2≥1的概率为4-π4.9.(文)已知全集U =R ,集合A ={x |0<x <9,x ∈R }和B ={x |-4<x <4,x ∈Z }关系的Venn 图如图所示,则阴影部分所求集合中的元素共有( B )A .3个B .4个C .5个D .无穷多个[解析] 由Venn 图可知,阴影部分可表示为(∁U A )∩B .由于∁U A ={x |x ≤0或x ≥9},于是(∁U A )∩B ={x |-4<x ≤0,x ∈Z }={-3,-2,-1,0},共有4个元素.(理)设全集U =R ,A ={x |x (x -2)<0},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( B )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 分别化简两集合可得A ={x |0<x <2}, B ={x |x <1},故∁U B ={x |x ≥1}, 故阴影部分所示集合为{x |1≤x <2}. 10.下列命题的否定为假命题的是( D ) A .∃x ∈R ,x 2+2x +2≤0 B .任意一个四边形的四顶点共圆 C .所有能被3整除的整数都是奇数 D .∀x ∈R ,sin 2x +cos 2x =1[解析] 设命题p :∀x ∈R ,sin 2x +cos 2x =1,则綈p :∃x ∈R ,sin 2x +cos 2x ≠1,显然綈p 是假命题.11.已知全集U =R ,设集合A ={x |y =ln(2x -1)},集合B ={y |y =sin(x -1)},则(∁U A )∩B 为( C )A .(12,+∞)B .(0,12]C .[-1,12]D .∅[解析] 集合A ={x |x >12},则∁U A ={x |x ≤12},集合B ={y |-1≤y ≤1},所以(∁U A )∩B ={x |x ≤12}∩{y |-1≤y ≤1}=[-1,12].12.给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q :函数y =e x -1e x +1为偶函数,下列说法正确的是( B )A .p ∨q 是假命题B .(綈p )∧q 是假命题C .p ∧q 是真命题D .(綈p )∨q 是真命题[解析] 对于命题p :y =f (x )=ln[(1-x )(1+x )], 令(1-x )(1+x )>0,得-1<x <1.所以函数f (x )的定义域为(-1,1),关于原点对称, 因为f (-x )=ln[(1+x )(1-x )]=f (x ),所以函数f (x )为偶函数,所以命题p 为真命题;对于命题q :y =f (x )=e x -1e x +1,函数f (x )的定义域为R ,关于原点对称,因为f (-x )=e -x -1e -x+1=1e x -11e x +1=1-e x 1+e x =-f (x ),所以函数f (x )为奇函数,所以命题q 为假命题,所以(綈p )∧q 是假命题.13.已知命题p :x ≥1,命题q :1x <1,则綈p 是q 的既不充分也不必要条件.[解析] 由题意,得綈p 为x <1,由1x <1,得x >1或x <0,故q 为x >1或x <0,所以綈p是q 的既不充分也不必要条件.14.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.[解析]全称命题的否定为特称命题,綈p:∃a0>0,a0≠1,函数f(x)=a x0-x-a0没有零点.15.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于3.[解析]A={x∈R||x-1|<2}={x∈R|-1<x<3},集合A中包含的整数有0,1,2,故A∩Z={0,1,2}.故A∩Z中所有元素之和为0+1+2=3.16.已知命题p:∀x∈R,x2-a≥0,命题q:∃x0∈R,x20+2ax0+2-a=0.若命题“p 且q”是真命题,则实数a的取值范围为(-∞,-2].[解析]由已知条件可知p和q均为真命题,由命题p为真得a≤0,由命题q为真得a≤-2或a≥1,所以a≤-2.B组1.设集合A={x|x2-x-2≤0},B={x|x<1,且x∈Z},则A∩B=( C )A.{-1} B.{0}C.{-1,0} D.{0,1}[解析]本题主要考查一元二次不等式的解法与集合的表示方法、集合间的基本运算.依题意得A={x|(x+1)(x-2)≤0}={x|-1≤x≤2},因此A∩B={x|-1≤x<1,x∈Z}={-1,0},选C.2.已知全集U=R,集合A={x|y=lg(x-1)},集合B={y|y=x2+2x+5},则A∩B=( C )A.∅B.(1,2]C.[2,+∞) D.(1,+∞)[解析]由x-1>0,得x>1,故集合A=(1,+∞),又y=x2+2x+5=(x+1)2+4≥4=2,故集合B=[2,+∞),所以A∩B=[2,+∞),故选C.3.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+log x2≥2,则x>1;③“若a>b>0且c<0,则ca>cb”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题的是( A )A .①②③B .①②④C .①③④D .②③④[解析] ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x ≥2,得x >1;③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.4.设x 、y ∈R ,则“|x |≤4且|y |≤3”是“x 216+y 29≤1”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] “|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“x 216+y 29≤1”表示的平面区域N 为椭圆x 216+y 29=1及其内部,显然NM ,故选B .5.(文)若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 当a =1时,B ={x |-2<x <1},∴A ∩B =∅,则“a =1”是“A ∩B =∅”的充分条件;当A ∩B =∅时,得a ≤2,则“a =1”不是“A ∩B =∅”的必要条件,故“a =1”是“A ∩B =∅”的充分不必要条件.(理)设x ,y ∈R ,则“x ≥1且y ≥1”是“x 2+y 2≥2”的( D ) A .既不充分又不必要条件 B .必要不充分条件 C .充要条件 D .充分不必要条件[解析] 当x ≥1,y ≥1时,x 2≥1,y 2≥1,所以x 2+y 2≥2;而当x =-2,y =-4时,x 2+y 2≥2仍成立,所以“x ≥1且y ≥1”是“x 2+y 2≥2”的充分不必要条件,故选D .6.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },则集合A ×B 中属于集合{(x ,y )|log x y ∈N }的元素个数是( B )A .3B .4C .8D .9[解析] 用列举法求解.由给出的定义得A ×B ={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log 22=1,log 24=2,log 28=3,log 44=1,因此,一共有4个元素,故选B .7.(2018·东北三省四市一模)已知命题p :函数y =lg(1-x )在(-∞,1)内单调递减,命题q :函数y =2cos x 是偶函数,则下列命题中为真命题的是( A )A .p ∧qB .(綈p )∨(綈q )C .(綈p )∧qD .p ∧(綈q )[解析] 命题p :函数y =lg(1-x )在(-∞,1)上单调递减,是真命题; 命题q :函数y =2cos x 是偶函数,是真命题. 则p ∧q 是真命题.故选A .8.已知条件p :x 2-2x -3<0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围为( D )A .a >3B .a ≥3C .a <-1D .a ≤-1[解析] 由x 2-2x -3<0得-1<x <3,设A ={x |-1<x <3},B ={x |x >a },若p 是q 的充分不必要条件,则A B ,即a ≤-1. 9.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的a 的取值范围为( D )A .(1,9)B .[1,9]C .[6,9)D .(6,9] [解析] 依题意,P ∩Q =Q ,Q ⊆P , 于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9]. 10.下列说法正确的是( D )A .命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018<0”B .两个三角形全等是这两个三角形面积相等的必要条件C .函数f (x )=1x在其定义域上是减函数D .给定命题p ,q ,若“p 且q ”是真命题,则綈p 是假命题[解析] 对于A ,特称命题的否定为全称命题,所以命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018≤0”,故A 不正确.对于B ,两个三角形全等,则这两个三角形面积相等;反之,不然.即两个三角形全等是这两个三角形面积相等的充分不必要条件,故B 不正确.对于C ,函数f (x )=1x 在(-∞,0),(0,+∞)上分别是减函数,但在定义域(-∞,0)∪(0,+∞)内既不是增函数,也不是减函数,如取x 1=-1,x 2=1,有x 1<x 2,且f (x 1)=-1,f (x 2)=1,则f (x 1)<f (x 2),所以函数f (x )=1x 在其定义域上不是减函数,故C 不正确.对于D ,因为“p 且q ”是真命题,则p ,q 都是真命题,所以綈p 是假命题,故D 正确.11.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B ={0,6}.[解析] 由题意可知,-2x =x 2+x , 所以x =0或x =-3,而当x =0时,不符合元素的互异性,舍去; 当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.12.命题“∀x ∈[1,2],使x 2-a ≥0”是真命题,则a 的取值范围是(-∞,1]. [解析] 命题p :a ≤x 2在[1,2]上恒成立,y =x 2在[1,2]上的最小值为1, 所以a ≤1.13.设p :(x -a )2>9,q :(x +1)(2x -1)≥0,若綈p 是q 的充分不必要条件,则实数a 的取值范围是(-∞,-4]∪[72,+∞).[解析] 綈p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12,因为綈p 是q 的充分不必要条件, 所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.14.给出下列结论:①若命题p :∃x 0∈R ,x 20+x 0+1<0,则綈p :∀x ∈R ,x 2+x +1≥0;②“(x -3)(x -4)=0”是“x -3=0”的充分而不必要条件;③命题“若b =0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是偶函数”的否命题是“若b ≠0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是奇函数”;④若a >0,b >0,a +b =4,则1a +1b 的最小值为1.其中正确结论的序号为①④.[解析] 由特称命题的否定知①正确;(x -3)(x -4)=0⇒x =3或x =4,x =3⇒(x -3)(x -4)=0,所以“(x -3)·(x -4)=0”是“x -3=0”的必要而不充分条件,所以②错误;函数可能是偶函数,奇函数,也可能是非奇非偶的函数,结论③中“函数是偶函数”的否定应为“函数不是偶函数”,故③不正确;因为a >0,b >0,a +b =4,所以1a +1b =a +b 4·(1a +1b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1,当且仅当a =b =2时取等号,所以④正确.第二讲向量运算与复数运算、算法、推理与证明本部分内容在备考时应注意以下几个方面:(1)加强对向量加法、减法的平行四边形法则与三角形法则的理解、掌握两向量共线与垂直的条件,熟记平面向量的相关公式,掌握求模、夹角的方法.(2)掌握复数的基本概念及运算法则,在备考时注意将复数化为代数形式再进行求解,同时注意“分母实数化”的运用.(3)关注程序框图和基本算法语句的应用与判别,尤其是含循环结构的程序框图要高度重视.(4)掌握各种推理的特点和推理过程,同时要区分不同的推理形式,对归纳推理要做到归纳到位、准确;对类比推理要找到事物的相同点,做到类比合,对演绎推理要做到过程严密.预测2019年命题热点为:(1)利用平面向理的基本运算解决数量积、夹角、模或垂直、共线等问题,与三角函数、解析几何交汇命题.(2)单独考查复数的四则运算,与复数的相关概念、复数的几何意义等相互交汇考查. (3)程序框图主要是以循环结构为主的计算、输出、程序框图的补全,与函数求值、方程求解、不等式求解数列求和、统计量的计算等交汇在一起命题.(4)推理问题考查归纳推理和类比推理,主要与数列、立体几何、解析几何等结合在一起命题.Z 知识整合hi shi zheng he1.重要公式(1)两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则①a ∥b ⇔a =λb (b ≠0,λ∈R )⇔x 1y 2-x 2y 1=0. ②a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (2)复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i(a ,b ,c ,d ∈R ). (a +b i)(c +d i)=(ac -bd )+(bc +ad )i(a ,b ,c ,d ∈R ). (a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).2.重要性质及结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)已知OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.. (3)平面向量的三个性质①若a =(x ,y ),则|a |=a ·a②若A (x 1,y 1),B (x 2,y 2),则|AB →|③设θ为a 与b (a ≠0,b ≠0)的夹角,且a =(x 1,y 1),b =(x 2,y 2),则cos θ=a ·b|a ||b |=(4)复数运算中常用的结论:①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i=-i ;④-b +a i =i(a +b i);⑤i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,其中n ∈N *3.推理与证明 (1)归纳推理的思维过程实验、观察→概括、推广→猜测一般性结论 (2)类比推理的思维过程实验、观察→联想、类推→猜测新的结论 (3)(理)数学归纳法证题的步骤①(归纳奠基)证明当n 取第一个值n =n 0(n 0∈N *)时,命题成立;②(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时,命题也成立. 只要完成了这两个步骤,就可以断定命题对于任何n ≥n 0的正整数都成立.Y 易错警示i cuo jing shi1.忽略复数的定义:在解决与复数概念有关的问题时,在运用复数的概念时忽略某一条件而致误. 2.不能准确把握循环次数解答循环结构的程序框图(流程图)问题,要注意循环次数,防止多一次或少一次的错误. 3.忽略特殊情况:两个向量夹角为锐角与向量的数量积大于0不等价;两个向量夹角为钝角与向量的数量积小于0不等价.1.(2018·全国卷Ⅰ,1)设z =1-i1+i+2i ,则|z |=( C ) A .0 B .12C .1D . 2[解析] ∵ z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i2+2i =i ,∴ |z |=1. 故选C .2.(2018·全国卷Ⅱ,1)1+2i1-2i =( D )A .-45-35iB .-45+35iC .-35-45iD .-35+45i[解析] 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i 1-(2i )2=-3+4i 5=-35+45i.故选D .3.(2018·全国卷Ⅱ,4)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( B ) A .4 B .3 C .2D .0[解析] a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵ |a |=1,a ·b =-1,∴ 原式=2×12+1=3. 故选B .4.(2018·全国卷Ⅰ,6)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( A ) A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 故选A .5.(2018·北京卷,2)在复平面内,复数11-i 的共轭复数对应的点位于( D )A .第一象限B .第二象限C .第三象限D .第四象限 [解析]11-i =12+i 2,其共轭复数为12-i2,对应点位于第四象限.故选D .6.(2018·全国卷Ⅱ,7)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( B )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 把各循环变量在各次循环中的值用表格表示如下.因为N =N +1i ,由上表知i 是1→3→5,…,所以i =i +2.故选B .7.(2018·天津卷,3)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( B )A .1B .2C .3D .4[解析] 输入N 的值为20,第一次执行条件语句,N =20,i =2,Ni =10是整数,∴ T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴ i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴ T =1+1=2,i =5,此时i ≥5成立,∴ 输出T =2. 故选B .8.(2018·天津卷,9)i 是虚数单位,复数6+7i1+2i =4-i.[解析]6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i.9.(2018·北京卷,9)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =-1. [解析] a =(1,0),b =(-1,m ),则m a -b =(m +1,-m ). 由a ⊥(m a -b )得a ·(m a -b )=0, 即m +1=0,得m =-1.10.(2018·全国卷Ⅲ,13)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=12.[解析] 2a +b =(4,2),因为c ∥(2a +b ),所以4λ=2,得λ=12.命题方向1 平面向量的运算例1 (1)如图,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( B )A .43B .53C .158D .2[解析] 方法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.故选B .方法二:因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ(AB →+12AD →)+μ(-AB →+AD →)=(λ-μ)AB →+(12λ+μ)AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.故选B .(2)在平行四边形ABCD 中,M 为BC 的中点,若AB →=λAM →+μDB →,则λμ=29.[解析] 由图形可得:AM →=AB →+12AD →①,DB →=AB →-AD →②,①×2+②得:2AM →+DB →=3AB →,即AB →=23AM →+13DB →,所以λ=23,μ=13,所以λμ=29.『规律总结』1.平面向量的线性运算要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现.2.正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识,注重数形结合思想、方程思想与转化思想的应用.提醒:运算两平面向量的数量积时,务必要注意两向量的方向.G 跟踪训练en zong xun lian1.过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A ―→·PB ―→=32.[解析] 圆心为O (0,0),则3,∠OP A =∠OPB =π6,则∠APB =π3,所以cos ∠APB =3·3·cos π3=32.2.已知向量a =(3,1),b =(x ,-2),c =(0,2),若a ⊥(b -c ),则实数x 的值为( A ) A .43B .34C .-34D .-43[解析] 因为b -c =(x ,-4),又a ⊥(b -c ),所以a ·(b -c )=3x -4=0,所以x =43.命题方向2 复数的概念与运算例2 (1)已知复数z 1=3+i1-i的实部为a ,复数z 2=i(2+i)的虚部为b ,复数z =b+a i 的共轭复数在复平面内的对应点在( D )A .第一象限B .第二象限C .第三象限D .第四象限。
第1练 集合、复数、常用逻辑用语集 合集合运算的4个性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.集合运算的4个技巧(1)先“简”后“算”.进行集合的基本运算之前要先对其进行化简,化简时要准确把握元素的性质特征,区分数集与点集等.(2)遵“规”守“矩”.定义是进行集合基本运算的依据,交集的运算要抓住“公共元素”,补集的运算要关注“你有我无”的元素.(3)活“性”减“量”.灵活利用交集与并集以及补集的运算性质,特别是摩根定律,即∁U(M∩N)=(∁U M)∪(∁U N),∁U(M∪N)=(∁U M)∩(∁U N)等简化运算,减少运算量.(4)借“形”助“数”.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化,一般地,集合元素离散时用Venn图;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.[考法全练]1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B.法一:A={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A={x|-1≤x≤2},故选B.法二:因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.2.(2018·郑州第二次质量预测)已知集合P={x|y=-x2+x+2,x∈N},Q={x|ln x<1},则P∩Q=()A.{0,1,2} B.{1,2}C.(0,2] D.(0,e)解析:选B.由-x2+x+2≥0,得-1≤x≤2,因为x∈N,所以P={0,1,2}.因为ln x<1,所以0<x<e,所以Q=(0,e),则P∩Q={1,2},故选B.3.(一题多解)(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8C.5 D.4解析:选A.法一:由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C13C13=9,故选A.法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.4.(一题多解)(2018·太原模拟)已知集合A ={y |y =log 2x ,x >2},B ={y |y =⎝⎛⎭⎫12x,x <1},则A ∩B =( )A .(1,+∞) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1解析:选A.法一:因为A ={y |y =log 2x ,x >2}={y |y >1},B ={y |y =⎝⎛⎭⎫12x,x <1}={y |y >12},所以A ∩B ={y |y >1},故选A. 法二:取2∈A ∩B ,则由2∈A ,得log 2x =2,解得x =4>2,满足条件,同时由2∈B ,得⎝⎛⎭⎫12x=2,x =-1,满足条件,排除选项B ,D ;取1∈A ∩B ,则由1∈A ,得log 2x =1,解得x =2,不满足x >2,排除C ,故选A.5.(2018·惠州第二次调研)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( )A .a <1B .a ≤1C .a >2D .a ≥2解析:选D.集合B ={x |x 2-3x +2<0}={x |1<x <2},由A ∩B =B 可得B ⊆A ,所以a ≥2.故选D.复 数复数代数形式的2种运算(1)复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类项,不含i 的看作另一类项,分别合并同类项即可.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式.复数的除法类似初中所学化简分数常用的“分母有理化”,其实质就是“分母实数化”.复数运算中的4个常见结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i. (2)-b +a i =i(a +b i).(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.(4)i 4n +i 4n +1+i 4n +2+i 4n +3=0.[考法全练]1.(2018·高考全国卷Ⅱ)1+2i1-2i =( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i解析:选D.1+2i 1-2i =(1+2i)(1+2i)(1-2i)(1+2i)=-35+45i ,故选D.2.(2018·惠州第二次调研)若z1+i=2-i(i 为虚数单位),则复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.由题意知z =(1+i)(2-i)=3+i ,其在复平面内对应的点的坐标为(3,1),在第一象限.故选A.3.(2018·高考全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1D. 2解析:选 C.法一:因为z =1-i 1+i+2i =(1-i)2(1+i)(1-i)+2i =-i +2i =i ,所以|z |=1,故选C.法二:因为z =1-i 1+i +2i =1-i +2i(1+i)1+i =-1+i 1+i ,所以|z |=⎪⎪⎪⎪⎪⎪-1+i 1+i =|-1+i||1+i|=22=1,故选C.4.(2018·昆明调研)设复数z 满足(1+i)z =i ,则z 的共轭复数z =( ) A.12+12i B.12-12i C .-12+12iD .-12-12i解析:选B.法一:因为(1+i)z =i ,所以z =i 1+i =2i2(1+i)=(1+i)22(1+i)=1+i 2=12+12i ,所以复数z 的共轭复数z =12-12i ,故选B.法二:因为(1+i)z =i ,所以z =i1+i =i(1-i)(1+i)(1-i)=1+i 2=12+12i ,所以复数z 的共轭复数z =12-12i ,故选B.法三:设z =a +b i(a ,b ∈R ),因为(1+i)z =i ,所以(1+i)(a +b i)=i ,所以(a -b )+(a +b )i =i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =1,解得a =b =12,所以z =12+12i ,所以复数z 的共轭复数z =12-12i ,故选B.5.(2018·武汉调研)已知复数z 满足z +|z |=3+i ,则z =( ) A .1-i B .1+i C.43-i D.43+i 解析:选D.设z =a +b i ,其中a ,b ∈R ,由z +|z |=3+i ,得a +b i +a 2+b 2=3+i ,由复数相等可得⎩⎪⎨⎪⎧a +a 2+b 2=3,b =1,解得⎩⎪⎨⎪⎧a =43,b =1,故z =43+i ,故选D.命题的真假判断与否定四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.全(特)称命题及其否定(1)全称命题p :∀x ∈M ,p (x ).它的否定﹁p :∃x 0∈M ,﹁p (x 0). (2)特称命题p :∃x 0∈M ,p (x 0).它的否定﹁p :∀x ∈M ,﹁p (x ).含逻辑联结词的命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(﹁p )∧(﹁q )假. (2)p ∧q 假⇔p ,q 均假⇔(﹁p )∧(﹁q )真. (3)p ∧q 真⇔p ,q 均真⇔(﹁p )∨(﹁q )假. (4)p ∧q 假⇔p ,q 至少一个假⇔(﹁p )∨(﹁q )真. (5)﹁p 真⇔p 假;﹁p 假⇔p 真.[考法全练]1.(2018·贵阳模拟)命题p :∃x 0∈R ,x 20+2x 0+2≤0,则﹁p 为( ) A .∀x ∈R ,x 2+2x +2>0 B .∀x ∈R ,x 2+2x +2≥0 C .∃x 0∈R ,x 20+2x 0+2>0 D .∃x 0∈R ,x 20+2x 0+2≥0解析:选A.命题p 为特称命题,所以﹁p 为“∀x ∈R ,x 2+2x +2>0”,故选A. 2.(2018·太原模拟)已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b ,则下列为真命题的是( )A .p ∧qB .p ∧﹁qC .﹁p ∧qD .﹁p ∧﹁q解析:选B.对于命题p ,当x 0=0时,1≥0成立,所以命题p 为真命题,命题﹁p 为假命题;对于命题q ,当a =-1,b =1时,1a <1b ,所以命题q 为假命题,命题﹁q 为真命题,所以p ∧﹁q 为真命题,故选B.3.(2018·郑州第一次质量预测)下列说法正确的是( ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:选D.对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x ,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.4.(2018·唐山模拟)已知命题p :“a >b ”是“2a >2b ”的充要条件;命题q :∃x ∈R ,|x +1|≤x ,则( )A .﹁p ∨q 为真命题B .p ∨q 为真命题C .p ∧q 为真命题D .p ∧﹁q 为假命题解析:选B.由函数y =2x 是R 上的增函数,知命题p 是真命题.对于命题q ,当x +1≥0,即x ≥-1时,|x +1|=x +1>x ;当x +1<0,即x <-1时,|x +1|=-x -1,由-x -1≤x ,得x ≥-12,无解,因此命题q 是假命题.所以﹁p ∨q 为假命题,A 错误;p ∨q 为真命题,B 正确;p ∧q 为假命题,C 错误;p ∧﹁q 为真命题,D 错误.故选B.充要条件的判断充分、必要条件的3种判断方法1.(2018·石家庄质量检测(二))设a >0且a ≠1,则“log a b >1”是“b >a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选D.由log a b >1得,当a >1时,b >a ;当0<a <1时,b <a .显然不能由log a b >1推出b >a ,也不能由b >a 推出log a b >1,故选D.2.(2018·沈阳模拟)已知向量a =(m ,1),b =(n ,1),则“mn =1”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若mn =1,则m =n ,此时a =b ,显然满足a ∥b ;反之,若a ∥b ,则m ·1-n ·1=0,所以m =n ,但不能推出m n =1.所以“mn=1”是“a ∥b ”的充分不必要条件,故选A.3.(2018·成都第一次诊断性检测)已知锐角△ABC 的三个内角分别为A ,B ,C ,则“sinA >sinB ”是“tan A >tan B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.在锐角△ABC 中,根据正弦定理a sin A =bsin B,知sin A >sin B ⇔a >b ⇔A >B ,而正切函数y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以A >B ⇔tan A >tan B .故选C.4.(2018·高考天津卷)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.由⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A. 5.(2018·湖南湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C.若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0,故选C.一、选择题1.(2018·高考天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}解析:选B.因为B ={x |x ≥1},所以∁R B ={x |x <1},因为A ={x |0<x <2},所以A ∩(∁R B )={x |0<x <1},故选B.2.(2018·沈阳教学质量监测(一))若i 是虚数单位,则复数2+3i1+i的实部与虚部之积为( )A .-54B.54C.54i D .-54i解析:选B.因为2+3i 1+i =(2+3i)(1-i)(1+i)(1-i)=52+12i ,所以其实部为52,虚部为12,实部与虚部之积为54.故选B.3.(2018·南宁模拟)已知(1+i)·z =3i(i 是虚数单位),那么复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A.因为(1+i)·z =3i ,所以z =3i1+i =3i(1-i)(1+i)(1-i)=3+3i 2,则复数z 在复平面内对应的点的坐标为⎝⎛⎭⎫32,32,所以复数z 在复平面内对应的点位于第一象限,故选A. 4.(2018·西安模拟)设集合A ={x |y =lg(x 2+3x -4)},B ={y |y =21-x2},则A ∩B =( )A .(0,2]B .(1,2]C .[2,4)D .(-4,0)解析:选B.A ={x |x 2+3x -4>0}={x |x >1或x <-4},B ={y |0<y ≤2},所以A ∩B =(1,2],故选B.5.(2018·太原模拟)已知全集U =R ,集合A ={x |x (x +2)<0},B ={x ||x |≤1},则如图所示的阴影部分表示的集合是( )A .(-2,1)B .[-1,0]∪[1,2)C .(-2,-1)∪[0,1]D .[0,1]解析:选C.因为集合A ={x |x (x +2)<0},B ={x ||x |≤1},所以A ={x |-2<x <0},B ={x |-1≤x ≤1},所以A ∪B =(-2,1],A ∩B =[-1,0),所以阴影部分表示的集合为∁A ∪B (A ∩B )=(-2,-1)∪[0,1],故选C.6.(2018·洛阳第一次联考)已知复数z 满足z (1-i)2=1+i(i 为虚数单位),则|z |为( ) A.12 B.22C. 2D .1解析:选B.因为z =-1+i 2i =-1+i 2,所以|z |=22,故选B.7.(2018·西安八校联考)在△ABC 中,“AB →·BC →>0”是“△ABC 是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.法一:设AB →与BC →的夹角为θ,因为AB →·BC →>0,即|AB →|·|BC →|cos θ>0,所以cos θ>0,θ<90°,又θ为△ABC 内角B 的补角,所以∠B >90°,△ABC 是钝角三角形;当△ABC 为钝角三角形时,∠B 不一定是钝角.所以“AB →·BC →>0”是“△ABC 是钝角三角形”的充分不必要条件,故选A.法二:由AB →·BC →>0,得BA →·BC →<0,即cos B <0,所以∠B >90°,△ABC 是钝角三角形;当△ABC 为钝角三角形时,∠B 不一定是钝角.所以“AB →·BC →>0”是“△ABC 是钝角三角形”的充分不必要条件,故选A.8.(2018·辽宁五校联合体模拟)已知集合P ={x |x 2-2x -8>0},Q ={x |x ≥a },P ∪Q =R ,则a 的取值范围是( )A .(-2,+∞)B .(4,+∞)C .(-∞,-2]D .(-∞,4]解析:选C.集合P ={x |x 2-2x -8>0}={x |x <-2或x >4},Q ={x |x ≥a },若P ∪Q =R ,则a ≤-2,即a 的取值范围是(-∞,-2],故选C.9.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1<0”D .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题解析:选D.A 中,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,故A 不正确;B 中,由x 2-5x -6=0,解得x =-1或x =6,所以“x =-1”是“x 2-5x -6=0”的充分不必要条件,故B 不正确;C 中,“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1≥0”,故C 不正确;D 中,命题“若x =y ,则sin x =sin y ”为真命题,因此其逆否命题为真命题,D 正确,故选D.10.(2018·惠州第一次调研)设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R ,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )A .p 为假命题B .﹁q 为真命题C .p ∨q 为真命题D .p ∧q 为假命题解析:选C.函数f (x )不是偶函数,仍然可∃x ,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2(x ≥0),-x 2(x <0)在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C.11.(2018·辽宁五校协作体联考)已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析:选D.因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.12.(2018·成都模拟)下列判断正确的是( ) A .若事件A 与事件B 互斥,则事件A 与事件B 对立 B .函数y =x 2+9+1x 2+9(x ∈R )的最小值为2 C .若直线(m +1)x +my -2=0与直线mx -2y +5=0互相垂直,则m =1 D .“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件解析:选D.对于A 选项,若事件A 与事件B 互斥,则事件A 与事件B 不一定对立,反之,若事件A 与事件B 对立,则事件A 与事件B 一定互斥,所以A 选项错误;对于B 选项,y =x 2+9+1x 2+9≥2,当且仅当x 2+9=1x 2+9,即x 2+9=1时等号成立,但x 2+9=1无实数解,所以等号不成立,于是函数y =x 2+9+1x 2+9(x ∈R )的最小值不是2,所以B 选项错误;对于C 选项,由两直线垂直,得(m +1)m +m ×(-2)=0,解得m =0或m =1,所以C 选项错误;对于D 选项,若p ∧q 为真命题,则p ,q 都是真命题,于是p ∨q 为真命题,反之,若p ∨q 为真命题,则p ,q 中至少有一个为真命题,此时p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,所以D 选项正确.综上选D.二、填空题13.已知z 1-i=2+i ,则z -(z 的共轭复数)为________.解析:法一:由z 1-i=2+i 得z =(1-i)(2+i)=3-i ,所以z -=3+i.法二:由z 1-i =2+i 得⎝ ⎛⎭⎪⎫z -1-i =2+i -,所以z -1+i =2-i ,z -=(1+i)(2-i)=3+i. 答案:3+i14.(一题多解)设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a b ,a ∈P ,b ∈Q },若P ={1,2},Q ={-1,0,1},则集合P *Q 中元素的个数为________.解析:法一(列举法):当b =0时,无论a 取何值,z =a b =1;当a =1时,无论b 取何值,a b =1;当a =2,b =-1时,z =2-1=12;当a =2,b =1时,z =21=2.故P *Q =⎩⎨⎧⎭⎬⎫1,12,2,该集合中共有3个元素.法二(列表法):因为a ∈P ,b ∈Q ,所以a 的取值只能为1,2;b 的取值只能为-1,0,1.z =a b 的不同运算结果如下表所示:由上表可知P *Q =⎩⎨⎭⎬1,12,2,显然该集合中共有3个元素. 答案:315.下列命题中,是真命题的有________.(填序号) ①∀x ∈⎝⎛⎭⎫0,π2,x >sin x ;②在△ABC 中,若A >B ,则sin A >sin B ;③函数f (x )=tan x 的图象的一个对称中心是⎝⎛⎭⎫π2,0;④∃x 0∈R ,sin x 0cos x 0=22. 解析:①中,设g (x )=sin x -x ,则g ′(x )=cos x -1<0,所以函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以g (x )<g (0)=0,即x >sin x 成立,故①正确;②中,在△ABC 中,若A >B ,则a >b ,由正弦定理,有sin A >sin B 成立,故②正确;③中,函数f (x )=tan x 的图象的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,0是函数f (x )的图象的一个对称中心,故③正确;④中,因为sin x cos x =12sin 2x ≤12<22,所以④错误.答案:①②③16.已知命题p :∀x ∈[0,1],a ≥2x ;命题q :∃x ∈R ,使得x 2+4x +a =0.若命题“p ∨q ”是真命题,“﹁p ∧q ”是假命题,则实数a 的取值范围为________.解析:命题p 为真,则a ≥2x (x ∈[0,1])恒成立, 因为y =2x 在[0,1]上单调递增,所以2x ≤21=2,故a ≥2,即命题p 为真时,实数a 的取值集合为P ={a |a ≥2}.若命题q 为真,则方程x 2+4x +a =0有解,所以Δ=42-4×1×a ≥0,解得a ≤4. 故命题q 为真时,实数a 的取值集合为Q ={a |a ≤4}.若命题“p ∨q ”是真命题,那么命题p ,q 至少有一个是真命题; 由“﹁p ∧q ”是假命题,可得﹁p 与q 至少有一个是假命题. ①若p 为真命题,则﹁p 为假命题,q 可真可假, 此时实数a 的取值范围为[2,+∞);②若p 为假命题,则q 必为真命题,此时,“﹁p ∧q ”为真命题,不合题意. 综上,实数a 的取值范围为[2,+∞). 答案:[2,+∞)。