静力弹塑性分析(Pushover分析)两种方法剖析
- 格式:docx
- 大小:4.09 MB
- 文档页数:20
浅谈结构非线性静力分析法之Pushover分析法摘要:结构抗震设计方法较多,静力非线性分析法是比较成熟的一种,我国已普遍采用,本人对Pushover分析法进行了详细的剖析。
关键字:抗震设计、静力非线性分析法、Pushover分析法Abstract: the seismic design method of structure is more, static nonlinear analysis method is a more mature, has been commonly used in our country, I for the Pushover method were analyzed in detail.Keywords: seismic design, non-linear static analysis method, Pushover analysis methodPushover 分析法在国外应用较早,上世纪80年代初期在一些重要的刊物上就有论文采用过这种方法。
进入90年代以后,国际抗震工程界提出了基于性能的抗震设计(PBSD)的新概念,这个概念的提出成为了工程抗震发展史上的一个重要的里程碑。
Pushover 分析法作为实现基于性能的抗震设计的重要方法,其研究逐渐深入,应用也逐渐得到推广。
该方法引入我国后,很快得到了大家的普遍重视与应用。
在我国《建筑抗震设计规范》的修订过程中,有些专家就提出了将Pushover 分析法引入规范的想法,只是最后在提法上明确没有采用这个词。
Pushover分析法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。
静力弹塑性分析方法Push-overPush-over从字面可以理解为推-覆,即对结构进行侧推。
为何进行侧推呢?对结构的侧推(pushover)目的是为了估计结构的抗震能力。
在解释通过侧推来评估结构抗震能力之前,先来看一下《抗震设计规范》中采用线弹性反应谱的方法来估计结构抗震能力有何不足?《抗震设计规范》中采用线弹性反应谱的方法,在一定场地条件下对线弹性结构进行反应估计,再进行结构设计。
而整个的设计过程中,对结构的假定都是线弹性的。
而结构在振动过程中会出现塑性状态,此状态可以减小地震作用并同时具有耗能的作用,因此,对结构的抗震能力评估需要考虑结构的塑性状态。
若仿照《抗震设计规范》中采用线弹性反应谱方法,来考虑结构的弹塑性状态,会遇到两个问题:一个是非线性结构难以转化为单自由度体系;二是线弹性反应谱不再适用,需要建立非线性结构反应谱。
而针对这两个问题,在Pushover分析中是分别通过建立能力谱和需求谱来解决的。
能力谱简单的说是通过单自由度体系力与位移关系来反映多自由度结构弹塑性特性的曲线。
更确切地说是通过单自由度体系受侧向集中水平力得到的力与位移关系,来描述多自由度结构受到侧向推力得到的顶层位移与基地剪力的关系,从而诠释了推覆的含义。
然后仅通过推覆得到的能力谱,是难以评估结构的抗震能力的。
原因在于能力谱虽然能够反映了结构本身的弹塑性特点,比如侧向刚度大小,屈服强度等。
然而能力谱不能反映出地震特性,因此需要建立需求谱。
需求谱如设计规范中的弹性反应谱一样,反映不同周期结构在某类场地作用下的最大反应。
然而弹性反应谱难以描述结构弹塑性特性,主要在于弹性反应谱没有考虑弹塑性结构屈服时的屈服点,以及屈服后刚度。
需求谱考虑了结构的弹塑性特点,将弹性反应谱通过折减及变换,得到弹性需求谱。
为了考虑地震场地特性,将能力谱与需求谱画于同一图中,相交的点为性能点,如下图:性能点反映了具有特定周期、特定屈服强度与延性等特点的弹塑性结构在某种场地条件下的抗震能力。
浅谈静力弹塑性pushover分析方法摘要:Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法,已被引入我国新的建筑结构抗震设计规范。
侧向力分布模式的选取是pushover分析中的一个关键问题,它的选取直接影响pushover分析的结果。
本文主要综述了pushover分析方法的原理、应用和实施过程,pushover分析中侧向力分布模式及其影响,对结构设计提供借鉴。
关键词:pushover;侧向力分析分布模式1、引言结构抗震非线性时程分析方法能真实地反映结构在地震作用下的破坏机制及构件的塑性破坏过程,但其计算过程复杂,在实际工程的应用中还较难推广。
Pushover分析乃是一种结构非线性地震反应的简化方法,易为广大工程设计人员所接受。
2、pushover分析方法的原理、应用和实施过程2.1pushover分析方法的原理和应用Pushover方法从本质上说是一种静力分析方法,即对结构进行静力单调加载下的弹塑性分析。
具体地说,在结构分析模型上施加按某种方式模拟地震惯性力的侧向力,并逐级单调加大,构件如有开裂或屈服,修改其刚度,直到结构到达预定的状态(成为机构、位移超限或达到目标位移)。
Pushover方法可用于建筑物的抗震鉴定和加固,及对新建结构的抗震设计和性能的评估,也可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息;在结构可靠性设计中,通过pushover分析来确立结构极限承载力的初始设计值;利用pushover分析法来检测结构的抗震性能并由此相应调整结构设计,使之满足抗震要求;对结构进行pushover分析,可得层间剪力—层间位移曲线,即该结构的剪切层的层间滞回曲线的骨架线,将其折线化为合理的恢复力模型,即可进行层模型的弹塑性时程分析。
2.2pushover分析方法的实施步骤(1)准备结构数据:包括建立结构模型,构件的物理常数和恢复力模型等;(2)计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服);(3)施加一定量的水平荷载。
静力弹塑性分析(Pushover分析)■简介Pushover分析是考虑构件的材料非线性特点,分析构件进入弹塑性状态直至到达极限状态时结构响应的方法。
Pushover分析是最近在地震研究及耐震设计中经常采用的基于性能的耐震设计(Performance-BasedSeismicDesign,PBSD)方法中最具代表性的分析方法。
所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性能(targetperformance),并使结构设计能满足该目标性能的方法。
Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下是否能满足预先设定的目标性能。
计算等效地震静力荷载一般采用如图2.24所示的方法。
该方法是通过反应修正系数(R)将设计荷载降低并使结构能承受该荷载的方法。
在这里使用反应修正系数的原因是为了考虑结构进入弹塑性阶段时吸收地震能量的能力,即考虑结构具有的延性使结构超过弹性极限后还可以承受较大的塑性变形,所以设计时的地震作用就可以比对应的弹性结构折减很多,设计将会更经济。
目前我国的抗震规范中的反应谱分析方法中的小震影响系数曲线就是反应了这种设计思想。
这样的设计方法可以说是基于荷载的设计(force-baseddesign)方法。
一般来说结构刚度越大采用的修正系数R越大,一般在1~10之间。
但是这种基于荷载与抗力的比较进行的设计无法预测结构实际的地震响应,也无法从各构件的抗力推测出整体结构的耐震能力,设计人员在设计完成后对结构的耐震性能的把握也是模糊的。
基于性能的耐震设计中可由开发商或设计人员预先设定目标性能,即在预想的地震作用下事先设定结构的破坏程度或者耗能能力,并使结构设计满足该性能目标。
结构的耗能能力与结构的变形能力相关,所以要预测到结构的变形发展情况。
所以基于性能的耐震设计经常通过评价结构的变形来实现,所以也可称为基于位移的设计(displacement-baseddesign)。
r a e hS e s a B V5%SmoothElasticDesignSpectaElasticForcesReducedforDesignbyRRV designCapacity (elastic)InelasticResponseDDDyieldmaxDisplacement图2.24基于荷载的设计方法中地震作用的计算Pushover分析是评价结构的变形性能的方法之一,分析后会得到如图2.25所示的荷载-位移能力谱曲线。
另外,根据结构耗能情况会得到弹塑性需求谱曲线。
两个曲线的交点就是针对该地震作用结构所能发挥的最大内力以及最大位移点。
当该交点在目标性能范围内,则表示该结构设计满足了目标性能要求。
noitare l e c c A l a r t c e p S Sa5%SmoothElasticDesignSpectaPerformancePointDemandSpectrumCapacitySpectrumD design SdSpectralDisplacement图2.25使用基于位移的设计方法评价结构的耐震性能■分析方法结构设计必须满足规范的一系列规定和要求,在完成满足规范要求的设计之后,结构的目标性能具体控制在哪个水准上,则由建筑物的使用者和设计者决定。
为了评价结构性能需要进行结构分析,基于性能的耐震设计方法一般有下列四种。
线性静力分析方法(LinearStaticProcedure,LSP)线性动力分析方法(LinearDynamicProcedure,LDP)非线性静力分析方法(NonlinearStaticProcedure,NSP)非线性动力分析方法(NonlinearDynamicProcedure,NDP)MIDAS/Gen中提供了上述四种分析方法,其中Pushover分析属于非线性静力分析方法。
Pushover分析又称为静力弹塑性分析,是评价结构进入弹塑性状态后的结构极限状态和稳定状态的有效而简捷的方法。
该方法主要适用于低频结构影响较大的结构中(即低振型为主控作用)。
Pushover分析中可以考虑材料和几何非线性,材料非线性特性是通过定义构件截面的荷载-位移的非线性特性实现的。
大底盘高振型作用较强Pushover分析是通过逐渐加大预先设定的荷载直到最大性能控制点位置,获得荷载-位移能力曲线(capacitycurve)。
多自由度的荷载-位移关系转换为使用单自由度体系的加速度-位移方式表现的能力谱(capacityspectrum),地震作用的响应谱转换为用ADRS(Acceleration-DisplacementResponseSpectrum)方式表现的需求谱(demandspectrum)。
通过比较两个谱曲线,评价结构在弹塑性状态下的最大需求内力和变形能力,通过与目标性能的比较,决定结构的性能水平(performancelevel)。
在MIDAS/Gen中使用ATC-40(1996)和FEMA-273(1997)中提供的能力谱法(CapacitySpectrumMethod,CSM)评价结构的耐震性能。
能力谱法(CSM)的原理如图2.26所示。
CapacityCurveCapacitySpectrumroofFVbase SaPushoverAnalysistransformV baseroofMDOFSystemSdSDOFSystem(a)计算结构物的能力曲线(capacitycurve)和能力谱(capacityspectrum)S aSaTn,1 T2SdSna42Sa5%ElasticSpectrumPerformancePointDemandSpe ctrumtransformn,2TA max C apacitySpectrumTnResponseSpectrumDemandSpectrum S dDSmaxd (b)计算需求谱(demandspectrum)(c)评价性能点(performancepoint)图2.26能力谱法(CapacitySpectrumMethod,CSM)的原理Pushover分析是为了评价结构所拥有的耐震性能,其前提条件是已经完成了初步的分析和设计,即对于混凝土结构必须已经完成了配筋设计。
Pushover分析的优点如下:可以评价结构进入弹塑性阶段的响应以及所拥有的抵抗能力可以掌握结构的耗能能力和位移需求可以掌握各构件屈服的顺序对确定需要维修和加固的构件提供计算依据■分析中适用的单元类型MIDAS/Gen中Pushover分析中适用的单元类型有二维梁单元(2-dimensional beamelement)、三维梁-柱单元(3-dimensionalbeam-columnelement)、三维墙单元(3-dimensionalwallelement)、桁架单元(trusselement)。
各单元的特性如下。
二维梁单元和三维梁-柱单元梁单元和梁-柱单元采用的模型如图2.27所示,其位移和荷载如下,其中适用于梁单元时无轴力项。
T{P}{F,M,F,M,F,M,F,M,F,M,F,M}(1.a)x1x1y1y1z1z1x2x2y2y2z2z2T{u}{u,,v,,,,u,,v,,,}(1.b)x1x1y1y1z1z1x2x2y2y2z2z2图 2.27二维梁单元和三维梁-柱单元模型三维墙单元模型如图2.28所示墙单元模型由中间的线单元,上下两端的刚性杆构成。
中间的线单元与三维梁-柱单元相同,刚性杆在xz平面内做刚体运动。
图2.28墙单元的节点力和节点位移桁架单元模型如图2.29所示,桁架单元采用轴向(x方向)的弹簧模型。
图2.29桁架单元的节点力■非线性弹簧的特性在各单元模型中表现的弹簧并非表示弹簧的存在,而是表现分析的方法,即在弹簧位置将发生塑性变形。
弹簧具有的特性如下。
梁单元模型的弹簧特性用荷载-位移、轴力-单向弯矩-位移角、剪力-剪切变形、扭矩-扭转角等关系来表现柱以及墙体单元模型的弹簧特性用荷载-位移轴力-双向弯矩-位移角、剪力-剪切变形、扭矩-扭转角等关系来表现桁架单元模型的弹簧特性用荷载-位移关系来表现单元的变形可用下面的各式来表现。
弯曲变形节点上构件的变形角可用下列三项之和来表现。
eps(2)在此,e、s、p分别为弹性弯曲变形角、塑性弯曲变形角、因剪切产生的弯曲变形角。
另外,如图2.30所示弯矩引起的塑性变形将假设集中在L区段内。
图形中阴影部分表示发生塑性变形的区段。
因此包含塑性变形和剪切变形的柔度矩阵(flexibilitymatrix)如下。
f 11LL1111122333EI3EIEIEIEIGALooo 12(3.a)ff 12212LL3211111(3.b)6EI6EIEIEIEIGALo1o2of 22LL11111 22333EI3EIEIEIEIGALooo 12(3.c)图2.30弯曲刚度的分布假定构件的荷载-位移关系可用柔度矩阵表现如下。
[f]{M}(4)在此,eps[f][f][f][f](5)如图2.31所示,式(5)中各项分别表示弹性弯曲变形角、塑性变形角、因剪切引起的弯曲变形角。
图2.31弯矩-变形角关系轴向变形、扭转变形、剪切变形弹簧在MIDAS/Gen的Pushover分析中假定轴力、扭矩、剪力在构件内不变,塑性铰发生在构件中央。
其荷载-位移关系可参照弯曲变形中的各式。
双向弯曲弹簧双向受弯且受轴力作用时,先计算各向的屈服弯矩后使用下面关系式建立双向受弯相关公式。
MMnxny(6)1.0MMnoxnoy上式适用与钢筋混凝土和钢材等所有构件。
■塑性铰(plastichinge)特性随着荷载的增加,结构构件将产生塑性铰,结构的刚度会发生变化,横向位移也将逐渐加大。
MIDAS/Gen中采用的塑性铰特性如下。
铰特性:多折线类型(Multi-LinearType)-采用切向刚度矩阵(tangentstiffnessmatrix)-荷载控制(loadcontrol)和位移控制(displacementcontrol)均可-可考虑P-Delta效果铰特性:FEMA类型(FEMAType)时-割线刚度矩阵(secantstiffnessmatrix)-采用位移控制(displacementcontrol)-可考虑P-Delta效果和大位移(largedeformation)效果因为结构承受的荷载大小为已知条件,所以一般采用荷载控制方法。
荷载控制方法就是将荷载从零开始逐渐加载到极限荷载的方法。
位移控制是在基于性能的耐震设计中采用比较多的方法。
虽然不知道加载的荷载大小,但是可以通过预先设定满足目标性能的位移进行分析。