运筹学课程作业
- 格式:doc
- 大小:360.50 KB
- 文档页数:4
运筹学作业题目1. 题目描述某物流公司需要将货物从A地运送到B地,货物数量为N件。
已知A地和B 地之间有M个中转站,每个中转站都有一定的处理能力和储存能力。
现在需要你运用运筹学的方法,给出一个最优的货物运输方案。
2. 问题分析首先,我们需要确定以下几个问题:•货物从A地到B地的最短路径是什么?•每个中转站的处理能力和储存能力分别是多少?•每个中转站的位置以及与其他中转站的距离是多少?3. 数据收集为了解决这个问题,我们需要收集以下数据:•A地和B地之间的距离•每个中转站的处理能力和储存能力•每个中转站的位置以及与其他中转站的距离4. 模型建立我们可以将这个问题建模为一个网络图问题,其中A地和B地为源点和汇点,中转站为中间节点。
我们需要找到从源点到汇点的最短路径,并且满足各个中转站的处理能力和储存能力的限制。
我们可以使用最短路径算法(如Dijkstra算法或Floyd-Warshall算法)找到从源点到汇点的最短路径,并计算出该路径上各个中转站的处理能力和储存能力。
5. 求解与优化在求解过程中,我们需要考虑以下几个方面:•最短路径的选择:我们可以根据距离、处理能力和储存能力三个因素进行综合考虑,选择最优的路径。
•货物分配策略:根据中转站的处理能力和储存能力,我们需要制定合理的货物分配策略,使得所有中转站的资源利用率最大化。
•容量约束的处理:如果某个中转站的处理能力或储存能力不足,我们需要考虑如何调整货物的分配,以避免资源浪费或堆积。
6. 结果分析根据我们的模型和求解过程,我们可以得到一个最优的货物运输方案,并且可以得到以下几个结果:•最短路径:确定了从A地到B地的最短路径,方便后续货物的运输安排。
•中转站资源利用率:根据我们的货物分配策略,可以评估每个中转站资源的利用率,进一步优化中转站的运营效果。
•资源调配建议:如果存在处理能力或储存能力不足的中转站,我们可以提供资源调配建议,帮助公司优化资源分配。
《运筹学》作业(一)题1.某货轮分前、中、后三个舱位,结构参数见表1。
拟装运三种货物,性能参数见表2。
为了航运安全,要求舱位之间载重比例的偏差不超过10%,以保持船体的平衡。
问应如何制订货物的装运方案可使此运输的收益达到最大?建立该问题的LP 模型。
提示:用x ij 表示装运在第i 个舱位中的第j 种货物的重量,其中:i = 前, 中, 后; j = A, B, C ;故一共有9个变量。
目标是使总运费达到最大。
约束条件分为四组:每个舱位中货物的体积限制,重量限制,每种货物的数量限制,和舱位之间载重比例的偏差限制,故一共有12个约束条件。
题2.确定下列约束条件构成的可行域(1) ⎪⎩⎪⎨⎧≥≤+无约束 2121042x x x x (2)⎪⎩⎪⎨⎧≥-无约束无约束 21210x x x x (3) ⎪⎩⎪⎨⎧≥=≤+-05222121 x x x x (4) ⎪⎩⎪⎨⎧=≥≤+21422121 x x x x 题3.已知LP 问题: 0,,,844344243214213214321≥=++=++-++=x x x x x x x x x x x x x x Z s.t.max试确定⎪⎪⎭⎫ ⎝⎛-==-4/114/10,),(132B x x x B T 是否为最优解。
如果是,给出最优目标值;否则,确定新一轮的进、出变量。
提示 检验数 j j B j c p B c -=-1λ,j = 1, 4。
如果检验数的值大于或等于零,则为最优解;否则,令绝对值最大的负检验数对应的非基本变量进入,而令最小正比值对应的基本变量退出。
题4.给定LP 问题: 0,,42044602343025233212131321321≥≤+≤+≤++++=x x x x x x x x x x x x x Z s.t .m a x已知其最优解为:⎪⎪⎪⎭⎫ ⎝⎛--===-11202/1004/12/1,)20,230,100(),,(1632B x x x x T B T。
管理运筹学作业
第二章第七题
某公司正在制造两种产品,产品1和产品2,每天的产量分别是30个和120个,利润分别为500元/个,和400元/个,公司负责制造的副总经理希望了解是否可以通过改变这两种产品的数量而提高公司的利润。
公司各个车间的加工能力和制造单位产品所需要的加工工时,如下表所示:
车间产品1 产品2 车间的加工能力(每天
加工工时数)
1 2 0 300
2 0
3 540
3 2 2 440
4 1.2 1.
5 300
由上表可知:
(1)最优解为(150,70),目标函数最优值为103000。
(2)第一、第三车间的加工工时数用完,第二、第四车间的加工工时数没有用完,第二车间的松弛变量为330,第四车间的松弛变量为15。
(3)第一、第二、第三、第四车间加工工时的对偶价格分别为50、0、200、0。
对偶价格的定义为:在约束条件常数项中增加一个单位而使目标函数值得到改进的数量。
即:在第一车间中每增加一个工时,那么总利润将增加50元,第三车间每增加一个单位的工时,总利润增加200元;第二、第四车间增加工时,对总利润没有影响。
(4)目标函数中系数的灵敏度分析:
当目标函数的斜率小于等于—1时,此最优解不变。
当产品1的利润不变时,产品2的利润在【0,500】这个范围内变化时,此最优解不变;当产品2的利润不变时,产品1的利润大于等于400时,此最优解不变。
1运筹学作业题一、将下列线性规划问题化为标准型(1)、123123123123123 235567916..192513,0,Max z x x x x x x x x x s t x x x x x x =+++-≥-⎧⎪-+-=⎪⎨-+≤⎪⎪≥⎩符号不限(2)、123123123123 242+3=20..3+4=25,0,26Max z x x x x x x s t x x x x x x =+++⎧⎪+⎨⎪≥≤≤⎩ 二、求出下面线性规划问题的所有基解、基可行解和最优解12123412341234522+34=7..22++2=3,,,0Min z x x x x x x s t x x x x x x x x =-++⎧⎪+⎨⎪≥⎩三、用图解法求解下列线性规划问题,并说明解的类型(1)、121212212 501003002400..250,0Max z x x x x x x s t x x x =++≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩ (2)、12121221212 393224..6250,0Max z x x x x x x s t x x x x x =++≤⎧⎪-+≤⎪⎪≤⎨⎪-≤⎪⎪≥⎩ 四、分别用图解法和单纯形法求解线性规划问题,并指出每一个单纯形表所对应的可行域的顶点122121212 25156224..5,0Max z x x x x x s t x x x x =+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ 五、分别用大M 法及两阶段法求解下列线性规划问题(1)、1231231231312332+114+23..2 1,,0Max z x x x x x x x x x s t x x x x x =---≤⎧⎪-+≥⎪⎨-=-⎪⎪≥⎩ (2)、121212123222..3412,0Max z x x x x s t x x x x =++≤⎧⎪+≥⎨⎪≥⎩2六、写出线性规划问题的对偶问题(1)、123123123123123 3526304320..40,0,Min z x x x x x x x x x s t x x x x x x =-+--+-≥⎧⎪+-≤⎪⎨-+=-⎪⎪≤≥⎩无约束(2)、123452345123413412345 37588 34162332 222 5..210525,0,Max z x x x x x x x x x x x x x x x x s t x x x x x =--++-+-=-⎧⎪+--≥⎪⎪-+-≤-⎪⎨-≤≤⎪⎪≤≤⎪≥⎪⎩无约束(3)、111111111 1,, 1,2,,..0 1,, 1,2,,nj jj nij j i j n ij j i j j j Max z c x a x b i m m a x b i m m m s t x j n n x j n n n====⎧≤=≤⎪⎪⎪⎪==++⎨⎪⎪≥=≤⎪=++⎪⎩∑∑∑无约束七、用对偶单纯形法求解线性规划问题123123123123524324..63510,,0Min z x x x x x x s t x x x x x x =++++≥⎧⎪++≥⎨⎪≥⎩ 八、灵敏度分析给出下列线性规划:12312312312362124+324..26+330,,0Max z x x x x x x s t x x x x x x =+++≤⎧⎪+≤⎨⎪≥⎩ 的最优单纯形表:3其中,s 1、s 2分别为第1、2约束方程的松弛变量。
运筹学作业(5)
习题1、清华大学运筹学(第三版)P112 4.2(2)
用图解法找出以下目标规划问题的满意解。
习题2、清华大学运筹学(第三版)P282 10.4(a)
用破圈法和避圈法求图中的最小树。
习题3、清华大学运筹学(第三版)P283 10.7图10-40
用课上介绍的逆推方法,求v1到v11的最短路径,标明路径,求出路长。
习题4:已知条件如表所示
p1:每周总利润不得低于10000元;
p2:因合同要求,A型机每周至少生产10台,B型机每周至少生产15台;
p3:希望工序Ⅰ的每周生产时间正好为150小时,工序Ⅱ的生产时间最好用足,甚至可适当加班。
试建立这个问题的目标规划模型并求解(可利用EXCEL求)。
思考题:在上题中,如果工序Ⅱ在加班时间内生产出来的产品,每台A型机减
少利润10元,每台B型机减少利润25元,并且工序Ⅱ的加班时间每周最多不超过30小时,这是p4级目标,试建立这个问题的目标规划模型并求解。
(此题下周四前会给出参考答案)。
运筹学作业整理1. 公交车调度安排某市欲对其公交车的投放数量进行优化。
通过调查发现,所需的最少公交车数随一天中的时间不同而变化,而且所需的最少公交车数在若干连续的4小时内可以被近似地看做一个常数,时间段与所需公交车数的关系如图1所示。
为了进行日常维修,每辆公交车一天只能连续运行8小时。
图1 一天内不同时间段所需公交车数请确定每一班运行公交车的数量,以满足最小需求约束,且使所运行的公交车总数最少。
2. Personnel SchedulingOne AIR Company is adding more flights to and from its hub airport, and so it needs to hire additional customer service agents. However, it is not clear just howmany more should be hired. Management recognizes the need for cost control while also consistently providing a satisfactory level of service to customers. Therefore, an OR team is studying how to scheduling the agents to provide satisfactory service with the smallest personnel cost.Based on the new schedule of flights, an analysis has been made of the minimum number of customer service agents that need to be on duty at different times of the day to provide a satisfactory level of service. The right most column of the flowing table shows the number agents needs for the time periods given in the first column. The other entries in this table reflect one of the provisions in the company’s current contract with the union that the represents the customer service agents. The provision is that each agent works an 8-hour shift 5 days per week.The five authorized eight-hour shifts are–Shift 1: 6:00 AM to 2:00 PM–Shift 2: 8:00 AM to 4:00 PM–Shift 3: Noon to 8:00 PM–Shift 4: 4:00 PM to midnight-Shift 5: 10:00 PM to 6:00 AM.How many agents should be assigned to each shift? Please set up a LP model and solve it.3.已知某工厂计划生产I,II,III三种产品,各产品需要在A,B,C 设备上加工,有关数据见表4-24。
运筹学作业数学0501班4-5(P177)某厂生产一种产品,该产品在未来四个月的销售量估计如表所示。
该产品的生产准备费用为每批500元,每件生产费用为1元,每个的存储费用每月1元。
假定1月初的存货为100解:根据生产一库存问题的一般解法以及题中所给条件,我们有4=n ,K k k k k B M d d d d x x h i C ,,2,3,5,4,0,1,1,1,5432151=========题中未给出,可认为仓库容量K M 与生产能力K B 均为无穷大,不受限制。
本问题中,,,K k k k M h l c K B 均不随k 而改变,据之求解如下,先求条件最优集合:当k=4时,由于0)(55≡x f 和04445=-+=d u x x⎩⎨⎧=≠-+=⎩⎨⎧=≠+=-=2,02,250,00,5)(44444344min 444x x x u u u x f x d u 其中,{}2,m in 04444==≤≤d d M x 即当24<x 时,有2444>-=x d u24=x 时,有0444=-=x d u⎩⎨⎧≤≤-==∴20,72,0)(44444x x x x f当k=3时,3333334-+=-+=u x d u x x {}5,m in 0434333=+=+≤≤d d d d M x{}{}{}3333333333433335,5,m in ,,m in 3,0m ax x d x M x B d x M x d d b u x +=+--=+--+≤≤-⎩⎨⎧=+-≠+-+++=0),(30),(35)(344334433333min 3u x f x u x f u x u x f u 若 03=x ,则533≤≤u ,13=x ,则423≤≤u23=x ,则313≤≤u ,33=x ,则203≤≤u 43=x ,则103≤≤u ,53=x ,则003≤≤u由此可计算()3f 结果如下表所示:当k=2时,5222223-+=-+=u x d u x x{}10,m in 043243222=++=++≤≤d d d d d d M x{}{}{}2222222432222105,10,m in ,,m in 5,0m ax x x M x B d x M x d d d B u x k k -=+--=+--++≤≤-⎩⎨⎧=+-≠+-+++=0),(0),(5)(23322233222222min 2u x f d x u x f d u x u x f u⎩⎨⎧=+-≠++=0),(50),(2233223322min 2u x f x u x f x u u若02=x ,则1052≤≤u ,12=x ,则442≤≤u22=x ,则832≤≤u ,32=x ,则722≤≤u42=x ,则612≤≤u ,52=x ,则502≤≤u 62=x ,则402≤≤u ,72=x ,则302≤≤u 82=x ,则202≤≤u ,92=x ,则102≤≤u 1102=x ,则002≤≤u由此可计算()2f ,结果如下表所示:当k=1时,有11=x ,4111112-+=-+=u x d u x x{}{}11114321111,,m in 4,0m ax d x M x d d d d B u x ---+++≤≤-即有1331≤≤u{}{})(22min )(45)(2212211111min 1x f u x f u x u x f u ++=+-+++=∴由此可计算()1f ,结果如下表所示:由于11=x 是唯一确定的,因此30)1(1=f 是整个问题的最优目标函数值,)1('1u 是最优决策,由以上计算过程可知最优决策有两个,于是可得最优策略如下:3*1=u5*2=u5*3=u0*4=u1*1=x0*2=x0*3=x2*4=x0*5=x或3*1=u10*2=u0*3=u0*4=u1*1=x0*2=x5*3=x2*4=x0*5=x即最优生产计划是1月份生产3百件,2月份生产5百件,3月份生产5百件,4月份不生产,或1月份生产3百件,2月份生产10百件,3月份不生产,4月份也不生产,总费用为30百元,两种最优方案中均利用适当的库存,节约了生产的固定费用。
运筹学作业(三)
习题1、
试利用0-1变量对下列各题分别表示成一般线性约束条件:
(a )221≤+x x 或53221≥+x x
(b )变量x 只能取值0、3、5或7中的一个
(c )变量x 或等于0,或≥50
(d )若21≤x ,则1≥2x ,否则4≤2x
(e )以下四个约束条件中至少满足两个:
521≤+x x ,21≤x ,23≥x ,643≥+x x
习题2、试利用0-1变量将下述问题题表示成一般线性约束条件,然后用EXCEL 求解
32152max x x x x ++=
⎪⎩⎪⎨⎧≥≤++≥-+-0,,10
2153103
21321321x x x x x x x x x 习题3、清华大学运筹学(第三版) P99 3.3 只计算3-47表格
(1) 用西北角法、最小元素法、伏格尔法给出初始方案
(2) 对用“最小元素法”给出的初始方案,用“闭合回路法”判定是否最优
(3) 对用“伏格尔法”给出的初始方案,用“位势法”判定是否最优
(4) 对(3)的结果进行分析,如果不是最优,调整方案,直至最优为止
习题4、 清华大学运筹学(第三版) P99 3.6
(用计算机求解)。
第一章线性规划1.1将下述线性规划问题化成标准形式1)min z=-3x1+4x2-2x3+5 x4-x2+2x3-x4=-24xst. x1+x2-x3+2 x4 ≤14-2x1+3x2+x3-x4 ≥2x1,x2,x3≥0,x4无约束2)min z =2x1-2x2+3x3+x2+x3=4-xst. -2x1+x2-x3≤6x1≤0 ,x2≥0,x3无约束1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)min z=2x1+3x24x1+6x2≥6st2x1+2x2≥4x1,x2≥02)max z=3x1+2x22x1+x2≤2st3x1+4x2≥12x1,x2≥03)max z=3x1+5x26x1+10x2≤120st5≤x1≤103≤x2≤84)max z=5x1+6x22x1-x2≥2st-2x1+3x2≤2x1,x2≥01.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)min z=5x1-2x2+3x3+2x4x1+2x2+3x3+4x4=7st2x1+2x2+x3 +2x4=3x1,x2,x3,x4≥01.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。
1) maxz =10x 1+5x 23x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥02) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥01.5 分别用大M 法与两阶段法求解下列LP 问题。
1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥02) max z =4x 1+5x 2+ x 3. 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4x 1+ x 2- x 3=53) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥01231231231231234)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤⎧⎪-++≤⎪⎨++≥⎪⎪≥⎩1.61.7某班有男生30人,女生20人,周日去植树。
线性规划建模及单纯形法思考题主要概念及内容:线性规划模型结构(决策变量,约束不等式、等式,目标函数);线性规划标准形式;可行解、可行集(可行域、约束集),最优解;基、基变量、非基变量、基向量、非基向量;基本解、基本可行解、可行基、最优基。
复习思考题:1、线性规划问题的一般形式有何特征?2、建立一个实际问题的数学模型一般要几步?3、两个变量的线性规划问题的图解法的一般步骤是什么?4、求解线性规划问题时可能出现几种结果,哪种结果反映建模时有错误?5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
6、试述线性规划问题的可行解、基本解、基本可行解、最优解、最优基本解的概念及它们之间的相互关系。
7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢?10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段?作业习题1、将下列线性规划问题化为标准型(1)⎪⎪⎩⎪⎪⎨⎧≥=--+-≥-+-≤+-++-+=0,,953413223183622453max 4214321432143214321x x x x x x x x x x x x x x x x x x x z (2)⎪⎪⎩⎪⎪⎨⎧≤≥=+-+-≥-+--≤--++++=0,0,152342722351232243min 4214321432143214321x x x x x x x x x x x x x x x x x x x f 2、(1)求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≤++-≤++0,,124326332321321321x x x x x x x x x(2)对下述线性规划问题找出所有基本解,指出哪些是基本可行解,并确定最优解.⎪⎪⎩⎪⎪⎨⎧≥=-=+-+=+++++=)6,,1(0031024893631223max 6153214321321 j x x x x x x x x x x x x x x z j 3、用图解法求解下列线性规划问题(1)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤-+=0,31223622max 211212121x x x x x x x x x z (2)⎪⎩⎪⎨⎧≥≥-≥++-=0,155356743min 21212121x x x x x x x x z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
第一部分绪论第二部分线性规划与单纯形法1 判断下列说法是否正确:(a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b)线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c)线性规划问题的每一个基解对应可行域的一个顶点;(d)如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e)对取值无约束的变量x i,通常令其中,在用单纯形法求得的最优解中有可能同时出现(f)用单纯形法求解标准型的线性规划问题时,与对应的变量都可以被选作换入变量;(g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h)单纯形法计算中,选取最大正检验数δk对应的变量x k作为换入变量,将使目标函数值得到最快的增长;(i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j)线性规划问题的任一可行解都可以用全部基可行解的线性组合表示;(k)若x1,x2分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中λ1,λ2可以为任意正的实数;(1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为X ai为人工变量),但也可写为,只要所有k i均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为个;(n)单纯形法的迭代计算过程是从一个可行解转转换到目标函数值更大的另一个可行解;(o)线性规划问题的可行解如为最优解,则该可行解一定是基可行解;(p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r)将线性规划约束条件的“≤”号及“≥”号变换成“=”号,将使问题的最优目标函数值得到改善;(s)线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t)一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解;(v)一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
运筹学作业1、线性规划某快餐店坐落在一个旅游景点中。
这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增。
快餐店主要是为旅客提供低价位的快餐服务。
该快餐店雇佣了两名正式职工,正式职工每天工作八小时,其余工作有临时工来担任,临时工每班工作4小时。
在星期六,该快餐店从上午11点开始营业到下午10点关门。
根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如下表所示:表格 1已知一名正式职工11点开始上班,工作4小时后休息一小时,而后在工作4小时;另一名正式职工13点开始上班,工作4小时后休息一小时,而后在工作四小时。
又知临时工每小时的工资为4元。
(1)、在满足对职工需求的条件下如何安排临时工的班次,使得使用临时工的成本最小?(2)、如果临时工每班工作时间可以是3小时也可以是4小时,那么应如何安排临时工的班次,使得使用临时工的总成本最小?比(1)节省多少费用?这时应安排多少临时工班次?目标函数:min z=16(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11)x1+x9+x10+x11>=8x1+x2+x10+x11>=8x1+x2+x3+x11>=7x1+x2+x3+x4>=1x2+x3+x4+x5>=2x3+x4+x5+x6>=1x4+x5+x6+x7>=5x5+x6+x7+x8>=10x6+x7+x8+x9>=10x7+x8+x9+x10>=6x8+x9+x10+x11>=6x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11>=0程序如下:Model:Sets:Row/1…11/:b;Arrange/1…11/:x,c;Link(row,arrange):a;EndsetsData:b=8,8,7,1,2,1,5,10,6,6;c=16,16,16,16,16,16,16,16,16,16,16;a=1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0 ,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0, 0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0 ,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1;enddata[OBJ]min=@sum(arrange(j):c(j)*x(j));@for(row(i);@sum(arrange(j):a (i,j)x(i,j))>=b(i););@for(arrange(j):x(j)>=0;);End最优解为x=(2,1,0,0,1,0,9,0,1,0,5),最优值为z=304,即临时工班次为11:00~12:00开始上班2人,12:00~13:00开始上班1人,15:00~16:00开始上班1人,17:00~18:00开始上班9人,19:00~20:00开始上班1人,21:00~22:00开始上班5人,雇佣临时工19人,临时工的总工资为304元。
1、若原问题具有m个约束,则它的对偶问题具有m个变量。
()A. 正确B. 错误错误:【A】2、可行解是基本解。
()A. 正确B. 错误错误:【B】3、线性规划的最优解是可行解。
()A. 正确B. 错误错误:【A】4、正偏差变量大于等于零,负偏差变量小于等于零。
()A. 正确B. 错误错误:【B】5、线性规划的最优解一定是基本最优解。
()A. 正确B. 错误错误:【B】6、要求至少到达目标值的目标函数是maxZ=d+。
()A. 正确B. 错误错误:【B】7、若线性规划无最优解则其可行域无界。
()A. 正确B. 错误错误:【B】8、运输问题一定存在最优解。
()A. 正确B. 错误错误:【A】9、凡基本解一定是可行解。
()A. 正确B. 错误错误:【B】10、目标约束一定是等式约束。
()A. 正确B. 错误错误:【A】11、加边法就是避圈法。
()A. 正确B. 错误错误:【A】12、线性规划可行域无界,则具有无界解。
()A. 正确B. 错误错误:【B】13、可行解集有界非空时,则在极点上至少有一点达到最优解。
()A. 正确B. 错误错误:【A】14、匈牙利法是求解最小值的分配问题。
()A. 正确B. 错误错误:【A】15、互为对偶问题,或者同时都有最优解,或者同时都无最优解。
()A. 正确B. 错误错误:【A】16、m+n-1个变量构成基变量组的充要条件是它们不包含闭回路。
()A. 正确B. 错误错误:【A】17、匈牙利法是对指派问题求最小值的一种求解方法。
()A. 正确B. 错误错误:【A】18、一对正负偏差变量至少一个等于零。
()A. 正确B. 错误错误:【A】19、互为对偶问题,原问题有最优解,对偶问题可能无最优解。
()A. 正确B. 错误错误:【B】20、μ是一条增广链,则后向弧上满足流量f ≥0。
()A. 正确B. 错误错误:【B】21、原问题具有无界解,则对偶问题不可行。
()A. 正确B. 错误错误:【A】22、要求不超过目标值的目标函数是minZ=d+。
运筹学课程作业
1. 某农场现有100hm2(公顷)土地及150000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出打工,春夏季收入为50元/人日,秋冬季为40元/人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资5元。
养奶牛时每头需拨出0.5 hm2(公顷)土地种饲草,并占用人工秋冬季为60人日,春秋季为30人日,年净收入为1000元/每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季需0.4人日,春夏季为0.2人日,年净收入为20元/每只鸡。
农场现有鸡舍允许最多养6000只鸡,牛栏允许最多养120头奶牛。
三种作物每年需要的人工及
试决定该农场的经营方案,使年净收入为最大。
建立线性规划模型
令种植大豆公顷数X1,玉米公顷数X2,小麦公顷数X3,X4只鸡,X5头牛,X6人秋冬去打工,X7人春夏去打工
所以可以设立条件带入
WinQSB
所以种100公顷小麦,多余的人力都去打工得到最大净收入220000元
2. 我国拟考虑某行业的投资布点问题,现已初步选择了七个投资项目,记作S1,S2……S,其中S~S处于东部地区,S~S处于西部地区,各项目的有关资料下表:
决策时,需考虑如下因素:
(1)投资总规模应控制在1000万元以内;
(2)西部地区无论选中的投资项目总数还是投资总量均不逊于东部地区;
(3)S1和S4是同类建设项目,应该避免重复建设;
(4)S7只有在S3上马的前提下方可上马;
(5)希望投资总效益最大。
为决策投资项目,试建立0—1整数规划模型。
所以上马S2,S3,S6,S7四个项目。
3.下表给出了一运输问题的产地、销地以及产量和销量,单位运费,求此运输问题的最优调运方案?
4. 某大学服务公司有一个鲜货店,每天以每斤6元的价格进鲜货,然后当天以每天8元的价格售出。
如果当天卖不出去,第二天就要以每斤3.5元的价格处理掉。
据此店以往的资料可知每天可售出10~15斤。
在100天的统计数据中,售出情况见下表:
试用期望收益法进行风险型决策。
最佳决策是alternative3 也就是每天进12斤
5. 实际工作和生活中面临大量的决策问题,请结合某一问题,阐述如何用运筹学方
法解决的?要求阐述所面临问题的背景、解决的思路。