鲁教版七年级数学上册第一章达标检测卷附答案
- 格式:doc
- 大小:481.00 KB
- 文档页数:16
单元评价检测第一章(45分钟 100分)一、选择题(每小题4分,共28分)1.如图,将等腰直角三角形沿虚线裁去顶角后,∠1+∠2=( )(A)225°(B)235°(C)270°(D)与虚线的位置有关2.下列长度的三条线段能组成三角形的是( )(A)1,2,3.5 (B)4,5,9(C)20,15,8 (D)5,15,83.以下判断正确的是( )(A)在△ABC中,射线AD平分∠ABC,则AD是△ABC的角平分线(B)在△ABC中,点M是BC边上的中点,那么直线AM是△ABC的一条中线(C)在Rt△ABC中,∠C=90°,则直角边AC,BC是直角三角形的两条高线(D)任何三角形的高线的交点不可能在这个三角形的外部4.如图,AB∥CD,∠A=48°,∠C=22°,则∠E等于( )(A)70°(B)26°(C)36°(D)16°5.如图,已知AB=AD,点M,A,C,N在同一条直线上,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )(A)CB=CD (B)∠BAC=∠DAC(C)∠BCA=∠DCA (D)∠MAD=∠MAB6.如图,已知AB=DC,AD=BC,E,F为DB上两点且BF=DE,若∠AEB=120°,则∠BFC=( )(A)40°(B)60°(C)80°(D)90°7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,S△ABC=7,DE=2,AB=4,则AC长是( )(A)4 (B)3 (C)6 (D)5二、填空题(每小题5分,共25分)8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是____________.9.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于______°.10.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为______厘米.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=______.12.如图,AB⊥BC,AE⊥DE,且AB=AE,∠ACB=∠ADE,∠ACD=∠ADC=50°,∠BAD= 100°,则∠BAE=______度.三、解答题(共47分)13.(12分)如图所示,AC,BD相交于点O,且OA=OC,OB=OD,试说明AD∥BC.14.(12分)如图1,A,B两个建筑物分别位于河的两岸,要测得它们之间的距离,可以从B出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E,C,A在同一条直线上,则DE的长就是A,B之间的距离.请你说明道理.你还能想出其他方法吗?请把你的设计画在图2上.15.(10分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,并说明理由.你添加的条件是______.(不添加辅助线)16.(13分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC 是否全等?为什么?答案解析1.【解析】选C.因为∠1+∠2+90°=360°,所以∠1+∠2=270°.2.【解析】选C.A,因为1+2=3<3.5,所以不能组成三角形;B,因为4+5=9,所以不能组成三角形;C,15+8=23>20,能组成三角形;D,5+8=13<15,不能组成三角形.3.【解析】选C.A,三角形的角平分线是线段,故本选项错误;B,三角形的中线是线段,故本选项错误;C,在Rt△ABC中,∠C=90°,则直角边AC,BC是该直角三角形的两条高线,根据高线的定义,此说法正确,故本选项正确;D,当三角形为钝角三角形时,有两条高在三角形外部,所以高所在的直线的交点可能在三角形的外部,故本选项错误.4.【解析】选B.因为AB∥CD,所以∠1=∠A=48°,所以∠2=132°,又∠C=22°,所以∠E=180°-132°-22°=26°.5.【解析】选C.添加CB=CD,根据SSS,能判定△ABC≌△ADC,A可以;添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,B可以;添加∠MAD=∠MAB,∠MAD+∠DAC=180°,∠MAB+∠BAC=180°,得∠DAC=∠BAC,能判定△ABC≌△ADC ,D 可以;添加∠BCA=∠DCA 时不能判定△ABC ≌△ADC ,C 不可以. 6.【解析】选B.因为AB=DC ,AD=BC ,BD=DB ,所以△ABD ≌△CDB ,所以∠ADB=∠CBD ,又因为AD=BC ,BF=DE ,所以△BCF ≌△DAE ,所以∠BFC=∠DEA ,因为∠AEB=120°,所以∠BFC=∠DEA=180°-120°=60°.7.【解析】选B.因为AD 是∠BAC 的平分线, 所以∠DAE=∠DAF , 又因为DE ⊥AB ,DF ⊥AC , 所以∠DEA=∠DFA=90°, 又因为AD=AD ,所以△DAE ≌△DAF(AAS),所以DE=DF=2,因为S △DAB =12AB ·DE=12×4×2=4, 又因为S △ABC =7,所以S △ADC =S △ABC -S △DAB =7-4=3, 所以12AC ·DF=3, 所以AC=3.8.【解析】一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是三角形的稳定性. 答案:三角形的稳定性9.【解析】∠AOC=∠BOD=38°, 由AC ⊥CD 得∠C=90°, 所以∠A=180°-90°-38°=52°.答案:5210.【解析】由三边关系得:第三边的取值范围是大于7厘米而小于11厘米.又第三边的长是奇数,故第三边的长是9厘米.答案:911.【解析】在△ABD与△ACE中,因为∠1+∠CAD=∠CAE+∠CAD,所以∠1=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS),所以∠2=∠ABE.因为∠3=∠1+∠ABE=∠1+∠2,∠1=25°,∠2=30°,所以∠3=55°.答案:55°12.【解析】因为AB⊥BC,AE⊥DE,所以∠B=∠E=90°,又AB=AE,∠ACB=∠ADE,所以△ABC≌△AED,所以∠BAC=∠EAD.因为∠ACD=∠ADC=50°,所以∠CAD=180°-50°-50°=80°,所以∠BAC=∠BAD-∠CAD=100°-80°=20°,所以∠BAE=∠BAD+∠EAD=∠BAD+∠BAC=120°.答案:12013.【解析】在△AOD和△COB中,因为OA=OC,OB=OD,且∠AOD=∠COB,所以△AOD≌△COB(SAS),所以∠A=∠C,所以AD∥BC.14.【解析】(1)由题意知AB∥DE,所以∠B=∠CDE,BC=DC,∠BCA=∠DCE,所以△ABC≌△EDC,所以AB=DE.(2)能,另外的设计如图2:使BN⊥AM,使∠ANB=∠BNM,又BN=BN,所以△ABN≌△MBN(ASA),故MB=AB,即MB的长度就是A,B之间的距离.15.【解析】添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB 等).当DE=DF时,在△BDF和△CDE中,因为{B D=CD,∠FDB=∠EDC,DF=DE,所以△BDF≌△CDE.16.【解析】不重叠的两部分全等.理由如下:因为三角形纸板ABC和DEF完全相同,所以AB=DE,BC=EF,∠A=∠D,所以AB-EF=DE-BC,即AF=CD.在△AOF和△DOC中,{A F=CD,∠A=∠D,∠AOF=∠DOC,所以△AOF≌△DOC.。
章节测试题1.【答题】在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=______度.【答案】60【分析】先整理得到∠A+∠C=2∠B,再利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵∠B﹣∠A=∠C﹣∠B,∴∠A+∠C=2∠B,又∵∠A+∠C+∠B=180°,∴3∠B=180°,∴∠B=60°.故答案为:60.2.【答题】在Rt△ABC中,∠C=90°,∠A=70°,则∠B=______.【答案】20°【分析】本题考查了三角形的内角和定理.【解答】∵Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∵∠A=70°,∴∠B=90°-70°=20°,故答案为:20°.3.【答题】△ABC中,∠C=90°,∠A∶∠B=1∶2,则∠A=______度.【答案】30【分析】本题考查了三角形的内角和定理.【解答】∵△ABC中,∠C=90°,∴∠A+∠B=90°,又∵∠A:∠B=1:2,∴∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,故答案为:30.4.【答题】在△ABC中,∠A+∠B=∠C,∠B=2∠A,则∠C=______,∠A=______【答案】90° 30°【分析】本题考查了三角形的内角和定理.【解答】解:∵∠A+∠B+∠C=180°,∠A+∠B=∠C,∴∠C=90°,∠A+∠B=90°.∵∠B=2∠A,∴3∠A=90°,∴∠A=30°.故答案为:90°,30°.5.【答题】已知,在△ABC中,∠A=80°,那么∠B=∠C=______度.【答案】50【分析】本题考查了三角形的内角和定理.【解答】又故答案为:50.6.【答题】在△ABC中,AD是角平分线,若∠B=50º,∠C=70º,则∠ADC=______.【答案】80º【分析】本题考查了三角形的内角和定理、三角形的角平分线.【解答】如图,∵△ABC中,∠B=50º,∠C=70º,∴∠BAC=60°,∵AD平分∠BAC,∴∠DAC=30°,∴∠ADC=180°-70°-30°=80°.故答案为:80°.7.【答题】在△ABC中,∠C=90°,∠A=60°,则∠B=______°.【答案】30【分析】本题考查了三角形的内角和定理.【解答】解:∠B=90°-∠A=90°-60°=30°.故答案为:30.8.【答题】在我们的生活中处处有数学的身影,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理______.【答案】三角形的内角和是180°【分析】本题考查了三角形的内角和定理.【解答】根据折叠的性质,折叠前后的两个角相等,即∠A=∠1,∠B=∠2,∠C=∠3,根据把三角形的三个角转化为一个平角∠1+∠2+∠3=180°,可得∠A+∠B+∠C=180°,因此这个定理为:三角形的内角和是180°.故答案为:三角形的内角和是180°.9.【答题】一个三角形的三个内角之比为1∶2∶3,则三角形是______三角形【答案】直角【分析】本题考查了三角形的内角和定理.【解答】设三角形三内角度数分别为x,2x,3x,根据三角形的内角和为180°得:x+2x+3x=180°,即6x=180°,解得:x=30°,可得三角形三内角分别为30°,60°,90°,则三角形是直角三角形.故答案为:直角.10.【答题】在一个直角三角形中,有一个锐角等于30°,则另一个锐角的大小为______度.【答案】60【分析】【解答】解:∵三角形是直角三角形,一个锐角等于30°,∴另一个锐角为90°﹣30°=60°.故答案为:60.11.【答题】在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=______.【答案】100°【分析】本题考查了三角形的内角和定理.【解答】①,②,①−②得,解得故答案为:12.【答题】直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为______.【答案】65°和25°【分析】本题考查了三角形的内角和定理.【解答】设这两个锐角的度数分别为x,y,根据题意得,解得故答案为:13.【答题】Rt△ABC中,∠C=90°,∠A=35°30′,则∠B=______.【答案】54.5°【分析】本题考查了三角形的内角和定理.【解答】Rt△ABC中,∵∠C=90°,∠A=35°30′,∴∠B=90°−∠A=90°−35°30′=54°30′=54.5°.故答案为:54.5°.14.【答题】已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD =55°,则∠BAC=______.【答案】100°或30°【分析】本题考查了三角形的内角和定理.【解答】如图,有两种情况,当∠ACD=55°时,∠BAC=∠ACD-∠ABC=55°-25°=30°;当∠AC′D=55°时,∠BAC′=180°-∠ABC-∠AC′B=180°-25°-55°=100°;综上,∠BAC为:100°或30°,故答案为:100°或30°.15.【答题】在△ABC中,∠C=2(∠A+∠B),则∠C=______.【答案】120°【分析】本题考查了三角形的内角和定理.【解答】:∵∠A+∠B=180°-∠C,∠C=2(∠A+∠B),∴∠C=2(180°-∠C),∴∠C=120°.16.【答题】在△ABC中,∠B=50°,∠C=60°,则∠A的度数是______度.【答案】70【分析】本题考查了三角形的内角和定理.【解答】∠B=50°,∠C=60°,∠A+∠B+∠C=180°,.17.【答题】一个三角形的三个内角的度数比是1∶6∶5,最大的一个内角是______度,按角分,它是一个______角三角形.【答案】90 直角【分析】本题考查了三角形的内角和定理.【解答】设这个三角形的最小内角为x,则另外两个角分别为6x、5x,根据三角形的内角和定理可得x+6x+5x=180,解得x=15,∴这个三角形的最大内角为15×6=90°,这个三角形是直角三角形.18.【答题】已知三角形三个内角的度数比是2:3:4,则这个三角形中最大角的度数是______.【答案】80°【分析】本题考查了三角形的内角和定理.【解答】根据三角形的内角和定理,设三个内角分别为2x,3x,4x,可得2x+3x+4x=180°,解得x=20°,因此最大内角的度数为:80°.故答案为:80°.19.【答题】在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=______度【答案】40【分析】本题考查了三角形的内角和定理.【解答】设∠A、∠B、∠C的度数分别为2x、3x、4x,则2x+3x+4x=180°,解得x=20°∴2x=40°,故答案为:40.20.【答题】若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为______度.【答案】80【分析】本题考查了三角形的内角和定理.【解答】根据三角形的内角和是180°,再根据三角形的三个内角之比为4:3:2即可求出这个三角形的最大内角为:180°×=80°.。
章节测试题1.【答题】如图,△ABC≌△DEF,则∠E的度数为()A. 80°B. 40°C. 62°D. 38°【答案】D【分析】根据全等三角形的性质解答即可.【解答】根据全等三角形的性质,全等三角形的对应角相等,可求∠E=∠B=180°-∠A-∠C=38°.选D.方法总结:此题主要考查了全等三角形的性质,解题关键是熟记全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.2.【答题】已知图中的两个三角形全等,则∠1等于()A. 50°B. 58°C. 60°D. 72°【答案】B【分析】根据全等三角形的性质解答即可.【解答】如图,由三角形内角和定理得到:∠2=180°-50°-72°=58°.因图中的两个三角形全等,根据全等三角形的性质可得∠1=∠2=58°.选B.3.【答题】如图,在△ABC中,D、E分别是边AC和BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°【答案】D【分析】根据全等三角形的性质解答即可.【解答】已知△ADB≌△EDB≌△EDC,根据全等三角形的性质可得∠C=∠EBD=∠ABD,∠CED=∠BED=∠A,根据邻补角的定义可得∠CED+∠BED=180°,即可得∠CED=∠BED=90°,所以∠A=90°,根据直角三角形的两锐角互余即可得∠C=∠EBD=∠ABD=30°,选D.4.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°选D.5.【答题】如图,△ABD≌△CDB,下面四个结论中,不正确的是()A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABD≌△CDB,∴∠ADB=∠CBD,AD=BC,△ABD和△CDB的面积相等,△ABD和△CDB的周长相等,∴AD∥BC,则选项A,B,D一定正确.由△ABD≌△CDB不一定能得到∠ABD=∠CBD,因而∠A+∠ABD=∠C+∠CBD 不一定成立.选C.6.【答题】如图,△ABC≌△ADE,∠B=80°,∠C=30°,则∠EAD的度数为:A. 70°B. 60°C. 50°D. 90°【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△ADE,∠B=80°,∠C=30°,∴∠B=∠D=80°,∠E=∠C=30°,∴∠EAD=180°-∠D-∠E=70°,选B.7.【答题】已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.选D.8.【答题】下列说法正确的是()A. 全等三角形是指形状相同的两个三角形B. 全等三角形的周长和面积分别相等C. 全等三角形是指面积相等的两个三角形D. 所有的等边三角形都是全等三角形【答案】B【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.选B.考点:全等三角形的应用.9.【答题】下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③C.②③④D.①②④【答案】D【分析】根据全等三角形的性质解答即可.【解答】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得①②④正确,③不正确.故答案选D.10.【答题】下列说法正确的是()A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等【答案】C【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】当两个三角形完全重合时,则两个三角形全等.11.【答题】(2分)如图,△ABC≌△DEF,若BC=6cm,BF=8cm,则下列判断错误的是()A.AB=DEB.BE=CFC.AC∥DFD.EC=2【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:已知△ABC≌△DEF,根据全等三角形的性质可得AB=DE,BC=EF=6,∠ACB=∠F,即可得AC∥DF,BE=CF=2,EC=BC﹣BE=6cm﹣2cm=4cm,故答案选D.12.【答题】如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A. 75°B. 57°C. 55°D. 77°【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:根据三角形全等可得:∠D=∠B=28°,根据△ADE的内角和定理可得:∠EAD=180°-95°-28°=57°,则∠BAD=∠BAE+∠EAD=20°+57°=77°.13.【答题】△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()A. 3B. 4C. 5D. 3或4或5【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:因为△ABC≌△DEF,,所以EF=BC.根据三角形的三边关系可得4-2<BC<4+2,即2<BC<6又因△DEF的周长为偶数,BC也要取偶数,所以BC=4即可得EF=4故答案选B.14.【答题】已知:如图,点D、E分别在AB、AC边上,△ABE≌△ACD,AC=15,BD=9,则线段AD的长是()A.6B.9C.12D.15【答案】A【分析】根据全等三角形的性质解答即可.【解答】解:全等三角形的对应边相等,由题,∵△ABE≌△ACD,∴AD=AE,AB=AC=15,∴AD=AB﹣BD=15﹣9=6选A.15.【答题】下列说法:①全等图形的面积相等;②全等图形的周长相等;③全等的四边形的对角线相等;④所有正方形都全等.其中正确的结论的个数是().A.1个B.2个C.3个D.4个【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:①全等图形的面积相等,正确;②全等图形的周长相等;③全等的四边形的对角线相等,正确;④所有的正方形边长不一定相等,所以不一定全等,错误.所以,正确的有①②③共3个.选C.16.【答题】若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF=()A. 5B. 8C. 7D. 5或8【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵△ABC的周长为20,AB=5,BC=8,∴AC=7,∵△ABC≌△DEF,∴DF=AC=7,选C.17.【答题】如图,△ABC≌△A E D,∠C=400,∠E AC=300,∠B=300,则∠E AD=();A. 300B. 700C. 400D. 1100【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△AED,∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D-∠E=110°,选D.18.【答题】观察如下图所示的各个图形,其中全等图形正确的是().A. ②≌④B. ⑤≌⑧C. ①≌⑥D. ③≌⑦【答案】C【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】观察可知②≌⑤,③≌⑧,①≌⑥,选C.19.【答题】ΔABC≌ΔCDA,∠BAC=∠DCA,则BC的对应边是()A. CDB. CAC. DAD. AB【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵ΔABC≌ΔCDA,∠BAC=∠DCA,∴BC的对应边为DA,选C.20.【答题】下列图中,与左图中的图案完全一致的是()A.B.C.D.【答案】A【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】A图案可以通过旋转得到,故A符合题意;B、C、D通过旋转、平移都不能得到,选A.。
2021-2022学年鲁教版七年级数学上册《第1章三角形》同步能力达标测评(附答案)一.选择题(共10小题,每小题3分,共计30分)1.已知三角形的两边长分别为2和3,第三边长是奇数,则第三边长可以是()A.1B.3C.5D.92.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠3=60°C.∠2=∠3D.∠1=∠43.如图,E是△ABC的边AC的中点,过点C作CF∥AB,过点E作直线DF交AB于D,交CF于F,若AB=9,CF=6.5,则BD的长为()A.1B.2C.2.5D.34.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.70°B.75°C.80°D.85°5.如图,△ABC≌△ADE,则下列结论正确的个数是()①AB=AD;②∠E=∠C;③若∠BAE=120°,∠BAD=40°,则∠BAC=80°;④BC=DE.A.1B.2C.3D.46.已知一个三角形三边长为a、b、c,则|a﹣b﹣c|﹣|a+b﹣c|=()A.﹣2a+2c B.﹣2b+2c C.2a D.﹣2c7.如图,已知∠ABC=∠DCB,AC与DB相交于点O.若添加一个条件,仍不能判定△ABC ≌△DCB,则这个条件是()A.∠A=∠D B.AB=CD C.∠ACB=∠DBC D.AC=BD8.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°9.一副三角板如图所示摆放,若∠1=80°,则∠2的度数是()A.80°B.95°C.100°D.110°10.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.则在下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④∠AMD=144°.其中正确的结论个数有()个.A.4B.3C.2D.1二.填空题(共10小题,每小题3分,共计30分)11.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥OB于点C,BD、AC都经过点E,则图中全等的三角形共有对.12.如图,已知∠ACB=90°,OA平分∠BAC,OB平分∠ABC,则∠AOB=°.13.如图,△ACD≌△CBE,且点D在边CE上.若AD=24,BE=10,则DE的长为.14.若三角形两条边的长分别是3,5,第三条边的长是整数,则第三条边的长的最大值是.15.如图,在△ABC中,∠B=45°,CD平分∠ACB交AB于点D,过点A作AE⊥CD交BC于点E,交CD于点F,若∠BAE=20°,则∠CAF的大小为.16.如图,∠ADC=∠DCF=120°,AD=DC=2CF,若AE=24,则线段CE长为.17.如图,在△ABC中,D为BC的中点,E是AD上一点,连接BE并延长交AC于F,BE=AC,且BF=8,CF=3,则AF的长度为.18.如图,将一个三角形纸片ABC沿着DF折叠,点A与点E为对应点,若∠1=74°,∠2=144°,则∠A的度数为.19.如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为.20.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2021为.三.解答题(共6小题,每小题10分,共计60分)21.如图,在△ABC中,点D,E,F分别在AB,BC,AC上,∠B=∠C=∠DEF=60°,BD=CE.(1)求证:∠BDE=∠CEF;(2)若DE=3,求EF的长.22.直角△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图1所示,且∠α=50°,则∠1+∠2=;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间有何关系,并说明理由;(3)如图3,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式.23.如图,四边形ABCD中,点E、点F分别在AB、CD上,且AE=CF,分别过点A、C 向EF作垂线,垂足分别为点G、点H,且AG=CH.求证:AB∥CD.24.如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.25.如图所示,BD、CE是△ABC的高,点P在BD的延长线上,CA=BP,点Q在CE上,QC=AB.(1)探究P A与AQ之间的关系;(2)若把(1)中的△ABC改为钝角三角形,AC>AB,∠A是钝角,其他条件不变,上述结论是否成立?画出图形并证明你的结论.26.如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.参考答案一.选择题(共10小题,每小题3分,共计30分)1.解:设第三边的长为x,根据三角形的三边关系,得3﹣2<x<3+2,即1<x<5,又∵第三边长是奇数,∴x=3.故选:B.2.解:Rt△ABC中,∵∠ACB=90°,∴∠1+∠2=90°,故A正确;∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∴∠2=∠3,故C正确;∵∠3+∠4=90°,∴∠1=∠4,故D正确;故选:B.3.证明:∵CF∥AB,∴∠1=∠F,∠2=∠A,∵点E为AC的中点,∴AE=EC,在△ADE和△CFE中,∴△ADE≌△CFE(AAS),∴AD=CF=6.5,∵AB=9,∴BD=AB﹣AD=9﹣6.5=2.5,故选:C.4.解:如图,∵∠2=90°﹣30°=60°,∴∠3=180°﹣45°﹣60°=75°,∵a∥b,∴∠1=∠3=75°,故选:B.5.解:∵△ABC≌△ADE,∴AB=AD;∠E=∠C;BC=DE,∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠BAE=120°,∠BAD=40°,∴∠CAE=40°,∴∠BAC=∠BAE﹣∠CAE=80°,∴①②③④都正确,故选:D.6.解:∵a、b、c是一个三角形三边长,∴b+c>a,a+b>c,∴|a﹣b﹣c|﹣|a+b﹣c|=﹣(a﹣b﹣c)﹣(a+b﹣c)=﹣a+b+c﹣a﹣b+c=﹣2a+2c,故选:A.7.解:A、∵∠A=∠D,∠ABC=∠DCB,BC=CB,利用AAS能判定△ABC≌△DCB,不符合题意;B、∵AB=CD,∠ABC=∠DCB,BC=CB,利用SAS能判定△ABC≌△DCB,不符合题意;C、∵∠ACB=∠DBC,∠ABC=∠DCB,BC=CB,利用AAS能判定△ABC≌△DCB,不符合题意;D、∵∠ABC=∠DCB,BC=CB,AC=BD,有两边且其中一边的对角对应相等的两个三角形不一定全等,符合题意;故选:D.8.解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)==2×55°=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.故选:A.9.解:如图,∠5=90°﹣30°=60°,∠3=∠1﹣45°=35°,∴∠4=∠3=35°,∴∠2=∠4+∠5=95°,故选:B.10.解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠BOC+∠COD,即∠AOC=∠BOD,在△OAC和△OBD中,,∴△OAC≌△OBD(SAS),∴∠OAC=∠OBD,AC=BD,所以②正确;∵∠AOB+∠OAC+∠1=∠AMB+∠OBD+∠2,而∠1=∠2,∴∠AMB=∠AOB=36°,所以①正确;∴∠AMD=180°﹣∠AMB=180°﹣36°=144°,所以④正确;过O点作OE⊥AC于E,OF⊥BD于F,如图,∵△OAC≌△OBD,∴OE=OF,∴MO平分∠AMD,而∠OAM≠ODM,∴∠AOM≠∠DOM,所以③错误.故选:B.二.填空题(共10小题,每小题3分,共计30分)11.解:∵OE是∠AOB的平分线,BD⊥OA,AC⊥OB,∴ED=EC,在Rt△OED和△OEC中,,∴Rt△OED≌Rt△OEC(HL);∴OD=OC,在△AED和△BEC中,,∴△AED≌△BEC(ASA);∴AD=BC,∴OD+AD=OC+BC,即OA=OB,在△OAE和△OBE中,,∴△OAE≌△OBE(SAS),在△OAC和△OBD中,,∴△OAC≌△OBD(SAS).故答案为4.12.解:∵OA平分∠BAC,OB平分∠ABC,∴∠OAB=CAB,∠OBA=∠CBA.∵∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣∠CAB﹣∠CBA=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠C)=90°+∠C.当∠ACB=90°时,∠AOB=90°+×90°=135°.故答案为:135.13.解:∵△ACD≌△CBE,AD=24,BE=10,∴CE=AD=24,CD=BE=10,∴DE=CE﹣CD=24﹣10=14,故答案为:14.14.解:∵5﹣3<第三边<3+5,即:2<第三边<8;所以最大整数是7,故答案为:7.15.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠CAF+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠CAF=∠CEA,∵∠CEA=∠B+∠BAE,∠B=45°,∠BAE=20°,∴∠CAE=65°,∴∠CAF=65°,故答案为:65°.16.解:如图,过点D作DH⊥AC于H,∵∠ADC=∠DCF=120°,AD=DC,DH⊥AC,∴AH=HC,∠DAC=∠DCA=30°,∴∠ACF=90°,AD=2DH,∵AD=2CF,∴DH=CF,在△DHE和△FCE中,,∴△DHE≌△FCE(AAS)∴EH=EC,∴EC=EH=CH=AH,∵AE=24,∴EH=EC=8.故答案为8.17.解:如图,延长AD到G使DG=AD,连接BG,∵D为BC的中点,∴BD=CD,在△ACD与△GBD中,,∴△ACD≌△GBD(SAS),∴∠CAD=∠G,AC=BG,∵BE=AC,∴BE=BG,∴∠G=∠BEG,∵∠BEG=∠AEF,∴∠AEF=∠EAF.∴EF=AF,∴AF+CF=BF﹣AF,即AF+3=8﹣AF,∴AF=,故答案为.18.解:延长DF由折叠得,△ADF≌△EDF,∴∠AFD=∠EFD,∠A=∠E,∴∠AFE=150°﹣∠2=36°,∴AFD=∠EFD=18°,∵∠CFG和∠DFE为对顶角,∵∠FDB是△ADF的外角,∴∠E+∠EDF=∠EFG,∴∠A+∠1+∠FDB=∠2+∠CFG,∴∠A+∠1+∠A+∠AFD=∠2+∠CFG,∴2∠2+74°+18°=144°+18°,∴∠A=35°.故答案为:35°.19.解:∵AD是△ABC的中线,∴S△ABD=S△ACD=S△ABC,∵点E是AD的中点,∴S△ABE=S△ADE=S△ABD,S△EDC=S△CAE=S△ACD,∴S△ABE=S△ABC,S△CDE=S△ABC,∴S△ABE+S△CDE=S△ABC+S△ABC=S△ABC==4,故答案为:4.20.解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A1=.故答案为:.三.解答题(共6小题,每小题10分,共计60分)21.(1)证明:∵∠B+∠BDE+∠BED=180°,∠DEF+∠FEC+∠BED=180°,∠B=∠DEF=60°,∴∠BDE=∠CEF;(2)解:在△BDE和△CEF中,,∴△BDE≌△CEF(ASA),∴DE=EF,∵DE=3,∴EF=3.22.解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)如图,分三种情况:在BA延长线上取点P,连接EP、DP,如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.23.证明:∵AG⊥GH,CH⊥GH,∴∠G=∠H=90°,在Rt△AGE和Rt△CHF中,,∴Rt△AGE≌Rt△CHF(HL),∴∠AEG=∠CFH,∵∠AEG=∠BEF,∴∠BEF=∠CFH,∴AB∥CD.24.(1)证明:∵AB∥CD,∴∠ABD=∠EDC.在△ABD和△EDC中,,∴△ABD≌△EDC(AAS),(2)∵△ABD≌△EDC,∴AB=DE=2,BD=CD,∴CD=BD=DE+BE=2+3=5.25.(1)结论:AP=AQ,AP⊥AQ证明:∵BD、CE是△ABC的高,∴BD⊥AC,CE⊥AB,∴∠1+∠CAB=90°,∠2+∠CAB=90°,∴∠1=∠2,在△QAC和△APB中,,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,而∠DAP+∠P=90°,∴∠DAP+∠QAC=90°,即∠QAP=90°,∴AQ⊥AP;即AP=AQ,AP⊥AQ;(2)上述结论成立,理由如下:如图所示:∵BD、CE是△ABC的高,∴BD⊥AC,CE⊥AB,∴∠1+∠CAE=90°,∠2+∠DAB=90°,∵∠CAE=∠DAB,∴∠1=∠2,在△QAC和△APB中,,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,∵∠PDA=90°,∴∠P+∠P AD=90°,∴∠QAC+∠P AD=90°,∴∠QAP=90°,∴AQ⊥AP,即AP=AQ,AP⊥AQ.26.(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠F AE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,。
章节测试题1.【答题】下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 3cm,4cm,8cmB. 8cm,3cm,11cmC. 5cm,5cm,11cmD. 6cm,5cm,3cm【答案】D【分析】【解答】2.【答题】如图,下列图形中,AD是△ABC中BC边上的高的是()A. B. C. D.【答案】D【分析】【解答】3.【答题】在△ABC中,,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【分析】【解答】4.【答题】如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠EB. BC=EC,∠A=∠DC. BC=EC,AC=DCD. ∠BCE=∠ACD,∠A=∠D【答案】B【分析】【解答】5.【答题】如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD折叠,使点B 落在AC边上的点E处,则∠ADE的度数是()A. 30°B. 40°C. 50°D. 70°【答案】C【分析】【解答】6.【答题】如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可测得A,B间的距离.其全等的根据是()A. SASB. ASAC. AASD. SSS【答案】A【分析】【解答】7.【答题】如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积等于()A. 2cm2B. 1cm2C.D.【答案】B【分析】【解答】8.【答题】如图,网格中有△ABC及线段DE,在网格上找一点F(必须在网格的交点处),使△DEF与△ABC全等,这样的点有()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】【解答】9.【答题】如图,建高楼时常需要塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的______.【答案】稳定性【分析】【解答】10.【答题】已知三角形的两条边长分别为2cm和7cm,第三边的长为奇数,则第三边的长为______cm.【答案】7【分析】【解答】11.【答题】如图,已知△ABC中AD是BC边上的高,AE,BF分别是∠CAB,∠ABC的平分线,并相交于点O.若∠CAB=50°,∠C=60°,则∠DAE=______,∠BOA=______.【答案】5° 120°【分析】【解答】12.【答题】如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B.一动点E从A点出发以2cm/s的速度沿射线AN运动,点D为射线BM上的一个动点,随着E点运动而运动,且始终保持ED=CB.当点E离开点A后(E不在A点上),运动______s,△DEB与△BCA全等.【答案】2,6,8【分析】【解答】13.【题文】(10分)已知线段a和∠α,求作一个三角形,使其一个内角等于∠α,另一个内角等于2∠α,且这两个内角的夹边等于2a.【答案】见解答.【分析】本题考查利用基本作图作三角形.【解答】如图,△ABC即为所求.14.【题文】(12分)如图,A,C,F,D在同一直线上,且AF=DC,AB∥DE,AB=DE.请写出BC与EF的关系,并说明理由.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】BC=EF,BC∥EF.理由:∵AF=CD,∴AF-FC=CD-FC,即AC=DF.∵AB∥DE,∴∠A=∠D.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴BC=EF,∠ACB=∠DFE.∴∠BCF=∠EFC,∴BC∥EF.15.【题文】(12分)如图,点E在AC上,AB=AD,BE=DE,试说明∠3=∠4.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】在△ABE和△ADE中,∴△ABE≌△ADE(SSS),∴∠1=∠2.在△ABC和△ADC中,∴△ABC≌△ADC(SAS),∴∠3=∠4.16.【题文】(14分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A,B两点分别作直线l的垂线,垂足分别为D,E.(1)△ACD与△CBE全等吗?说明你的理由.(2)猜想线段AD,BE,DE之间的关系,并说明理由.(3)若把两块等腰直角三角板按图3所示的方式放置,连接BE,AD,AD分别交BE,BC于点F,G.猜想AD与BE有怎样的数量关系和位置关系,并说明理由.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】(1)△ACD与△CBE全等.理由如下:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB.在△ACD与△CBE中,∴△ACD≌△CBE(AAS).(2)AD=BE-DE.理由如下:∵△ACD≌△CBE,∴AD=CE.CD=BE.∴AD=CE=CD-DE=BE-DE.(3)AD=BE,AD⊥BE.理由如下:在△BCE和△ACD中,∵∠DCE=∠ACB=90°,∴∠DCE+∠DCB=∠ACB+∠BCD,∴∠BCE=∠ACD.在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠CAD.在Rt△ACG中,∵∠CGA+∠CAG=90°,∠BGF=∠CGA,∴∠BGF+∠GBF=90°,∴∠BFG=90°,即AD⊥BE.17.【答题】下列图形是全等图形的是()A. B. C.D.【答案】B【分析】【解答】18.【答题】如图,为估计池塘岸边A,B间的距离,小明在池塘的一侧选取一点O,测得OA=15m,OB=10m,则A,B间的距离可能是()A. 30mB. 25mC. 20mD. 5m【答案】C【解答】19.【答题】如图,要测量湖两岸相对两点A,B间的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再作BF的垂线DE,使A,C,E在一条直线上,这时可得△ABC≌△EDC. 用于判定全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【分析】【解答】20.【答题】在△ABC中,已知下列条件:①∠A=60°,∠C=30°;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=90°-∠C.能确定△ABC是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【分析】【解答】。
章节测试题1.【题文】画一个三角形,再画一个与其全等的图形.【答案】见解析【分析】作任意再作一个三角形与它全等即可.【解答】解:1,作任意 2,作射线在上截取 3,以为圆心, 为半径画圆4,以为圆心, 为半径画圆,交圆于,5,连接得,全等于2.【答题】下列尺规作图,能判断是边上的高是().A.B.C.D.【答案】B【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】A选项:AD为BC边上的中线,不符合题意;B选项:AD为BD边上的高;C选项:AD为∠BAC的角平分线;D选项:AD不是BC边上的高.选B.方法总结:掌握利用尺规作图作三角形的高的方法.3.【答题】已知三边作三角形时,用到所学知识是( )A. 作一个角等于已知角B. 作一个角使它等于已知角的一半C. 在射线上取一线段等于已知线段D. 作一条直线的平行线或垂线【答案】C【分析】根据三边做三角形用到作一条线段等于已知线段的基本作图方法.【解答】已知三边作三角形时,用到的三角形的判定方法是SSS定理,而第一条边的作法,需要在射线上截取一条线段等于已知的线段。
故C。
方法总结:作一个三角形等于已知的三角形,有多种方法,本题是其中的三边作图,用的是SSS判定定理。
4.【答题】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )A. 作一条线段等于已知线段B. 作一个角等于已知角C. 作两条线段等于已知三角形的边,并使其夹角等于已知角D. 先作一条线段等于已知线段或先作一个角等于已知角【答案】D【分析】利用基本作图先要作一个线段等于已知线段,再作一个角等于已知角或先作一个角等于已知角,然后便于作边.【解答】已知三角形的两边及其夹角,求作这个三角形,可以先A法,也可以先B法,但是都不全面,因为这两种方法都可以,故选D.。
5.【答题】利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A. 已知三条边B. 已知三个角C. 已知两角和夹边D. 已知两边和夹角【答案】B【分析】看是否符合所学的全等的公理或定理即可.【解答】A、符合全等三角形的判定SSS,能作出唯一直角三角形;B、不正确,已知三个角可画出无数个三角形;C、正确,符合ASA判定;D、正确,符合SAS判定.选B.方法总结:此题主要考查由已知条件作三角形,可以依据三角形全等的判定来做.6.【答题】用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A. 三角形的两条边和它们的夹角B. 三角形的三边C. 三角形的两个角和它们的夹边D. 三角形的三个角【答案】A【分析】由已知条件可判定已知条件为两边和它们的夹角作三角形.【解答】由已知条件可判定已知条件为两边和它们的夹角作三角形.选A.7.【答题】已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS【答案】D【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS得到三角形全等,由全等三角形的性质,可得全等三角形的对应角相等.【解答】如图,连接CD、C’D’,∵在△COD和△C’O’D’中,∴△COD≌△C’O’D’(SSS),∴∠AOB=∠A’O’B’选D.8.【答题】用尺规作图,已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三边作三角形实质就是把三边的长度用圆规画出,选C.9.【答题】如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】根据图形,可以确定两角及其夹边.选C.10.【答题】根据下列已知条件,能唯一画出△ABC的是( )A. ∠A=36°,∠B=45°,AB=4B. AB=4,BC=3,∠A=30°C. AB=3,BC=4,CA=1D. ∠C=90°,AB=6【答案】A【分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【解答】A.∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.选A.11.【答题】利用基本作图方法,不能作出唯一三角形的是( )A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边【答案】C【分析】三角形全等的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】A. 已知两边及其夹角,作图依据“SAS”;B. 已知两角及其夹边,作图依据“ASA”;C. 已知两边及一边的对角,不能做出唯一的三角形;D. 已知三边,作图依据“SSS”.选C.12.【答题】已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作一条线段等于已知线段的和【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三角形的三边,求作符合要求的三角形,其作图依据是“SSS”.故用到的基本作图是:作一条线段等于已知线段.选C.13.【答题】下列各条件中,能作出唯一的△ABC的是( )A. AB=4,BC=5,AC=10B. AB=5,BC=4,∠A=40°C. ∠A=90°,AB=10D. ∠A=60°,∠B=50°,AB=5【答案】D【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】本题中A选项中的三边不能确定三角形,B选项中不是夹角,C选项中缺少一个条件,选D.14.【答题】下列选项所给条件能画出唯一的是()A. ,,B. ,,C. ,D. ,,【答案】A【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】A中两角夹一边,形状固定,所以可作唯一三角形;B中∠B并不是AB,AC的夹角,所以可画出多个三角形;C中两个锐角也不确定,也可画出多个三角形;D中AC与BC两边之差大于第三边,所以不能作出三角形,选A.15.【答题】如图,根据图中作图痕迹,可以得出作三角形的依据分别是:(1)______;(2)______;(3)______(图中虚线表示最后作出的线段)【答案】SAS,SSS,ASA【分析】从作图痕迹可知是通过作两边和两边的夹角得到三角形的,作图的依据是SAS.从作图痕迹可知是通过作三边得到三角形的,作图的依据是SSS.从作图痕迹可知是通过作两角和夹边得到三角形的,作图的依据是ASA.【解答】解:答案为:16.【答题】尺规作三角形的类型:尺类型依据规作图已知两边及其夹角作三角形______已知两角一边作三角形______(或)已知三边作三角形______【答案】SAS,ASA,SSS【分析】判定三角形全等的方法有:【解答】解:已知两边及其夹角作三角形,其依据是:SAS.已知两角一边作三角形,其依据是:ASA(或).已知三边作三角形, 其依据是:故答案为:17.【答题】作三角形用到的基本作图是:(1)______;(2)______;【答案】作一个角等于已知角,作一条线段等于已知线段【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】解:作三角形用到的基本作图是:(1). 作一个角等于已知角(2). 作一条线段等于已知线段故答案为:(1). 作一个角等于已知角(2). 作一条线段等于已知线段.18.【答题】下列作图中:①用量角器画出;②作,使;③连接;④用直尺和三角板作的平行线,属于尺规作图的是______.(填序号)【答案】②③【分析】尺规作图的定义:只能用没有刻度的直尺和圆规作图【解答】属于尺规作图的是②、③.故答案为②③.19.【答题】已知,分别以射线、为始边,在的外部作,,则与的位置关系是______.【答案】互相垂直或重合【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】①∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠COD=90°,此时OC⊥OD;②∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠BOC=45°,此时OC与OD 重合.故答案为互相垂直或重合.方法总结:本题关键在于考虑到两个可能性.20.【答题】利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“______”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“______”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“______”.【答案】SAS,ASA,SSS【分析】根据三角形全等的判定定理可得答案.【解答】根据SAS—两边及其夹角分别相等的两个三角形全等;ASA—两角及其夹边分别相等的两个三角形全等;SSS—三边分别相等的两个三角形全等.故答案:(1)SAS、 (2)ASA 、(3)SSS.。
章节测试题1.【答题】如图△ACB≌A’CB’,∠A’CB=30°,∠ACB’=110°,则∠ACA’的度数是______度.【答案】40【分析】本题主要考查全等三角形对应角相等的性质,对应角都减去∠A′CB得到两角相等是解决本题的关键.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB′,∵∠A′CB=30°,∠ACB′=110°,∴∠ACA′=(110°﹣30°)÷2=40°.故答案为:402.【答题】△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.【答案】40°【分析】利用全等三角形的性质,要求∠DEF即要求∠ABC,分别设出△ABC对应的角度,再利用三角形内角和为180°列方程解出未知数即可.【解答】设∠BAC=4x°,∠ACB=3x°,∠ABC=2x°,所以4x+3x+2x=180,x=20,∴∠ABC=40°,∵△ABC≌△DEF,∴∠ABC=∠DEF=40°.故答案为40°.3.【答题】如图,△ABC≌△DEF,线段AD=5,DE=3,则BD= ______.【答案】2【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,DE=3,∴AB=DE=3,∵线段AD=5,∴BD=AD-AB=5-3=2.4.【答题】如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=42°,则∠DAC=______.【答案】36°【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE=42°,∴∠DAC=∠BAE﹣∠BAD﹣∠CAE=120°﹣42°﹣42°=36°.故答案为:36°.5.【答题】如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=______.【答案】66°【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.6.【题文】如图,ΔABC≌ΔD EF,∠A=25°,∠B=65°,B F=3㎝,求∠D FE的度数和E C的长.【答案】∠D FE=65°;E C=3㎝.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm,∴∠DFE=90°,EC=3cm.7.【题文】如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:∵△ACB≌△BDA,∴AB=BA;∠CBA=∠DAB,∠CAB=∠DBA,∠C=∠D.8.【题文】如图,已知△ABD≌△CDB,∠ABD=∠CDB,写出其余的对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:∵△ABD≌△CDB,∴∴AB的对应边是CD,AD的对应边是CB,BD的对应边是DB,∠A的对应角是∠C,∠ADB的对应角是∠CBD,∠ACB的对应角是∠ECD.9.【题文】如图,已知△ABC≌△EDC,指出其对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:△ABC≌△EDC,∴AB的对应边是ED,AC的对应边是EC,BC的对应边是DC,∠A的对应角是∠E,∠B的对应角是∠D,∠ACB的对应角是∠ECD.10.【题文】如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.【答案】见解析【分析】先根据△ABE≌△ACD,可以确定点A的对应点是A,点B的对应点是C,点D的对应点是E,然后根据对应顶点,结合图形即可找出对应边和对应角. 【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠BAE与∠CAD是对应角,AB与AC,BE与CD,AD与AE是对应边.11.【题文】如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M, ∠E=∠N, ∠EGF=∠NHM (2)MN=2.1cm,HG=2.2cm.【分析】(1)因为△EFG≌△NMH,故有全等三角形的对应边和对应角相等.(2)因为△EFG≌△NMH,故EF=NM,,即可求出各自的长度.【解答】解:(1)△EFG≌△NMH,∠F与∠M是对应角在△EFG和△NMH中,有EF=NM,EG=NH,FG=MH∠F=∠M, ∠E=∠N, ∠EGF=∠NHM ;(2)∵由(1)可知,EF=NM,EF=2.1cm ∴MN="2.1"又MH=FG=3.3 FH=1.1∴=3.3-1.1=2.2cm.12.【答题】如图,已知B,C,E在一条直线上,且△ABC≌△EFC,∠EFC=60°,则∠A=______;【答案】30°【分析】根据全等三角形的性质解答即可.【解答】解:根据三角形全等可得:∠ACB=∠ECF=90°,∠B=∠EFC=60°,则根据△ABC的内角和定理可得:∠A=180°-90°-60°=30°.13.【答题】如图,△ABD≌△AC E,A E=3cm,AC=6 cm,则CD=______cm.【答案】3【分析】根据全等三角形的性质解答即可.【解答】∵△ABD≌△ACE,∴AD=AE=3cm,∴CD=AC-AD=6 -3=3cm,故答案为:3.14.【答题】如图,△ABD≌△EBC,AB=3cm,BC=5cm,则DE长是______cm。
章节测试题1.【答题】如果三角形三个内角的度数比是2:3:4,则它是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 钝角或直角三角形【答案】A【分析】【解答】2.【答题】如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A. 图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D. ∠2=∠A【答案】B【分析】【解答】3.【答题】将一把直尺与一块含30°角的三角板按如图所示方式放置,若∠1=40°,则∠2的度数为()A. 125°B. 120°C. 140°D. 130°【答案】D【分析】【解答】4.【答题】如图,将一副三角板按图中所示方式摆放,保持两条斜边互相平行,则∠1=()A. 30°B. 25°C. 20°D. 15°【答案】D【分析】【解答】5.【答题】在△ABC中,∠A:∠B:∠C=2:3:5,此三角形按角分类应是______三角形.【答案】直角【分析】【解答】6.【答题】如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC.若∠1=155°,则∠B的度数为______.【答案】65°【分析】【解答】7.【答题】如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为______.【答案】40°【分析】【解答】8.【题文】如图,直线a∥b,EF⊥CD于点F,∠2=65°,求∠1的度数.【答案】提示:先根据直线a∥b得出∠FDE=∠2=65°,再由EF⊥CD于点F可知⊥DFE=90°,从而可得出∠1=25°.【分析】【解答】9.【题文】如图所示,∠C=90°,∠B=50°,E为AC边上一点,ED⊥AB,垂足为D,试问:∠AED和∠B的关系是什么?【答案】相等.【分析】【解答】10.【答题】下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°-∠B,④∠A=∠B=∠C,其中能确定△ABC是直角三角形的有______.(填序号)【答案】①②③【分析】【解答】11.【答题】已知a∥b,将一块含30°角的三角板按如图所示方式放置,如果∠1=35°,那么∠2=()A. 35°B. 55°C. 56°D. 65°【答案】B【分析】【解答】12.【答题】将一副三角板按如图所示方式放置,则∠1与∠2的和是()A. 60°B. 45°C. 30°D. 25°【答案】B【分析】13.【题文】如图,在△ACB中,∠ACB=90°,CD⊥AB,垂足为D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于E,F,求证:∠CEF=∠CFE.【答案】(1)提示:∠ACD和∠B都与∠CAB互余;(2)略.【分析】【解答】14.【答题】已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A. 4B. 6C. 8D. 10【答案】C【分析】【解答】15.【答题】一个三角形三边的长分别为1,3,x,且x为整数,则此三角形的周长是()A. 9B. 8C. 7D. 6【分析】【解答】16.【答题】已知三角形的三边长分别为3,8,x,若x的值为偶数,则x的值有()A. 6个B. 5个C. 4个D. 3个【答案】D【分析】【解答】17.【答题】现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成三角形的个数是()A. 1B. 2C. 3D. 4【答案】B【分析】【解答】18.【答题】如果三角形的两边长分别为3和5,则周长l的取值范围是()A. 6<l<15B. 6<l<16C. 11<l<13D. 10<l<16【答案】D【分析】19.【答题】已知△ABC三边的长x,y,z满足(x-y)2+|y-z|=0,则△ABC的形状是()A. 钝角三角形B. 直角三角形C. 等边三角形D. 以上都不对【答案】C【分析】【解答】20.【答题】若等腰三角形的一边长是7,另一边长是4,则此等腰三角形的周长是()A. 18B. 15C. 18或15D. 无法确定【答案】C【分析】【解答】。
章节测试题1.【答题】如图,△ABC≌△DEF,请根据图中提供的信息,写出x=______.【答案】20【分析】根据全等三角形对应边相等解答.【解答】∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.2.【答题】如图所示,△DEF是△ABC沿水平方向向右平移后的对应图形,若∠B=31°,∠C=79°,则∠D的度数是______度.【答案】70【分析】根据平移的对应角相等和三角形的内角和可求出∠D的度数.【解答】∠E=∠B=31°,∠F=∠C=79°,∴∠D=180°-31°-79°=70°.3.【答题】如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.【答案】30【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180°来求角的度数.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案为:30.4.【答题】如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°【答案】D【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,选D.5.【答题】如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°【答案】D【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,选D.6.【答题】若如图中的两个三角形全等,图中的字母表示三角形的边长,则∠1的度数为()A. 40°B. 50°C. 60°D. 70°【答案】B【分析】在左图中,先利用三角形内角和计算出边a所对的角为50°,然后根据全等三角形的性质得到∠1的度数.【解答】解:在左图中,边a所对的角为180°﹣60°﹣70°=50°,∵图中的两个三角形全等,∴∠1的度数为50°.选B.7.【答题】如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A. 35°B. 30°C. 25°D. 20°【答案】B【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,选B.8.【答题】如图,两个三角形是全等三角形,x的值是()A. 30B. 45C. 50D. 85【答案】A【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.【解答】解:∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,选A.9.【答题】如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,则∠EAC=()A. 27°B. 54°C. 30°D. 55°【答案】B【分析】根据三角形内角和定理求出∠BAC,根据全等得出∠DAE=∠BAC=54°,即可得出答案.【解答】解:∵∠B=70°,∠C=26°,∴∠BAC=180°﹣∠B﹣∠C=84°,∵△ABC≌△ADE,∴∠DAE=∠BAC=84°,∵∠DAC=30°,∴∠EAC=84°﹣30°=54°,选B.10.【答题】如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE. CD交于点F.若∠BAC=35°,则∠BFC的大小是()A. 105°B. 110°C. 100°D. 120°【答案】B【分析】由全等三角形的对应角相等、三角形外角定理以及三角形内角和定理进行解答.【解答】解:设∠C′=α,∠B′=β,∵△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=35°,∴∠C′DB=∠BAC+ACD=35°+α,∠CEB′=35°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=∠BAC+ACD=35°+α,∠ACB=∠CEB′=35°+β,∴∠BAC+∠ABC+∠ACB=180°,即105°+α+β=180°.则α+β=75°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=35°+α+β=35°+75°=110°.选B.11.【答题】如图,△ABC≌△ADE,∠B=82°,∠E=30°,∠DAC=32°,则∠EAC的度数为()A. 40°B. 32°C. 36°D. 30°【答案】C【分析】根据全等三角形的性质可得∠D=∠B=82°,利用三角形内角和定理可得∠DAE=68°,再由条件∠DAC=32°可得∠EAC的度数.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=82°,∵∠E=30°,∴∠DAE=68°,∵∠DAC=32°,∴∠EAC=36°,选C.12.【答题】在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是120°,那么在△ABC中与这个120°的角对应相等的角是()A. ∠AB. ∠BC. ∠CD. ∠B或∠C【答案】A【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是120°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于120°,∴在△ABC中与这个120°的角对应相等的角是∠A.选A.13.【答题】已知图中的两个三角形全等,则∠1等于()A. 72°B. 60°C. 50°D. 58°【答案】D【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.选D.14.【答题】如图,△ABC≌△A′B′C′,其中∠A=36°,∠C=24°,则∠B′=()A. 150°B. 120°C. 90°D. 60°【答案】B【分析】根据三角形内角和定理求出∠B,根据全等三角形的性质即可得到结论.【解答】解:∵∠A=36°,∠C=24°,∴∠B=120°,∵△ABC≌△A′B′C′,∴∠B=∠B′=120°,选B.15.【答题】如图,已知△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=30°,则∠EAC的度数是()A. 35°B. 40°C. 25°D. 30°【答案】B【分析】利用全等三角形的对应角相等,求出∠D,∠E的度数,再利用三角形的内角和定理求出∠DAE的度数,然后根据∠EAC=∠DAE﹣∠DAC,代入计算求出∠EAC 的度数.【解答】解:∵△ABC≌△ADE,∠B=80°,∠C=30°,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°﹣∠D﹣∠E=70°.∵∠DAC=30°,∴∠EAC=∠DAE﹣∠DAC=40°.故答案为:B.16.【答题】如图,△ABC≌△ADE,若∠BAC=75°,∠E=40°,则∠B的度数为()A. 75°B. 40°C. 65°D. 115°【答案】C【分析】根据全等三角形的性质得出∠C=∠E=40°,根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠E=40°,∴∠C=∠E=40°,∵∠BAC=75°,∴∠B=180°﹣∠BAC﹣∠C=65°,选C.17.【答题】已知,△ABC≌△DEF,且∠A=55°,∠E=45°,则∠C=()A. 55°B. 45°C. 80°D. 90°【答案】C【分析】根据全等三角形对应角相等可得∠B=∠E,再根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=45°,在△ABC中,∠C=180°﹣∠A﹣∠B=180°﹣55°﹣45°=80°.选C.18.【答题】如图,△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠BCD等于()A. 80°B. 60°C. 40°D. 20°【答案】B【分析】根据三角形的内角和等于180°求出∠ABC,再根据全等三角形对应角相等解答.【解答】解:∵∠A=75°,∠ACB=45°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣75°﹣45°=60°,∵△ABC≌△DCB,∴∠BCD=∠ABC=60°.选B.19.【答题】如图,△ABC≌△FDE,∠C=40°,∠F=110°,则∠B等于()A. 20°B. 30°C. 40°D. 150°【答案】B【分析】根据全等三角形对应角相等可得∠BAC=∠F,然后根据三角形的内角和等于180°列式进行计算即可求解.【解答】解:∵△ABC≌△FDE,∴∠BAC=∠F,∵∠F=110°,∴∠BAC=110°,又∵∠C=40°,∴∠B=180°﹣110°﹣40°=30°.选B.20.【答题】三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A. 90°B. 120°C. 135°D. 180°【答案】D【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.选D.。
章节测试题1.【答题】如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长;判定△EDC≌△ABC的理由是( )A. SSSB. ASAC. AASD. SAS【答案】B【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】由题意得:根据ASA得:△EDC≌△ABC.选B.2.【答题】到三角形各顶点的距离相等的点是三角形( )A. 三边的垂直平分线的交点B. 三条高的交点C. 三条角平分线的交点D. 三条中线的交点【答案】A【分析】根据三角形外心的作法,确定到三定点距离相等的点.【解答】因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.选A.3.【答题】如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,如图所示的这种方法,是利用了三角形全等中的( )A. SSSB. ASAC. AASD. SAS【答案】D【分析】根据三角形全等判定定理,可以得出结果.【解答】由原题可得:AC = DC∠ACB=∠DCBBC =BC∴△ACB ≌△D C B(SAS)∴AB = DB故选D.。
4.【答题】如图所示小明设计了一种测零件内径AB的卡钳,问:在卡钳的设计中,要使DC=AB,AO、BO、CO、DO应满足下列的哪个条件?( )A. AO=COB. BO=DOC. AC=BDD. AO=CO且BO=DO【答案】D【分析】三角形全等,需要三个条件.【解答】各选项中,只给出了一个条件,再加上隐含的对顶角相等,才两个条件,故不正确。
对于选项D,可得:AO=CO且BO=DO(已知)∠AOB=∠COD(对顶角相等)∴△ACB ≌△D C E(SAS)∴DC = AB,故选D.。
章节测试题1.【答题】如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A. 15°B. 20°C. 25°D. 30°【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∠C=∠F=40°.∵DF∥BC,∴∠1=∠C,∴∠1=∠F,∴AC∥EF,∴∠2=∠E=60°.∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∴∠BAD=∠BAC﹣∠2=80°﹣60°=20°.选B.2.【答题】如图,△ABC≌△AED,那么图中相等的角有()A. 3对B. 4对C. 5对D. 6对【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:图中相等的角有5对.理由如下:∵△ABC≌△AED,∴∠B=∠E,∠BAC=∠EAD,∠ACB=∠ADE,∴∠BAD=∠EAC,∠ACD=∠ADC;图中相等的角有5对.选C.3.【答题】已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是()A. 30°B. 40°C. 50°D. 60°【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△A′B′C′,∴∠B=∠B′=180°,∴∠C=180°-∠A-∠B=50°.选C.4.【答题】如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A. ∠1=∠2B. CA=ACC. ∠D=∠BD. AC=BC【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D=∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,D、AC=BC错误.选D.5.【答题】如图所示,图中的两个三角形能完全重合,下列写法正确的是()A. △ABE≌△AFBB. △ABE≌△ABFC. △ABE≌△FBAD. △ABE≌△FAB【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:要把对应顶点写在对应位置.∵B和B对应,A和A对应,E和F对应,故△ABE≌△ABF.选B.6.【答题】如图所示.在△ABC中,∠A:∠B:∠C=3:5:10,又△A′B′C≌△ABC,则∠BCA′:∠BCB′等于()A. 1:2B. 1:3C. 2:3D. 1:4【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A:∠B:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′﹣∠B′CB′=10k﹣8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4,选D.7.【答题】下列命题中不正确的是()A. 全等三角形的对应边相等B. 全等三角形的面积相等C. 全等三角形的周长相等D. 周长相等的两个三角形全等【答案】D【分析】根据全等三角形的性质解答即可.【解答】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,选D.8.【答题】如图,△ABC≌△A'B'C,∠ACB90°,∠A'CB20°,则∠BCB'的度数是()A. 60°B. 70°C. 80°D. 90°【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△A'B'C,∴∠A′CB′=∠ACB90°,∵∠A'CB20°,∴∠BCB'=∠A′CB′-∠A′CB=90°-20°=70°,选B.9.【答题】图中的两个三角形全等,则等于().A.B.C.D.【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:由图中两三角形全等,知.故选.10.【答题】如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A. ∠A=∠BB. AO=BOC. AB=CDD. AC=BD【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴A、B、D均正确,而AB、CD不是不是对应边,∴AB≠CD,选C.方法总结:根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.11.【答题】如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C 为对应顶点,D,E为对应顶点,下列结论不一定成立的是()A. AC=CDB. BE=CDC. ∠ADE=∠AEDD. ∠BAE=∠CAD【答案】A【分析】根据全等三角形的性质解答即可.【解答】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,故不符合题意;无法证明AC=CD,故A符合题意,选A.12.【答题】如图,两个三角形为全等三角形,则的度数是()A.B.C.D.【答案】A【分析】根据全等三角形的性质解答即可.【解答】根据三角形内角和可得∠1=180°-50°-50°=72°,因为两个全等三角形,所以∠α=∠1=72°,选A.13.【答题】如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A. 50°B. 60°C. 100°D. 120°【答案】A【分析】根据全等三角形的性质和角的平分线解答即可.【解答】根据全等三角形的性质求出∠B=∠EDF=20°和∠C=∠F=60°,根据三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=100°,根据角平分线定义求出∠DAC=∠BAC=50°,选A.14.【答题】若△ABC与△DEF全等,且,,则的度数不可能是()A.B.C.D.【答案】A【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC与△DEF全等,∴∠D的度数可能是选A.15.【答题】如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是().A. ∠D=60°B. ∠DBC=40°C. AC=DBD. BE=10【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A=60°,∠ABC=80°,∴∠ACB=40°,∵△ABC≌△DCB,∴∠D=∠A=60°,∠DBC=∠ACB=40°,AC=BD,故A,B,C正确,选D.16.【答题】如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,且△A′B′C≌△ABC,则∠BCA′∶∠BCB′等于()A. 1∶2B. 1∶3C. 2∶3D. 1∶4【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A:∠ABC:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′-∠B′CB′=10k-8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4选D.17.【答题】如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A. 3B. 4C. 7D. 8【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△EFD,∴AC=DE,∵EC=4,CD=3,∴DE=7,∴AC=7,选C.18.【答题】如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是().A. ∠D=60°B. ∠DBC=40°C. BE=10D. AC=DB【答案】C【分析】根据全等三角形的性质解答即可.【解答】△ABC≌△DCB,所以∠A=∠D=60°,A正确.∠ABC=80°,∠A=60°,所以∠ACB=∠DBC=40°.B正确.所以AC=DB,D正确.所以选C.19.【答题】如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=32°,∠E=96°,∠EAB=20°,则∠BAD等于()A. 75°B. 57°C. 62°D. 72°【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△ADE,∴∠D=∠B=32°,∵∠E=96°,∴∠EAD=180°-∠E-∠D=52°,∴∠BAD=∠BAE+∠EAD=20°+50°=72°,选D.20.【答题】如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠DEF等于()A. 100°B. 53°C. 47°D. 33°【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,DF和AC,FE和CB是对应边,∴∠A=∠FDE,又∵∠A=100°,∴∠FDE=100°;∵∠F=47°,∠FDE+∠F+∠DEF=180°,∴∠DEF=180°﹣∠F﹣∠FDE=180°﹣47°﹣100°=33°;选D.方法总结:本题主要考查的是全等三角形的对应角相等,以及三角形的内角和定理.根据相等关系,把已知条件转到同一个三角形中然后利用三角形的内角和来求解是解决这类问题常用的方法.。
第一章三角形综合测评(一)时间:满分:120分班级:姓名:得分:一、选择题(每题3分,共24分)1.如图1小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A B C D2.如图2,D、E分别为△ABC的边AC、BC的中点,则下列说法中,不正确的是()A.DE是△BDC的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.在△BDC中∠C的对边是DE3.三角形的三个内角中,锐角的个数不少于()A.1个B.2个C.3个D.4个4.如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.85.下列说法中正确的是()A.面积相等的两个三角形全等B.周长相等的两个四边形全等C.正方形都全等D.边长相等的等边三角形全等.6.如图3,AD⊥AB,AE⊥AC,AD=AB,AE=AC,则判定△ADC≌△ABE的根据是( ) A.SAS B.AAS C.ASA D.SSS图1图27. 如图4,AD 是∠BAC 的平分线,CE 是△ADC 边AD 上的高,若∠BAC=80°,∠ECD=25°,则∠B 的度数为( )A . 25°B . 35°C . 40°D . 65°8. 在如图5所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 二、填空题(每小题4,共32分)9. 如图6,△ABC 中AB 边上的高为 .10. 图7中x 的值为 .11. 已知三角形的两边长为5cm 和3cm ,第三边为偶数,则第三边长为 .12. 如图8,AB=DB ,∠1=∠2,请你添加一个适当的条件,使△ABC ≌△DBE ,则需添加的条件是 .图7图613. 如图9,△ABC ≌△DCB ,A 、B 的对应顶点分别为点D 、C ,如果AB=7cm ,BC=12cm ,AC=9cm ,DO=2cm ,那么OC 的长是 cm .14. 如图10,点A 、E 、F 、C 在同一条直线上,AB ∥CD ,DE ∥BF ,BF =DE ,且AE =2,AC =10,则EF = .15. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 ° 16. 如图11,宽为50cm 的长方形图案由20个全等的直角三角形拼成,其中一个直角三角形的面积为 .三、解答题(共64分)17. (8分)如图12,以BC 为边的三角形有几个?以A 为顶点的三角形有几个?分别写出这些三角形.图1150cm A BCD EF图10 图1218.(10分)如图13,已知点C ,E 均在直线AB 上.(1)在图中作∠FEB ,使∠FEB=∠DCB (保留作图痕迹,不写作法); (2)请说出射线EF 与射线CD 的位置关系.19.(10分)如图14,在△ABC 中,D 是BC 上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.20.(11分)如图15,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E .AD ⊥CE 于点D .试说明△BEC ≌△CDA .图14图1321.(11分)如图16,两根长为12米的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.22 (12分)如图17,△ABC 中,∠C =90°,AC=BC ,AD 平分∠BAC 交BC 于D ,作DE AB ,垂足为E ,且AB=10cm ,求△DEB 的周长.EBDCA 图17ABCD 图16第一章三角形综合测评(一)一、1.B 2.D 3.B 4.B 5.D 6.A 7.A 8.D二、9.CF 10.20 11.4cm或6cm 12.∠D=∠A(不唯一)13.7 14.2 15.30°16.200 cm2三、17.解:以BC为边的三角形有△ABC,△DBC,△EBC,△OBC;以A为顶点的三角形有△ABE,△ADC,△ABC.18.解:(1)在图中作∠FEB,使∠FEB=∠DCB有两种情况:即射线EF与射线CD在直线AB的同侧,另一个则在直线AB的两侧,如图所示.(2)若射线EF与射线CD在直线AB的同侧,则直线EF与直线CD平行.若射线EF与射线CD在直线AB的两侧,则直线EF与直线CD相交.19.解:设∠1=∠2=x,则∠3=∠4=180°-(180°-2x)=2x,由三角形内角和为180°,∠BAC+∠2+∠3=180°,即63°+3x=180°,从而解得x=39°,所以∠DAC=∠BAC-∠1=63°-39°=24°.20.解:因为BE⊥CE于E,AD⊥CE于D,所以∠BEC=∠CDA=90°.因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.在△BEC和△CDA中,因为∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,所以△BEC≌△CDA.21.解:用卷尺测量DB、DC的长,看它们是否相等.若DB=DC,则AD⊥BC,理由如下:因为AB =AC,BD=DC,DA是公共边,所以△ADB≌△ADC,所以∠ADB=∠ADC=90°,即AD⊥BC.22.解:因为AD平分∠BAC,所以∠CAD=∠EAD,又因为∠C =90°,DE⊥AB,AD是公共边,所以△ADC≌△ADE,又因为AC=BC,所以BD+DE=AC.所以△DEB的周长为BD+DE+BE=AC+BE=AE+BE=AB=10.。
章节测试题1.【答题】如图所示,若△ABC≌△DEF,则∠E等于()A. 30°B. 50°C. 60°D. 100°【答案】D【分析】根据全等三角形的性质解答即可.【解答】本题考查的是全等三角形的性质根据全等三角形的对应角相等及三角形内角和即得结果。
由图可得∠∠∠,△ABC≌△DEF,∠∠,故选D. 。
2.【答题】如图,已知≌,下列选项中不能被证明的等式是().A.B.C.D.【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵≌,∴,,,∴,即:,∴选项、、均正确,只有C中结论无法证明是成立的.选C.3.【答题】如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么的值是().A.B.C.D.【答案】C【分析】根据全等三角形的性质解答即可.【解答】由三角形内角和为,可求边长为的边所对的角为,由全等三角形对应角相等可知,选C.4.【答题】下列各组的两个图形属于全等图形的是()A.B.C.D.【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】A选项两个图形不全等,因为它们大小不一样;B选项两个图形不全等,因为它们大小不一样;C选项两个图形不全等,因为它们大小形状都不一样;D选项两个图形全等,它们大小和形状都一样.选D.5.【答题】如图,△ABC≌△CDA,则下列结论错误的是()A. AC=CAB. AB=ADC. ∠ACB=∠CADD. ∠B=∠D【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.6.【答题】下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】A选项:两个周长相等的等腰三角形,不一定全等,故此选项错误;B选项:两个面积相等的长方形,不一定全等,故此选项错误;C选项:两个斜边相等的直角三角形,不一定全等,故此选项错误;D选项:两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.选D.7.【答题】如图,△ABC≌△EDF,∠FED=70°,则∠A的度数是()A. 50°B. 70°C. 90°D. 20°【答案】B【分析】根据全等三角形的性质性质得出∠A=∠FED,即可得出答案.【解答】解:∵△ABC≌△EDF,∠FED=70°,∠A=∠FED=70°,选B.8.【答题】如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A. 2B. 3C. 5D. 2.5【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC−AE=5−2=3,选B.9.【答题】下列图形中,和所给图形全等的图形是()A.B.C.D.【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】根据全等图形的定义只需找出与原图形大小相等,形状相同的图形即可,A、B、C选项均不符合题意,只有D符合题意,D中的图形相对于原图形顺时针作了180°的旋转变换.选D.10.【答题】△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A. 55cmB. 45cmC. 30cmD. 25cm【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:因为△ABC≌△DEF,DE=30cm,DF=25cm,所以AB=DE=30cm,AC=DF=25cm,又△ABC的周长为100cm,所以BC=100-AB-AC=100-30-25=45cm,选B.11.【答题】下列图形中与已知图形全等的是()A. B. C. D.【答案】B【分析】认真观察图形,根据全等形的定义,能够重合的图形是全等形,可得答案是B.【解答】解:A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.选:B.12.【答题】下列各组图案中,不是全等形的是()A. B.C. D.【答案】D【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、两图形全等,不合题意;B、两图形全等,不合题意;C、两图形全等,不合题意;D、两图形不全等,符合题意;选:D.13.【答题】下列选项中表示两个全等图形的是()A. 形状相同的两个图形B. 能够完全重合的两个图形C. 面积相等的两个图形D. 周长相等的两个图形【答案】B【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;选:B.14.【答题】下列说法正确的是()A. 两个面积相等的图形一定是全等图形B. 两个长方形是全等图形C. 两个全等图形形状一定相同D. 两个正方形一定是全等图形【答案】C【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;选:C.15.【答题】如图所示的图形是全等图形的是()A. B.C. D.【答案】B【分析】能够完全重合的几个图形就是全等形,故全等形的形状一样,大小一样,从而即可一一判断得出答案.【解答】解:如图所示的图形是全等图形的是B,故答案为:B.16.【答题】下列说法正确的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合;⑤能够重合的图形是全等图形.A. 5B. 4C. 3D. 2【答案】D【分析】根据全等图形的定义以及性质一一判断即可;【解答】解:①面积相等的两个三角形全等;错误,面积相等的两个三角形不一定全等.②两个等边三角形一定是全等图形;错误,边长相等的两个等边三角形全等.③如果两个三角形全等,它们的形状和大小一定都相同;正确.④边数相同的图形一定能互相重合;错误.⑤能够重合的图形是全等图形.正确.选:D.17.【答题】下列四个图形中,属于全等图形的是()A. ①和②B. ②和③C. ①和③D. ③和④【答案】A【分析】根据全等图形的定义判断即可;【解答】解:①和②能够完全重合.选: A.18.【答题】下列四个图形中,全等的图形是()A. ①和②B. ①和③C. ②和③D. ③和④【答案】D【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【解答】解:③和④可以完全重合,因此全等的图形是③和④.选:D.19.【答题】下列图形中,属于全等形的是()A. B.C. D.【答案】B【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两个正方形的边长不相等,不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确.C、两图形不能完全重合,故本选项错误;D、两图形不能完全重合,故本选项错误.选:B.20.【答题】下列图形中,全等的一对是()A. B.C. D.【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可直接选出答案.【解答】解:由全等形的概念可知:A、C中的两个图形大小不同,D中的形状不同,B则完全相同,选B.。
章节测试题1.【答题】已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A. 2cmB. 3cmC. 4cmD. 6cm【答案】B【分析】根据三角形中线的定义可得BD=CD,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.选B.2.【答题】钝角三角形的高线在三角形外的数目有()A. 3B. 2C. 1D. 0【答案】B【分析】本题考查了三角形的高.【解答】作出钝角三角形的三条高线即可得出结果.钝角三角形有3条高,其中两条在外部,一条在内部.选B.3.【答题】三角形的三条中线的交点的位置为()A. 一定在三角形内B. 一定在三角形外C. 可能在三角形内,也可能在三角形外D. 可能在三角形的一条边上【答案】A【分析】根据三角形的中线的定义解答.【解答】解:三角形的三条中线的交点一定在三角形内.选A.4.【答题】三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点【答案】A【分析】对于一个质地均匀的三角形,三条边上中线的交点就是其重心.【解答】解:三角形的重心是三条中线的交点,故答案为:A.5.【答题】如图,△ABC中BC边上的高为()A. AEB. BFC. ADD. CF 【答案】A【分析】根据三角形的高线的定义解答.【解答】根据高的定义,AE为△ABC中BC边上的高.故答案为:A.6.【答题】下列说法正确的是()A. 三角形的中线就是过顶点平分对边的直线B. 三角形的三条角平分线的交点有可能在三角形外部C. 三角形的三条高线的交点必在三角形内部D. 以上说法都错【答案】D【分析】本题考查了三角形的角平分线、中线和高.【解答】三角形的中线就是过顶点和对边的中点的线段,故A不正确.三角形的三条角平分线的交点有可能在三角形内部,故B不正确.锐角三角形的三条高线的交点在内部;直角三角形的三条高线的交点在顶点上;钝角三角形的三条高线的交点在外部.故C不正确.选D.7.【答题】三角形的角平分线是()A. 射线B. 直线C. 线段D. 线段或射线【答案】C【分析】本题考查了三角形的角平分线、中线和高.【解答】三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线.据此得出.三角形的角平分线是线段,选C.8.【答题】三角形一边上的中线把原三角形分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形【答案】B【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形.选B.9.【答题】如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为()A. 12B. 24C. 16D. 32【答案】C【分析】根据题意得到点O是△ABC的重心,得到OC=CE=4,根据三角形的面积公式求△BDC的面积,根据三角形的中线的性质计算即可.【解答】解:∵BD,CE分别为AC,AB边上的中线,∴点O是△ABC的重心,∴OC=CE=4,∴△BDC的面积=×BD×OC=8,∵BD为AC边上的中线,∴△ABC的面积=2×△BDC的面积=16,选C.10.【答题】下列说法错误的是().A. 锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高线在三角形外部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、三条中线、三条角平分线【答案】C【分析】根据三角形的高线、中线、角平分线的性质逐一判断即可.【解答】解:A、正确,锐角三角形的三条高线、三条中线、三条角平分线分别交于一点;B、正确,钝角三角形有两条高线在三角形的外部;C、错误,直角三角形也有三条高线;D、正确.故答案为:C11.【答题】在下图中,正确画出AC边上高的是()A. B.C. D.【答案】C【分析】根据三角形的高的意义可知,AC边上的高是过B作直线AC的垂线,垂足落在AC所在直线上.【解答】解:AC边上的高是过B作直线AC的垂线,直角落在AC边上,只有C 满足条件.故答案为:C.12.【答题】如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】∵△ABC的角平分线AD、中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②AO≠OD,∴BO不是△ABD的中线,故②错误;③在△ADC中,AE=CE,DE是△ADC的中线,故③正确;④∠ADE不一定等于∠EDC,那么ED不一定是△EBC的角平分线,故④错误;正确的有2个选项.选B.13.【答题】如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A. AC是△ABC的高B. DE是△BCD的高C. DE是△ABE 的高D. AD是△ACD的高【答案】C【分析】根据三角形的高的概念判断即可;选项A的说法符合高的概念,选项B 的说法符合高的概念,C选项中,DE是△BDC、△BDE、△EDC的高,不是△ABE的高,选项D的说法符合高的概念.【解答】解:选项A的说法符合高的概念,故正确;选项B的说法符合高的概念,故正确;C选项中,DE是△BDC、△BDE、△EDC的高,故错误;选项D的说法符合高的概念,故正确.故答案为:C.14.【答题】三角形的角平分线、中线和高()A. 都是线段B. 都是射线C. 都是直线D. 不都是线段【答案】A【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.【解答】解:三角形的角平分线、中线和高都是线段.选A15.【答题】如图,在△ABC中,CD⊥AB于点D,则CD是△ABC()A. BC边上的高B. AB边上的高C. AC边上的高D. 以上都不对【答案】B【分析】本题考查了三角形的高.【解答】根据三角形的高的概念可得,CD是△ABC的AB边上的高.选B.16.【答题】如图,下面的四个图形中,线段BE是△ABC的高的图是()A. B.C. D.【答案】A【分析】根据三角形的高的定义即可判断.【解答】解:三角形的高是过其中一个顶点先对边所在直线作垂线,顶点与垂足的连线段就是三角形的高.选A.17.【答题】AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为______cm.【答案】2【分析】此题考查三角形的中位线的性质.此题的关键是将求△ABD与△ACD的周长之差,转化为求AB与AC的差.【解答】∵AD是边BC上的中线,∴BD=CD.∵△ABD的周长为:AB+BD+AD,△ACD的周长为:AC+CD+AD,∴△ABD与△ACD的周长之差为:(AB+BD+AD)-(AC+CD+AD)=AB-AC,又∵AB=5cm,AC=3cm,∴AB-AC=2(cm).即△ABD与△ACD的周长之差为2cm.18.【答题】如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP 平分∠ACB,则∠BPC的大小是______度.【答案】115【分析】直接根据角平分线平分对应角,三角形内角和为180度进行计算.【解答】BP平分∠ABC,CP平分∠ACB,故答案为115.19.【答题】如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC 于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有______.【答案】③④【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.【解答】①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.20.【答题】如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=______.【答案】50°【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.。
鲁教版七年级数学上册第一章达标检测卷一、选择题(本大题共12道小题,每小题3分,共36分)1.下列每组数据分别是三根小木棒的长度,其中能组成三角形的是() A.3 cm,4 cm,5 cm B.7 cm,8 cm,15 cmC.6 cm,12 cm,20 cm D.5 cm,5 cm,11 cm2.下列各图中,作出△ABC的AC边上的高,正确的是()3.下列说法:①三角形的重心是高的交点;②三角形的内角和是180°;③直角三角形的两个锐角互余;④三角形的三条角平分线相交于一点;⑤三角形的三条高相交于一点.其中正确的有()A.1个B.2个C.3个D.4个4.如图,△ABC≌△CDE,则线段AC和线段CE的关系是() A.既不相等也不互相垂直B.相等但不一定互相垂直C.互相垂直但不相等D.相等且互相垂直5.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=() A.150°B.120°C.90°D.60°6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=() A.90°B.120°C.135°D.150°8.如图,给出下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,记△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,在△ABC中,∠A=50°,∠B=60°,CD平分∠ACB,DE⊥BC于E,则∠CDE的度数为()A.35°B.45°C.55°D.65°11.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,BE⊥AD 交AD的延长线于点E.若∠DBE=25°,则∠CAB=()A.30°B.40°C.50°D.60°12.如图,在直角三角形ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边作等腰直角三角形AED,连接BE,EC.有下列结论:①△ABE≌△DCE;②BE=EC;③BE⊥EC.其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(本大题共6道小题,每小题3分,共18分)13.如图所示,△ABC中,∠ABC=90°,P为AC上的一个动点,若AB=60,BC=25,AC=65,则线段BP的最小值是________.14.如图所示,AD为△ABC的中线,BE为△ABD的中线,DF为△BDE的中线,若△BDF的面积为1 cm2,则△ABC的面积为________.15.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,垂足为D,且使A,C,E 三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.16.如图,E为△ABC的边AC的中点,CN∥AB.若MB=6 cm,CN=4 cm,则AB=________.17.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F.若BF=AC,CD=3,BD=8,则线段AF的长度为________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(本大题共7道小题,19-21题每题8分,22-24题每题10分,25题12分,共66分)19.尺规作图:如图,小明在作业本上画的△ABC被墨迹污染,他想画一个与原来完全一样的△A′B′C′,请帮助小明想办法用尺规作图法画出△A′B′C′,并说明你的理由.20.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.21.如图,在△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.22.如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A 爬行,经过t s后,它们分别爬行到了D,E处,设DC与BE的交点为F.(1)试说明△ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,已知点M是AB的中点,DC是过点M的一条直线,且∠ACM=∠BDM,AE⊥CD,BF⊥CD,垂足分别为点E,F.(1)试说明△AME≌△BMF;(2)猜想MF与CD之间的数量关系,并说明理由.25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是__________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A 2.C 3.C4.B 【点拨】因为△ABC ≌△CDE , 所以AC =CE ,∠A =∠ECD , ∠B =∠D .所以∠ACB +∠ECD =∠ACB +∠A . 当∠B =∠D ≠90°时,∠ACB +∠ECD =∠ACB +∠A ≠90°, 则∠ACE ≠90°.即AC 和CE 不互相垂直. 5.B 【点拨】因为△ABC ≌△A ′B ′C ′, 所以∠C =∠C ′=24°. 因为∠A =36°,所以∠B =180°-24°-36°=120°. 6.C 【点拨】因为∠A =60°, 所以∠ABC +∠ACB =120°.因为BE ,CD 分别是∠ABC ,∠ACB 的平分线, 所以∠CBE =12∠ABC ,∠BCD =12∠BCA . 所以∠CBE +∠BCD =12(∠ABC +∠BCA )=60°. 所以∠BFC =180°-60°=120°.7.C 【点拨】如图,在△ABC 和△DEA 中,⎩⎨⎧AB =DE ,∠ABC =∠DEA =90°,BC =AE ,所以△ABC ≌△DEA (SAS ). 所以∠1=∠4. 因为∠3+∠4=90°, 所以∠1+∠3=90°.又易知∠2=45°,所以∠1+∠2+∠3=90°+45°=135°.8.B9.B 【点拨】易得S △ABE =13×12=4,S △ABD =12×12=6, 所以S △ADF -S △BEF =S △ABD -S △ABE =2. 10.C 【点拨】因为∠A =50°,∠B =60°, 所以∠ACB =180°-∠A -∠B =70°. 因为CD 平分∠ACB , 所以∠DCE =12∠ACB =35°. 因为DE ⊥BC , 所以∠CED =90°.所以∠CDE =90°-35°=55°. 11.C 【点拨】因为BE ⊥AE , 所以∠E =∠C =90°. 因为∠ADC =∠BDE , 所以∠CAD =∠DBE =25°. 因为AE 平分∠CAB , 所以∠CAB =2∠CAD =50°.12.D 【点拨】因为AC =2AB ,点D 是AC 的中点, 所以CD =12AC =AB .因为△ADE 是等腰直角三角形,所以AE =DE ,∠BAE =90°+45°=135°,∠CDE =180°-45°=135°. 所以∠BAE =∠CDE . 在△ABE 和△DCE 中,⎩⎨⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,所以△ABE ≌△DCE (SAS ),故①正确. 因为△ABE ≌△DCE , 所以BE =EC ,故②正确. 因为△ABE ≌△DCE , 所以∠AEB =∠DEC .又因为∠AEB +∠BED =90°, 所以∠DEC +∠BED =90°. 所以BE ⊥EC ,故③正确.二、13.30013 【点拨】当BP ⊥AC 时,BP 有最小值. 因为∠ABC =90°, 所以12AC ·BP =12AB ·BC . 即12×65·BP =12×60×25.所以BP =30013.14.8 cm 2 【点拨】因为DF 为△BDE 的中线,△BDF 的面积为1 cm 2, 所以△BDE 的面积为2 cm 2. 因为BE 为△ABD 的中线, 所以△ABD 的面积为4 cm 2. 因为AD 为△ABC 的中线, 所以△ABC 的面积为8 cm 2.15.ASA 【点拨】由题意可知∠ECD =∠ACB ,CD =CB ,∠EDC =∠ABC =90°,故可用ASA 说明两三角形全等.16.10 cm 【点拨】由CN ∥AB ,点E 为AC 的中点,可得∠EAM =∠ECN ,AE =CE .又因为∠AEM =∠CEN , 所以△AEM ≌△CEN . 所以AM =CN =4 cm.所以AB =AM +MB =4+6=10(cm).17.5 【点拨】由已知可得∠ADC =∠BDF =∠BEA =90°, 因为∠AFE =∠BFD , 所以∠DAC =∠DBF . 又因为AC =BF , 所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3. 所以AF =AD -DF =8-3=5.18.65° 【点拨】过点C 作CF ⊥AD ,交AD 的延长线于点F . 因为AC 平分∠BAD , 所以∠CAF =∠CAE . 又因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ). 所以FC =EC ,AF =AE . 又因为AE =12(AB +AD ), 所以AF =12(AE +EB +AD ), 即AF =BE +AD . 又因为AF =AD +DF , 所以DF =BE . 在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB =90°,DF =BE ,所以△FDC ≌△EBC (SAS ). 所以∠FDC =∠B . 又因为∠ADC =115°, 所以∠FDC =180°-115°=65°. 所以∠B =65°.三、19.解:作图如图所示.理由:在△ABC 和△A ′B ′C ′中,⎩⎨⎧∠B =∠B ′,BC =B ′C ′,∠C =∠C ′,所以△ABC ≌△A ′B ′C ′(ASA ). 20.解:因为AB =AC , 所以AD -AB =AD -AC =CD . 在△BCD 中,因为BD -BC <CD , 所以BD -BC <AD -AB .21.解:在△ABC 中,因为∠B =34°,∠ACB =104°, 所以∠CAB =180°-∠B -∠ACB =180°-34°-104°=42°. 因为AE 平分∠CAB ,所以∠CAE =12∠CAB =12×42°=21°.在△ACE 中,∠AEC =180°-∠ACB -∠CAE =180°-104°-21°=55°. 因为AD 是BC 边上的高, 所以∠D =90°.在△ADE 中,∠DAE =180°-∠D -∠AEC =180°-90°-55°=35°. 22.解:(1)因为小蚂蚁同时从A ,C 出发,速度相同, 所以t s 后两只小蚂蚁爬行的路程AD =CE . 在△ACD 和△CBE 中,⎩⎨⎧AD =CE ,∠A =∠ACB ,AC =CB ,所以△ACD ≌△CBE (SAS ).(2)无变化.理由如下:因为△ACD ≌△CBE , 所以∠EBC =∠ACD .因为∠BFC =180°-∠EBC -∠BCD ,所以∠BFC =180°-∠ACD -∠BCD =180°-∠ACB . 因为∠A =∠ABC =∠ACB ,∠A +∠ABC +∠ACB =180°, 所以∠ACB =60°.所以∠BFC =180°-60°=120°. 所以∠BFC 的大小无变化.23.解:△AEM ≌△ACN ,△ABN ≌△ADM ,△BMF ≌△DNF .(任写其中两对即可) 选择△AEM ≌△ACN : 因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD . 所以∠EAM =∠CAN . 在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA ). 选择△ABN ≌△ADM : 因为△ABC ≌△ADE , 所以AB =AD ,∠B =∠D . 又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA ). 选择△BMF ≌△DNF : 因为△ABN ≌△ADM , 所以AN =AM . 因为AB =AD , 所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN , 所以△BMF ≌△DNF (AAS ). (任选一对进行说明即可) 24.解:(1)如图所示.因为点M 是AB 的中点, 所以AM =BM .因为AE ⊥CD ,BF ⊥CD , 所以∠AEF =∠BFE =90°. 在△AME 和△BMF 中, ⎩⎨⎧∠AEF =∠BFE =90°,∠1=∠2,AM =BM ,所以△AME ≌△BMF (AAS ). (2)猜想:2MF =CD .理由:由(1)可知∠AEF =∠BFE =90°,△AME ≌△BMF , 所以EM =FM ,AE =BF . 在△ACE 和△BDF 中,⎩⎨⎧∠AEF =∠BFD =90°,∠ACM =∠BDM ,AE =BF ,所以△ACE ≌△BDF (AAS ). 所以DF =CE .因为DF =CD +CF ,CE =EF +CF , 所以CD =EF .因为EF =EM +FM ,EM =FM , 所以2MF =CD .25.解:(1)AE ∥BF ;QE =QF (2)QE =QF .理由如下: 如图,延长EQ 交BF 于点D .由题意易得AE ∥BF , 所以∠AEQ =∠BDQ . 因为点Q 为斜边AB 的中点, 所以AQ =BQ . 在△AEQ 和△BDQ 中,⎩⎨⎧∠AQE =∠BQD ,∠AEQ =∠BDQ ,AQ =BQ ,所以△AEQ ≌△BDQ (AAS ). 所以EQ =DQ . 因为∠DFE =90°, 所以QE =QF .七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a2b+3ab2-2b3+a3按a的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m2,则用科学记数法表示FAST的反射面总面积约为____________m2.(精确到万位)13.若|x+2|+(y-3)4=0,则x y=________.14.如果规定符号“*”的意义是a*b=aba+b,则[2*(-3)]*(-1)的值为________.15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
章节测试题1.【答题】如图,沿直角边所在直线向右平移到,则下列结论中,错误的是()A. B. C. D.【答案】D【分析】由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【解答】A、Rt△ABC向右平移得到△DEF,则△ABC≌△DEF成立,故正确,不符合题意;B、△ABC≌△DEF,则BC=EF,BC-EC=EF-EC,即BE=CF,故正确,不符合题意;C、△ABC≌△DEF,则AC=DF成立,故正确,不符合题意;D、BE=EC不能成立,故错误,符合题意,选D.2.【答题】如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A. PQB. MOC. PAD. MQ【答案】A【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:∵△PQO≌△NMO,∴PQ=MN,∴要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长.选A.3.【答题】如图,△ABC≌△ADE,若∠BAC=75°,∠E=40°,则∠B的度数为()A. 75°B. 40°C. 65°D. 115°【答案】C【分析】根据全等三角形的性质得出∠C=∠E=40°,根据三角形的内角和定理求出即可.【解答】∵△ABC≌△ADE,∠E=40°,∴∠C=∠E=40°,∵∠BAC=75°,∴∠B=180°−∠BAC−∠C=65°,选C.4.【答题】下列说法中:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形全等;全等三角形的面积相等;面积相等的两个三角形全等,正确说法有()A. 2个B. 3个C. 4个D. 5个【答案】C【分析】本题考查了全等三角形的性质与判定.全等三角形是指能够完全重合的两个三角形,全等三角形的对应边相等,对应角相等,根据以上知识点逐个判断即可.【解答】解:全等三角形的对应边相等;正确.全等三角形的对应角相等;正确.全等三角形的周长相等;正确.周长相等的两个三角形全等;错误.全等三角形的面积相等;正确.面积相等的两个三角形全等;错误正确的说法有4个,选C.5.【答题】如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A. 6cmB. 5cmC. 7cmD. 无法确定【答案】C【分析】本题考查了全等三角形的性质.根据全等三角形的对应边相等解答即可.【解答】∵△ABC≌△ADE,∴DE=BC=7cm,选C.6.【答题】如图,已知△ABC≌△ADE,若AB=8,AC=3,则BE的值为______.【答案】5【分析】根据△ABC≌△ADE,得到AE=AC,由AB=8,AC=3,根据BE=AB-AE即可解答.【解答】∵△ABC≌△ADE,∴AE=AC,∵AB=8,AC=3,∴BE=AB-AE=AB-AC=8-3=5.故答案为:5.7.【答题】如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠BDC=______°【答案】65【分析】根据全等三角形对应角相等可得∠C=∠A,∠ABD=∠CBD,再求出∠CBD,然后根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵△ABD≌△CBD,∴∠C=∠A=80°,∠ABD=∠CBD,∵∠ABC=70°,∴∠CBD=∠ABC=×70°=35°,在△BCD中,∠BDC=180°-∠C-∠CBD=180°-80°-35°=65°.故答案为:65.8.【答题】已知△ABC≌△DEF,△ABC的周长为12,则△DEF的周长为______【答案】12【分析】利用全等三角形的性质即可解决问题.【解答】∵△ABC≌△DEF,∴△ABC与△DEF的周长相等.∵△ABC的周长为12,∴△DEF的周长为12.故答案为:12.9.【答题】一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=______.【答案】9【分析】根据全等三角形对应边相等求出x、y的值,然后相加即可得解.【解答】解:∵两个三角形全等,∴x=4,y=5,∴x+y=4+5=9.故答案为:9.10.【答题】如图,△ABC≌△DEF,BE=7,AD=3,AB=______.【答案】5【分析】先根据全等三角形的性质AB=DE,再结合题意得DB=AE,则由BE=7,AD=3,可得答案.【解答】∵△ABC≌△DEF,∴AB=DE,则DB=AB-DA,AE=DE-AE,则DB=AE,由BE=7,AD=3,可得AE===2,则AB=BE-AE=5.11.【题文】如图,△ABC≌△DEF,∠A=33°,∠E=57°,CE=5cm.(1)求线段BF的长;(2)试判断DF与BE的位置关系,并说明理由.【答案】(1)5cm;(2)见解答.【分析】(1)根据全等三角形的性质得出BC=EF,求出EC=BF即可;(2)根据全等三角形的性质可得∠A=∠D=33°,根据三角形内角和定理求出∠DFE的度数,即可得出答案.【解答】(1)∵△ABC≌△DEF,∴BC=EF,∴BC+CF=EF+CF,即BF=CE=5cm;(2)∵△ABC≌△DEF,∠A=33°,∴∠A=∠D=33°,∵∠D+∠E+∠DFE=180°,∠E=57°,∴∠DFE=180°-57°-33°=90°,∴DF⊥BE.12.【答题】下列图形是全等图形的是()A. B.C. D.【答案】B【分析】根据全等图形的定义解答即可.【解答】A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;选B.13.【答题】若△ABC≌△DEF,则下列说法不正确的是()A. 和是对应角B. AB和DE是对应边C. 点C和点F是对应顶点D. 和是对应角【答案】A【分析】本题考查全等三角形的性质,根据对应顶点的字母写在对应位置上准确确定出对应边和对应角是解题关键.【解答】∵△ABC≌△DEF,∴AB和DE是对应边,点C和点F是对应顶点,∠B和∠E是对应角,∠A和∠B是相邻的角,不是对应角,∴说法不正确的是A.选A.14.【答题】如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB【答案】A【分析】根据全等三角形的性质解答即可.【解答】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,选A.15.【答题】下列图形中,和所给图形全等的图形是()A. B.C. D.【答案】D【分析】根据全等图形的定义解答即可.【解答】根据全等图形的定义只需找出与原图形大小相等,形状相同的图形即可,A、B、C选项均不符合题意,只有D符合题意,D中的图形相对于原图形顺时针作了180°的旋转变换.选D.16.【答题】下列说法中:①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④周长相等的两个三角形全等;⑤全等三角形的面积相等;⑥面积相等的两个三角形全等,正确的()A. ①②③④⑤B. ③④⑤⑥C. ①②③⑤D. ①②③④⑤⑥【答案】C【分析】根据全等三角形的性质解答即可.【解答】根据全等三角形的性质:全等三角形的对应边相等、对应角相等、周长相等、面积相等,因此①②③⑤是正确的;但是周长相等的两个三角形却不一定全等,比如边长分别为3、4、5的直角三角形和边长为4的等边三角形虽然周长相等,但是却不全等.同样,底为4高为3的三角形,与底为3高为4的三角形,它们面积虽然相等,但是却不全等.因此④⑥是错误的,选C.17.【答题】如图,ΔABC≌ΔCDA,∠BAC=∠DCA,则BC的对应边是()A. CDB. CAC. DAD. AB【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵ΔABC≌ΔCDA,∠BAC=∠DCA,∴BC的对应边为DA,选C.18.【答题】如图,已知△ABC≌△CDE,下列结论中不正确的是()A. AC=CEB. ∠BAC=∠ECDC. ∠ACB=∠ECDD. ∠B=∠D【答案】C【分析】根据全等三角形的性质解答即可.【解答】由全等三角形的性质可知A、B、D均正确,而∠ACB=∠CED,故C错误.选C.19.【答题】如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A. POB. PQC. MOD. MQ【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△PQO≌△NMO,∴,则只需测出PQ的长即可求出M、N之间的距离.选B.20.【答题】如图,△ACB≌△A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是()A. B. C. D.【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠BCB′,∵∠A′CB=30°,∠ACB′=110°,∴∠ACA′=(110°-30°)=40°.选D.。
鲁教版2020七年级数学上册第一章三角形自主学习能力达标测试卷A (附答案详解) 1.如图,AD ,BC 相交于点O ,且AO =DO ,BO =CO ,则△ABO ≌△DCO ,理由是( )A .SSSB .SASC .ASAD .AAS2.若AD 是△ABC 的中线,则下列结论正确的是( )A .BD =CDB .AD⊥BC C .∠BAD=∠CAD D .BD =CD 且AD⊥BC3.画△ABC 的BC 边上的高,正确的是( ) A .B .C .D .4.如图,在Rt △ABC 中,∠C =90°,D 是AB 的中点,E 在边AC 上,若D 与C 关于BE 成轴对称,则下列结论:①∠A =30°;②△ABE 是等腰三角形;③点B 到∠CED 的两边距离相等.其中正确的有( )A .0个B .1个C .2个D .3个5.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠=,则下列结论正确的是( )A .342∠=B .4138∠=C .542∠=D .258∠=6.如图,在△ABC 中,AB 的垂直平分线分别交AB ,AC 于D ,E 两点,且AC=10,BC=4,则△BCE 的周长为( )A .6B .14C .18D .247.在生产和生活中,一些图形的性质得到广泛使用,请找出下列四个图形中使用性质与其它三个不同的是( )A . 起重机B . 活动挂架C . 伸缩门D . 升降平台8.如图,在△ABC 中,已知AB =AC ,DE 垂直平分AC ,∠A=50°,则∠DCB 的度数是( )A .15°B .20°C .25°D .30°9.如图所示,在ABC ∆和DEC ∆中,AC DC =.若添加条件后使得ABC DEC ∆≅∆,则在下列条件中,添加不正确的是( )A .BC EC =,BCE DCA ∠=∠B .BC EC =,AB DE =10.如图所示,在等腰梯形ABCD 中,AB =DC ,AC ,BD 交于点O ,则图中全等三角形共有( )A .2对B .3对C .4对D .5对11.已知AD 为△ABC 的中线,若△ABC 的面积为8,则△ABD 的面积是________. 12.如图,已知AB ∥CD ,∠A=60°,∠C =25°,则∠E=_____度.13.如图,若ABC ∆和DEF ∆的面积分别为1S 、2S ,则12:S S =______.14.如图,在Rt ABC 中,90A ∠=,ABC ∠的平分线BD 交AC 于点D ,3AD =,4AB =,10BC =,则在BDC 中,BD 边上的高为______.15.在△ABC 中,∠C=2∠A=6∠B,则∠A=_____度。
章节测试题1.【答题】如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20°B. 30°C. 35°D. 40°【答案】B【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.选B.2.【答题】如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A. 5B. 4C. 3D. 2【答案】A【分析】根据全等三角形对应边相等,DE=AB,而AB=AE+BE,代入数据计算即可.【解答】∵△ABC≌△DEF∴DE=AB∵BE=4,AE=1∴DE=AB=BE+AE=4+1=5选A.3.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】∵图中的两个三角形全等,a与a,c与c分别是对应边,那么它们的夹角就是对应角,∴∠α=50°,选D.4.【题文】如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.【答案】(1)138°;(2)3.【分析】(1)根据全等求出∠EBA的度数,根据邻补角的定义求出即可;(2)根据全等三角形的性质得出AC=AB=9,AE=AD=6,即可求出答案.【解答】(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°-42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC-AE=9-6=3.5.【题文】把大小4×4的正方形方格图形分割成两个全等图形,例如,图1,请在图2中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.【答案】见解答.【分析】利用图形的对称性和互补性来分隔成两个全等的图形.【解答】解:∵要求分成全等的两块,∴每块图形要包含有8个小正方形.6.【题文】已知△ABC≌△A′B′C′,∠C=25°,BC=6cm,AC=4cm,你能得出△A′B′C′中哪些角的大小,哪些边的长度.【答案】∠C’=25°,B’C’=6cm,A’C’=4cm.【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C′=∠C=25°,B′C′=BC=6cm,A′C′=AC=4cm.7.【题文】你能将下图分成形状相同、大小相同的12块吗,不要满足于一种分法哦,把你的方法和其它同学交流一下,一定会有更多的收获.【答案】见解答.【分析】把所给图形看作是3个正方形,要分成形状、大小相同的12块,需要把每个正方形分成形状、大小相同的4块即可.【解答】解:∵要求分成全等的12块,∴每个小正方形要分成全等的四块.8.【题文】如图所示,请你把下列梯形分成四个全等的四边形.【答案】见解答.【分析】这两个梯形都是比较特殊的梯形,一个是直角梯形,一个是等腰梯形,∵要分为四个全等的四边形,因此分得的四个四边形与原梯形的形状是一样的,只是各相应的边长变为原来相应边长的一半,据此进行分割即可得.【解答】解:如图所示:9.【题文】如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.【答案】∠E=30°,∠ACE=85°,∠EAC=65°.【分析】根据全等三角形的对应角相等和三角形内角和即可得到结论.【解答】解:∵△ABC≌△AEC,∴∠B=∠E=30°,∠ACB=∠ACE=85°,∴∠EAC=65°.10.【题文】如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【答案】∠ACB=100°;EC=2.【分析】根据三角形的内角和等于180°求出∠ACB的度数,然后根据全等三角形对应角相等即可求出∠DFE,全等三角形对应边相等可得EF=BC,然后推出EC=BF.【解答】∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=180°-30°-50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF-CF=BC-CF,即EC=BF,∵BF=2,∴EC=2.11.【题文】如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.【答案】35°【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【解答】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65º,∴∠OBC=180º−65º−∠C=115º−∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360º,∴65º+115º−∠C+135º+115º−∠C=360º,解得∠C=35º.12.【题文】如图,已知≌,.(1)求的长.(2)与平行吗?为什么?【答案】(1);(2)与平行,见解答.【分析】(1)根据全等三角形对应边相等即可求解,(2)根据全等三角形对应角相等和内错角相等可得两直线平行.【解答】(1)∵≌,∴.∴,即.∵,∴.(2)∵≌,∴,∴.13.【题文】如图,在五边形ABCDE和五边形中,如果,,,,,请添加尽可能少的条件,使它们全等(写出添加的条件,不需要说明理由)【答案】AC=A′C′,AD=A′D′【分析】根据全等图形的定义以及性质即可得出答案.【解答】解:如图:连接AC,AD,A′C′,A′D′,AC=A′C′,AD=A′D′,五边形ABCDE≌五边形A1B1C1D1E1.通过SSS可以证明即可证明五边形ABCDE≌五边形A1B1C1D1E1.14.【题文】如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形.(要求至少要画出两种方法).【答案】见解答.【分析】根据能够完全重合的两个图形叫做全等形画线即可.【解答】解:如图所示:15.【题文】观察下列图形的特点:有几组全等图形?请一一指出:______.【答案】1与6;2与12;3与5与11;4与9;7与10【分析】根据全等图形的定义判断即可.【解答】解:根据全等图形可得:1与6、2与12、3与5与11、4与9、7与10;故答案为:1与6、2与12、3与5与11、4与9、7与1016.【题文】沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形【答案】见解答.【分析】直接利用图形形状分成全等的两部分即可.【解答】解:如图所示:.17.【题文】图①,图②都是由一个正方形和一个等腰直角三角形组成的图形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.【答案】见解答.【分析】设正方形的面积为2,则等腰直角三角形的面积为1,(1)根据题意,分成的每一个图形的面积为,分成六等腰个直角三角形即可;(2)根据题意,分成的每一个图形的面积为,分成四个直角梯形即可.【解答】解:如图所示:18.【题文】试沿着虚线,将如图的正方形划分为两个全等的图形(请你再画出五种不同的方法)【答案】见解答.【分析】根据全等形的定义及网格的特点解答即可.【解答】如图,19.【题文】已知:如图,△ABD与△CDB全等,∠ABD=∠CDB,写出其余的对应角和各对对应边.【答案】∠A与∠C,∠ADB与∠CBD是对应角;BD与DB,AD与CB,AB与CD是对应边.【分析】本题考查了全等三角形的有关概念,关键是找准对应顶点.【解答】解:△ABD与△CDB全等,∠ABD=∠CDB,则∠A与∠C,∠ADB与∠CBD是对应角;BD与DB,AD与CB,AB与CD是对应边.20.【题文】如图,△ABC≌△FED,AC与DF是对应边,∠A与∠D是对应角,则AC∥FD成立吗?请说明理由.【答案】AC∥FD成立.【分析】由全等三角形的性质可得∠ACB=∠DFE,,可证明得AC∥FD.【解答】解:AC//FD成立.∵AC与FD为对应边,∴∠B与∠E为对应角.∵∠A与∠D为对应角,∴∠ACB与∠DFE为对应角.又∵△ABC≌△FED,∴∠ACB=∠DFE,从而AC//FD.。
鲁教版2020七年级数学上册第一章三角形自主学习能力达标测试卷B (附答案详解) 1.如下图,已知//AB DE ,//AC DF ,下列条件中不能判定ABC ∆≌DEF ∆的是( )A .BE CF =B .AC DF = C .AD ∠=∠ D .AB DE = 2.如图所示,a ∥b ,则下列式子中值为180°的是( )A .∠α+∠β﹣∠γB .∠α+∠β+∠γC .∠β+∠γ﹣∠αD .∠α﹣∠β+∠γ 3.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC ≌DEF 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC 4.如图,OA OC OB OD =,= ,则图中的全等三角形有( )A .1对B .2对C .3对D .4对5.如果三角形的两边长分别为3和5,那么这个三角形的周长可能是( )A .9B .10C .15D .166.如图在四边形ABCD 中,已知ABD CDB ∠=∠,添加下列条件还不能判定ABD CDB △≌△的是( )A .AB CD = B .AD CB =C .A C ∠=∠D .AD BC ∥ 7.下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的两个三角形C .全等三角形的周长和面积相等D .所有等边三角形是全等三角形8.如图,AB ∥CD ,AE 交CD 于C ,∠A =35°,∠DEC =90°,则∠D 的度数为( )A .65°B .55°C .45°D .35°9.下列图形具有稳定性的是( )A .B .C .D . 10.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°.其中正确的结论是( )A .①③B .②④C .①③④D .①②③④ 11.如图,点D 是AB 边上的中点,将△ABC 沿过点D 的直线DE 折叠,使点A 落在BC 边上F 处,如果∠B=65°,则∠BDF=___________.12.如图,AF 平分∠BAD ,CF 平分∠BCD 的邻补角∠BCE ,且AF 与CF 相交于点F ,∠B=40°,∠D=20°,则∠F=_____°.13.如图,ABC ∆的面积为22cm ,AP 与ABC ∠的平分线垂直,垂足是点P ,则PBC ∆的面积为______2cm .14.如图,若△ABE 和△ADC 分别是由△ABC 沿AB 、AC 边翻折180°得到的,若∠BAC = 150°,则∠1的度数为_____.15.已知△ABC 中,DE 垂直平分AB ,如果△ABC 的周长为22,AB=10,则△ACD 的周长为___________.16.三角形的三边长分别为5,x ,8,则x 的取值范围是_____.17.如图,090,A D AC DB ∠=∠==,利用“..H L ”说明Rt ____________Rt ≅______________,从而得到AB DC =。
鲁教版七年级数学上册第一章达标检测卷一、选择题(本大题共12道小题,每小题3分,共36分)1.下列每组数据分别是三根小木棒的长度,其中能组成三角形的是() A.3 cm,4 cm,5 cm B.7 cm,8 cm,15 cmC.6 cm,12 cm,20 cm D.5 cm,5 cm,11 cm2.下列各图中,作出△ABC的AC边上的高,正确的是()3.下列说法:①三角形的重心是高的交点;②三角形的内角和是180°;③直角三角形的两个锐角互余;④三角形的三条角平分线相交于一点;⑤三角形的三条高相交于一点.其中正确的有()A.1个B.2个C.3个D.4个4.如图,△ABC≌△CDE,则线段AC和线段CE的关系是() A.既不相等也不互相垂直B.相等但不一定互相垂直C.互相垂直但不相等D.相等且互相垂直5.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=() A.150°B.120°C.90°D.60°6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=() A.90°B.120°C.135°D.150°8.如图,给出下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,记△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,在△ABC中,∠A=50°,∠B=60°,CD平分∠ACB,DE⊥BC于E,则∠CDE的度数为()A.35°B.45°C.55°D.65°11.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,BE⊥AD 交AD的延长线于点E.若∠DBE=25°,则∠CAB=()A.30°B.40°C.50°D.60°12.如图,在直角三角形ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边作等腰直角三角形AED,连接BE,EC.有下列结论:①△ABE≌△DCE;②BE=EC;③BE⊥EC.其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(本大题共6道小题,每小题3分,共18分)13.如图所示,△ABC中,∠ABC=90°,P为AC上的一个动点,若AB=60,BC=25,AC=65,则线段BP的最小值是________.14.如图所示,AD为△ABC的中线,BE为△ABD的中线,DF为△BDE的中线,若△BDF的面积为1 cm2,则△ABC的面积为________.15.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,垂足为D,且使A,C,E 三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.16.如图,E为△ABC的边AC的中点,CN∥AB.若MB=6 cm,CN=4 cm,则AB=________.17.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F.若BF=AC,CD=3,BD=8,则线段AF的长度为________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(本大题共7道小题,19-21题每题8分,22-24题每题10分,25题12分,共66分)19.尺规作图:如图,小明在作业本上画的△ABC被墨迹污染,他想画一个与原来完全一样的△A′B′C′,请帮助小明想办法用尺规作图法画出△A′B′C′,并说明你的理由.20.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.21.如图,在△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.22.如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A 爬行,经过t s后,它们分别爬行到了D,E处,设DC与BE的交点为F.(1)试说明△ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,已知点M是AB的中点,DC是过点M的一条直线,且∠ACM=∠BDM,AE⊥CD,BF⊥CD,垂足分别为点E,F.(1)试说明△AME≌△BMF;(2)猜想MF与CD之间的数量关系,并说明理由.25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是__________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A 2.C 3.C4.B 【点拨】因为△ABC ≌△CDE , 所以AC =CE ,∠A =∠ECD , ∠B =∠D .所以∠ACB +∠ECD =∠ACB +∠A . 当∠B =∠D ≠90°时,∠ACB +∠ECD =∠ACB +∠A ≠90°, 则∠ACE ≠90°.即AC 和CE 不互相垂直. 5.B 【点拨】因为△ABC ≌△A ′B ′C ′, 所以∠C =∠C ′=24°. 因为∠A =36°,所以∠B =180°-24°-36°=120°. 6.C 【点拨】因为∠A =60°, 所以∠ABC +∠ACB =120°.因为BE ,CD 分别是∠ABC ,∠ACB 的平分线, 所以∠CBE =12∠ABC ,∠BCD =12∠BCA . 所以∠CBE +∠BCD =12(∠ABC +∠BCA )=60°. 所以∠BFC =180°-60°=120°.7.C 【点拨】如图,在△ABC 和△DEA 中,⎩⎨⎧AB =DE ,∠ABC =∠DEA =90°,BC =AE ,所以△ABC ≌△DEA (SAS ). 所以∠1=∠4. 因为∠3+∠4=90°, 所以∠1+∠3=90°.又易知∠2=45°,所以∠1+∠2+∠3=90°+45°=135°.8.B9.B 【点拨】易得S △ABE =13×12=4,S △ABD =12×12=6, 所以S △ADF -S △BEF =S △ABD -S △ABE =2. 10.C 【点拨】因为∠A =50°,∠B =60°, 所以∠ACB =180°-∠A -∠B =70°. 因为CD 平分∠ACB , 所以∠DCE =12∠ACB =35°. 因为DE ⊥BC , 所以∠CED =90°.所以∠CDE =90°-35°=55°. 11.C 【点拨】因为BE ⊥AE , 所以∠E =∠C =90°. 因为∠ADC =∠BDE , 所以∠CAD =∠DBE =25°. 因为AE 平分∠CAB , 所以∠CAB =2∠CAD =50°.12.D 【点拨】因为AC =2AB ,点D 是AC 的中点, 所以CD =12AC =AB .因为△ADE 是等腰直角三角形,所以AE =DE ,∠BAE =90°+45°=135°,∠CDE =180°-45°=135°. 所以∠BAE =∠CDE .在△ABE 和△DCE 中,⎩⎨⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,所以△ABE ≌△DCE (SAS ),故①正确.因为△ABE ≌△DCE ,所以BE =EC ,故②正确.因为△ABE ≌△DCE ,所以∠AEB =∠DEC .又因为∠AEB +∠BED =90°,所以∠DEC +∠BED =90°.所以BE ⊥EC ,故③正确.二、13.30013 【点拨】当BP ⊥AC 时,BP 有最小值.因为∠ABC =90°,所以12AC ·BP =12AB ·BC .即12×65·BP =12×60×25.所以BP =30013.14.8 cm 2 【点拨】因为DF 为△BDE 的中线,△BDF 的面积为1 cm 2, 所以△BDE 的面积为2 cm 2.因为BE 为△ABD 的中线,所以△ABD 的面积为4 cm 2.因为AD 为△ABC 的中线,所以△ABC 的面积为8 cm 2.15.ASA 【点拨】由题意可知∠ECD =∠ACB ,CD =CB ,∠EDC =∠ABC =90°,故可用ASA 说明两三角形全等.16.10 cm 【点拨】由CN ∥AB ,点E 为AC 的中点,可得∠EAM =∠ECN ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM =CN =4 cm.所以AB =AM +MB =4+6=10(cm).17.5 【点拨】由已知可得∠ADC =∠BDF =∠BEA =90°,因为∠AFE =∠BFD ,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.18.65° 【点拨】过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF =BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB =90°,DF =BE ,所以△FDC ≌△EBC (SAS ).所以∠FDC =∠B .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:作图如图所示.理由:在△ABC 和△A ′B ′C ′中,⎩⎨⎧∠B =∠B ′,BC =B ′C ′,∠C =∠C ′,所以△ABC ≌△A ′B ′C ′(ASA ).20.解:因为AB =AC ,所以AD -AB =AD -AC =CD .在△BCD 中,因为BD -BC <CD ,所以BD -BC <AD -AB .21.解:在△ABC 中,因为∠B =34°,∠ACB =104°,所以∠CAB =180°-∠B -∠ACB =180°-34°-104°=42°.因为AE 平分∠CAB ,所以∠CAE =12∠CAB =12×42°=21°.在△ACE 中,∠AEC =180°-∠ACB -∠CAE =180°-104°-21°=55°. 因为AD 是BC 边上的高,所以∠D =90°.在△ADE 中,∠DAE =180°-∠D -∠AEC =180°-90°-55°=35°.22.解:(1)因为小蚂蚁同时从A ,C 出发,速度相同,所以t s 后两只小蚂蚁爬行的路程AD =CE .在△ACD 和△CBE 中,⎩⎨⎧AD =CE ,∠A =∠ACB ,AC =CB ,所以△ACD ≌△CBE (SAS ).(2)无变化.理由如下:因为△ACD ≌△CBE ,所以∠EBC =∠ACD .因为∠BFC =180°-∠EBC -∠BCD ,所以∠BFC =180°-∠ACD -∠BCD =180°-∠ACB .因为∠A =∠ABC =∠ACB ,∠A +∠ABC +∠ACB =180°,所以∠ACB =60°.所以∠BFC =180°-60°=120°.所以∠BFC 的大小无变化.23.解:△AEM ≌△ACN ,△ABN ≌△ADM ,△BMF ≌△DNF .(任写其中两对即可) 选择△AEM ≌△ACN :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA ).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA ).选择△BMF ≌△DNF :因为△ABN ≌△ADM ,所以AN =AM .因为AB =AD ,所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS ).(任选一对进行说明即可)24.解:(1)如图所示.因为点M 是AB 的中点,所以AM =BM .因为AE ⊥CD ,BF ⊥CD ,所以∠AEF =∠BFE =90°.在△AME 和△BMF 中,⎩⎨⎧∠AEF =∠BFE =90°,∠1=∠2,AM =BM ,所以△AME ≌△BMF (AAS ).(2)猜想:2MF =CD .理由:由(1)可知∠AEF =∠BFE =90°,△AME ≌△BMF , 所以EM =FM ,AE =BF .在△ACE 和△BDF 中,⎩⎨⎧∠AEF =∠BFD =90°,∠ACM =∠BDM ,AE =BF ,所以△ACE ≌△BDF (AAS ). 所以DF =CE .因为DF =CD +CF ,CE =EF +CF , 所以CD =EF .因为EF =EM +FM ,EM =FM , 所以2MF =CD .25.解:(1)AE ∥BF ;QE =QF(2)QE =QF .理由如下:如图,延长EQ 交BF 于点D .由题意易得AE ∥BF ,所以∠AEQ =∠BDQ .因为点Q 为斜边AB 的中点, 所以AQ =BQ .在△AEQ 和△BDQ 中,⎩⎨⎧∠AQE =∠BQD ,∠AEQ =∠BDQ ,AQ =BQ ,所以△AEQ ≌△BDQ (AAS ). 所以EQ =DQ .因为∠DFE =90°,所以QE =QF .。