大学物理(上)练习题1
- 格式:doc
- 大小:1.01 MB
- 文档页数:12
大学物理(I )试题汇总《大学物理》(上)统考试题一、填空题(52分)1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________;(2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2214πt +=θ (SI) 则其切向加速度为t a =__________________________.3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________.4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T =_____________________;(2) 摆锤的速率v =_____________________.5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v=_______.6、一电子以0.99 c 的速率运动(电子静止质量为9.11×10-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________.7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比热c = 501.6 J ·kg -1·K -1)8、某理想气体在温度为T = 273 K 时,压强为p =1.0×10-2 atm ,密度ρ = 1.24×10-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.013×105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________.11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波长变成了0.37 m ,它在该介质中传播速度为______________.12、折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_________________________.13、平行单色光垂直入射在缝宽为a =0.15 mm 的单缝上.缝后有焦距为f =400mm 的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8 mm ,则入射光的波长为λ=_______________.14、一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.15、用相互平行的一束自然光和一束线偏振光构成的混合光垂直照射在一偏振片上,以光的传播方向为轴旋转偏振片时,发现透射光强的最大值为最小值的5倍,则入射光中,自然光强I 0与线偏振光强I 之比为__________.16、假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.二、计算题(38分)17、空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)18、3 mol 温度为T 0 =273 K 的理想气体,先经等温过程体积膨胀到原来的5倍,然后等容加热,使其末态的压强刚好等于初始压强,整个过程传给气体的热量为Q = 8×104 J .试画出此过程的p -V 图,并求这种气体的比热容比γ = C p / C V 值. (普适气体常量R =8.31J·mol -1·K -1)19、一质量为0.20 kg 的质点作简谐振动,其振动方程为 )215cos(6.0π-=t x (SI).求:(1) 质点的初速度; (2) 质点在正向最大位移一半处所受的力.17、20、一平面简谐波沿Ox 轴的负方向传播,波长为λ ,P 处质点的振动规律如图所示.(1) 求P 处质点的振动方程; (2) 求此波的波动表达式;(3) 若图中 λ21=d ,求坐标原点O 处质点的振动方程.21、在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.22、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?三、问答题(5分)23、两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球.它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?《大学物理》(下)物探统考试题一、填空题1,如图所示,在边长为a的正方形平面的中垂线上,距中心0点21a处,有一电量为q的正点电荷,则通过该平面的电场强度通量为____________.2_______________________。
第一章 力学的基本概念(一)第1单元序号 学号 姓名 专业、班级一 选择题[ A ]1. 一小球沿斜面向上运动,其运动方程为(SI),则小球运动到最高点的时285t t s -+=刻是: (A) s 4=t ;(B) s 2=t ; (C) s 8=t ;(D) s 5=t 。
[ D ]2. 一运动质点在某瞬时位于矢径 r (x,y)的端点处,其速度大小为(A)dtdr (B) dt d r(C)dt d r (D)22)()(dt dy dt dx +[ D ]3. 某质点的运动方程x=3t-53t +6 (SI),则该质点作: (A ) 匀加速直线运动,加速度沿x 轴正方向; (B ) 匀加速直线运动,加速度沿x 轴负方向;(C ) 变加速直线运动,加速度沿x 轴正方向;(D ) 变加速直线运动,加速度沿x 轴负方向。
[ C ]4. 某物体的运动规律为dtdv =-k 2v t,式中k 为常数,当t=0时,初速度为0v ,则速度v 与时间的函数关系为:(A ) v=21 k 2t +0v ; (B ) v=-21k 2t +0v(C ) v 1=21k 2t +01v(D ) v1=-21k 2t +01v[ D ]5. 一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92t ,当切向加速度与合加速度的夹角为︒45时,角位移θ等于:(A) 9 rad, (B )12 rad, (C)18 rad, (D) rad[ D ]6. 质点作曲线运动,r 表示位置矢量,s 表示路径,t a 表示切向加速度,下列表达式中: (1)dt dv =a; (2)dt dr =v; (3)dtds=v; (4)dt d v =t a ,则,(A ) 只有(1)、(4)是对的;(B ) 只有(2)、(4)是对的; (C ) 只有(2)是对的; (D ) 只有(3)是对的。
[ B ]7. 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a,b 为常量)则该质点作:(A) 匀速直线运动 (B) 变速直线运动 (C) 抛物线运动 (D) 一般曲线运动二 填空题1. 设质点在平面上的运动方程为r =Rcos t ωi +Rsin tωj ,R 、ω为常数,则质点运动的速度v =j t con R i t R ϖϖωωωω+-sin ,轨迹为 半径为R 的圆 。
《大学物理上》模拟复习题一一.选择题1.质量为m 的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t ,打击前铁锤速率为v ,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A) mv/∆t .(B) mv/∆ t -mg . (C) mv/∆ t +mg . (D) 2mv/∆t .2. 一圆锥摆,如图1.2,摆球在水平面内作圆周运动.则(A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.(B) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒,摆球对悬点的角动量、摆球与地球组成系统的机械能守恒.(D) 摆球的动量、摆球对悬点的角动量守恒, 摆球与地球组成系统的机械能不守恒.3. 一物体作简谐振动,振动方程为x =A cos(ωt +π/4 ) 在t=T/4(T 为周期)时刻,物体的加速度为(A) 222ωA -. (B)222ωA .(C) 232ωA -.(D)232ωA .4. 以下说法错误的是(A) 波速与质点振动的速度是一回事,至少它们之间相互有联系;(B) 波速只与介质有关,介质一定,波速一定,不随频率波长而变,介质确定后,波速为常数;(C) 质元的振动速度随时间作周期变化;(D) 虽有关系式v = λν,但不能说频率增大,波速增大. 5. 两根轻弹簧和一质量为m 的物体组成一振动系统,弹簧的倔强系数为k 1和k 2,并联后与物体相接.则此系统的固有频率为ν等于(A) π2//)(21m k k +. (B) π2/)/(2121m k k k k +.(C) π2)/(21k k m +. (D)π2)/()(2121m k k k k +.6. 下面各种情况中可能存在的是(A) 由pV =(M/M mol )RT 知,在等温条件下,逐渐增大压强,当p →∞时,V →0; (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;图1.1(C) 由E =(M/M mol )iRT /2知,当T →0时,E →0;(D) 由绝热方程式V γ-1T =恒量知,当V →0时,T →∞、E →∞.7. AB 两容器分别装有两种不同的理想气体,A 的容积是B 的两倍,A 容器内分子质量是B 容器分子质量的1/2.两容器内气体的压强温度相同,(如用n 、ρ、M 分别表示气体的分子数密度、气体质量密度、气体质量)则(A) n A =2n B , ρA =ρB , M A = 2M B . (B) n A = n B /2 , ρA =ρB /4 , M A = M B /2. (C) n A = n B , ρA =2ρB , M A = 4M B . (D) n A = n B , ρA =ρB /2 , M A = M B .8. 如图1.3所示,折射率为n 2 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知 n 1 <n 2 >n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是(A) 2n 2e .(B) 2n 2e -λ/(2 n 2 ). (C) 2n 2e -λ. (D) 2n 2e -λ/2.9. 如图1.4所示,s 1、s 2是两个相干光源,它们到P 点的距离分别为r 1和 r 2,路径s 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径s 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r 2 + n 2 t 2)-(r 1 + n 1 t 1).(B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1].(C) (r 2 -n 2 t 2)-(r 1 -n 1 t 1).(D) n 2 t 2-n 1 t 1.10. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a = b . (B) a = 2b . (C) a = 3b . (D) b = 2a . 二.填空题1.如图2.1所示,一质点在几个力的作用下,沿半径为R 的圆周运动,其中一个力是恒力F 0,方向始终沿x 轴正向,即F 0= F 0i ,当质点从A 点沿逆时针方向走过3/4圆周到达B 点时,F 0所作的功为W .2. 如图2.2所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .图1.3ss图1.4 图2.2图2.13. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为1.4×107m/s,则钍核的速度大小为 ,方向为 .4. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = .5. 如图2.3所示,波长为λ 的平行单色光斜入射到距离为d 的双缝上,入射角为θ ,在图中的屏中央O 处(O s 1=O s 2) ,两束相干光的位相差为 .三.计算题1.质量为M =0.03kg, 长为l =0.2m 的均匀细棒, 在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动. 细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02kg. 开始时,两小物体分别被固定在棒中心的两侧且距中心各为r =0.05m,此系统以n 1=15rev/min 的转速转动. 若将小物体松开后,它们在滑动过程中受到的阻力正比于速度, 已知棒对中心的转动惯量为M l 2/12. 求(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端时, 棒的角速度是多少?2. 一弦线,左端系于音叉的一臂的A 点上,右端固定在B 点,并用7.20N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图3.1).这样,在弦线上产生了入射波和反射波,并形成了驻波,弦的线密度η=2.0g/m, 弦线上的质点离开其平衡位置的最大位移为4cm,在t = 0时,O 点处的质点经过其平衡位置向下运动.O 、B 之间的距离为2.1m .如以O 为坐标原点,向右为x 轴正方向,试写出: (1) 入射波和反射波的表达式;(2) 驻波的表达式.3. 一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞的面积S =0.05m 2, 活塞与缸壁之间不漏气,摩擦忽略不计, 活塞左侧通大气,大气压强p 0=1.0×105pa,倔强系数k =5×104N/m 的一根弹簧的两端分别固定于活塞和一固定板上,如图 3.2,开始时气缸内气体处于压强、体积分别为p 1=p 0=1.0×105pa, V 1=0.015m 3的初态,今缓慢的加热气缸,缸内气体缓慢地膨胀到V 2=0.02m 3.求:在此过程中气体从外界吸收的热量.4. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈尖的劈尖角θ .(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,图3.1图3.2 图2.3还是暗条纹?《大学物理上》模拟复习题二一.选择题1. 圆盘绕O 轴转动,如图1.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将(A) 增大. (B) 不变. (C) 减小.(D) 无法判断.2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3. 如图1.2,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量、机械能都守恒.4. 以下说法不正确的是(A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;(B) 从动力学角度看振动是单个质点受到弹性回复力的作用而产生的,波是各质元受到邻近质元的作用而产生的;(C) 从能量角度看,振动是单个质点的总能量不变,只是动能与势能的相互转化;波是能量的传递,各质元的总能量随时间作周期变化,而且动能与势能的变化同步;(D) 从总体上看,振动质点的集合是波动.5. 一辆汽车以25ms -1的速度远离一静止的正在呜笛的机车,机车汽笛的频率为600Hz ,汽车中的乘客听到机车呜笛声音的频率是(已知空气中的声速为330 ms -1)(A) 555Hz . (B) 646 Hz . (C) 558 Hz . (D) 649 Hz .图1.2图1.16. 由热力学第一定律可以判断一微小过程中d Q 、d E 、d A 的正负,下面判断中错误的是(A) 等容升压、等温膨胀 、等压膨胀中d Q >0; (B) 等容升压、等压膨胀中d E >0; (C) 等压膨胀时d Q 、d E 、d A 同为正; (D) 绝热膨胀时d E >0.7. 摩尔数相同的两种理想气体,一种是氦气,一种是氢气,都从相同的初态开始经等压膨胀为原来体积的2倍,则两种气体 (A) 对外做功相同,吸收的热量不同. (B) 对外做功不同,吸收的热量相同.(C) 对外做功和吸收的热量都不同.(D) 对外做功和吸收的热量都相同.8. 如图1.3所示的是两个不同温度的等温过程,则 (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. (B) Ⅰ过程的温度高,Ⅱ过程的吸热多. (C) Ⅱ过程的温度高,Ⅰ过程的吸热多. (D) Ⅱ过程的温度高,Ⅱ过程的吸热多.9. 如图1.4所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的位相差为(A) 2 π n 2 e / (n 1 λ1 ).(B) 4 π n 1 e / (n 2 λ1 ) +π.(C) 4 π n 2 e / (n 1 λ1 ) +π.(D) 4π n 2 e / (n 1 λ1 ).10. 在如图1.5所示的单缝夫琅和费衍射实验装置中,s 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝s 沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样(A) 向上平移. (B) 向下平移. (C) 不动.(D) 条纹间距变大. 二.填空题1. 如图2.1所示,波源s 1和s 2发出的波在P 点相遇,P 点距波源s 1和s 2的距离分别为3λ和10λ/3,λ为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波源振动方向 (填相同或不同),振动频率 ,(填相同或不同),波源s 2 的位相比s 1 的位相领先 .2. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能的 ; 当这物块在平衡位置时,弹簧的长度比原长长∆ l ,这一振动系统的周期为 .图1.3图1.4图1.5 s 1s 2P 图2.13.以一定初速度斜向上抛出一个物体, 如果忽略空气阻力, 当该物体的速度v 与水平面的夹角为θ 时,它的切向加速度a t 的大小为a t = , 法向加速度a n 的大小为a n = . .4.对于处在平衡态下温度为T 的理想气体, (1/2)kT (k 为玻兹曼常量)的物理意义是 .5. 光的干涉和衍射现象反映了光的 性质, 光的偏振现象说明光波是 波. 三.计算题1.一质量为m 的陨石从距地面高h 处由静止开始落向地面,设地球质量为M ,半径为R ,忽略空气阻力,求:(1) 陨石下落过程中,万有引力的功是多少? (2) 陨石落地的速度多大?2. 一定滑轮的半径为R , 转动惯量为I ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如图3.1所示,设弹簧的倔强系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力,现将物体m 从平衡位置下拉一微小距离后放手,证明物体作简谐振动,并求出其角频率.3. 一定量的理想气体经历如图3.2所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.己知:T C = 300K, T B = 400K,试求此循环的效率.4. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为λ=589 nm 的钠黄光的光谱线.(1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少?(2) 当光线以30︒的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m 是多少?图3.1 图3.2《大学物理上》模拟复习题一答案一.选择题1. (A)mv/∆t .2. (A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.3.(C) 232ωA -.4.(D) 虽有关系式v = λν,但不能说频率增大,波速增大.5.(C).6. (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;7. (D) n A = n B , ρA =ρB /2 , M A = M B .8. (D) 2n 2e -λ/2.9. (B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1]. 10. (A) a = b . 二.填空题1. -F 0R .2. cot θ, mg/sin θ3. 2.4×105m/s 与α粒子运动方向相反4. 1.255. 2πd sin θ /λ.三.计算题 1.(1)角动量守恒(M l 2/12+2mr 2)ω1=(M l 2/12+2ml 2)ω2ω2= (M l 2/12+2mr 2)ω1/(M l 2/12+2ml 2)=0.628rad/s(2) 小物体飞离棒端时小物体对棒无冲力,故棒的角速度仍为 ω2=0.628rad/s2.(1)波速u =(张力/线密度)1/2=(T/η)1/2=60m/s 波长 λ=u/ν=1.2m 因形成驻波,故行波振幅为A =4⨯10-2÷2=2⨯10-2m由旋矢法(如图)可知O 点振动的初位相为π/2,则入射波在原点O 引起的振动为y 0=2⨯10-2cos(100πt+π/2) (SI)所以入射波为y 1=2⨯10-2cos[100π (t -x /60)+π/2 ]=2⨯10-2cos(100πt-10πx /6+π/2) (SI), 反射波为y 2=2⨯10-2cos[100πt -10π(2l -x )/6+π/2+π]=2⨯10-2cos(100πt+10πx/6+π/2) (SI)驻波方程为y=y1+y2=4⨯10-2cos(10πx/6)cos(100πt+π/2) (SI)3. 从V1变到V2,弹簧压缩x=(V2-V1)/S,则p2=p0+kx/S= p0+k(V2-V1)/S2∆E=νC V(T2-T1)=(i/2)(p2V2-p1V1)=(i/2){[p0+k(V2-V1)/S2]V2-p0V1}=(i/2)[p0(V2-V1)+k V2(V2-V1)/S2]A=p0Sx+(1/2)kx2=p0(V2-V1)+(1/2) k [(V2-V1)/S]2,Q=∆E+A=p0(V2-V1)(i+2)/2+k(V2-V1)[(i+1)V2-V1]/(2S2)=7000J4. 因是空气薄膜,有n1>n2<n3,且n2=1,得δ=2e+λ/2,暗纹应δ=2e+λ/2=(2k+1)λ/2,所以2e=kλe=kλ/2因第一条暗纹对应k=0,故第4条暗纹对应k=3,所以e=3λ/2空气劈尖角θ=e/l=3λ/(2l)=4.8⨯10-5rad(2) 因δ/λ'=(2e+λ'/2)/λ'=3λ/λ'+1/2=3故A处为第三级明纹,棱边依然为暗纹.(3) 从棱边到A处有三条明纹,三条暗纹,共三条完整条纹.《大学物理上》模拟复习题二答案一.选择题1. (B) 不变.2. (B) 变速直线运动.3. (C) 动量不守恒,机械能守恒.4. (A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;5. (B) 646 Hz .6. (D) 绝热膨胀时d E >0.7. (A) 对外做功相同,吸收的热量不同. 8. (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. 9. (C) 4 π n 2 e / (n 1 λ1 ) +π. 10..(C) 不动. 二.填空题1.相同 相同,2π/3.2. 3/4 ; 2π(∆l /g )1/2.3. g sin θ, g cos θ .4.温度为T 时每个气体分子每个自由度平均分得的能量.5.波动 横 三.计算题 1. (1) A =()r GMm RhR d 2⎰+-=GMm [1/R -1/(R+h )]= GMm h /[R (R+h )](2)由动能定理 A=E k -E k0 有GMm h /[R (R+h )]=mv 2/2 v= {2GM h /[R (R+h )]}1/22. 平衡时 mg=kx 0振动时,设某时刻物体相对平衡位置的位移为x ,对物体和定滑轮分别列方程,有 mg-T=ma TR-k (x+x 0)R=I β a=R β x=R θ 于是得mgR -k (x+x 0)R=(mR 2+I )β -kxR=- kR 2θ= (mR 2+I )β = (mR 2+I )d 2θ /d t 2d 2θ /d t 2+[kR 2/(I+mR 2)]θ=0故物体作揩振动,其角频率为ω=[kR 2/(I+mR 2)]1/23.吸热过程AB为等压过程Q1=νC p(T B-T A)放热过程CD为等压过程Q2=νC p(T C-T D)η=1-Q2/Q1=1- (T C-T D)/(T B-T A)=1- (T C/T B)[(1-T D/T C)/(1-T A/T B) 而p Aγ-1T A-γ= p Dγ-1T D-γp Bγ-1T B-γ= p Cγ-1T C-γp A=p B p C=p D所以T A/T B=T D/T C故η=1-T C/T B=25%4. . (1) (a+b) sinθ=k maxλ<(a+b)k max<(a+b)/λ=3.39所以最高级数k max=3(1)(a+b) (sin30°+sinθ')=k'maxλk'max<(a+b) (sin30°+1)/λ=5.09所以k'max=5。
大学基础教育《大学物理(上册)》真题练习试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
2、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
4、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
5、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
6、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()7、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
一、选择题(每题3分,共10题)1.一质点在平面上作一般曲线运动,其瞬时速度为υ,瞬时速率υ为,某一段时间内的平均速度为υ ,平均速率为υ,它们之间的关系必定有:( D )A υ=υ,υ= υ B υ≠υ, υ=υC υ ≠υ,υ ≠υD υ =υ,υ ≠υ 3.一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. ( A ) A 动量增量大小为0v m,方向竖直向下. B 动量增量大小为v m ,方向竖直向上. C 动量增量大小为0v m 2 ,方向竖直向下. D 动量增量大小为v m 2 ,方向竖直向上.4.地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的轨道角动量为( A )。
A GMR mB R GMmC R GMmD R GMm25.一刚体以每分钟60转绕Z 轴做匀速转动(ω沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r 543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( C )A υ =94.2i +125.6j +157.0k ;B υ =34.4k ;C υ=-25.1i +18.8j ; D υ=-25.1i -18.8j ;6.刚体角动量守恒的充分而必要的条件是:( B )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变 7.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( B )。
A 1sB 32sC 34s D 2s8.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( D )。
《大学物理》练习题 No .1 电场强度班级 ___________ 学号 ___________ 姓名 ___________ 成绩 ________ 说明:字母为黑体者表示矢量 选择题1.关于电场强度定义式E = F/q0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q0的大小成反比; (B) 对场中某点,试探电荷受力F 与q0的比值不因q0而变; (C) 试探电荷受力F 的方向就是场强E 的方向;(D) 若场中某点不放试探电荷q0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a, 0)处放置一点电荷+q ,在坐标(-a,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x, 0).当x >>a 时,该点场强的大小为:[ D ](A) x q 04πε. (B)204x qπε.(C)302x qa πε (D)30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化; f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E=23220)(21a y qy+πε ,场强最大值的位置在y=a22±.3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。
⼤学物理学(上)练习题第1单元质点运动学⼀. 选择题1. 某质点作直线运动的运动学⽅程为x =3t -5t 3 + 6 (SI),则该质点作[]。
(A) 匀加速直线运动,加速度沿x 轴正⽅向; (B)匀加速直线运动,加速度沿x 轴负⽅向; (C) 变加速直线运动,加速度沿x 轴正⽅向;(D) 变加速直线运动,加速度沿x 轴负⽅向。
2. 质点作曲线运动,r 表⽰位置⽮量,v 表⽰速度,a表⽰加速度,S 表⽰路程,t a 表⽰切向加速度,下列表达式中[]。
(1) a t = d /d v , (2) v =t /r d d , (3) v =t S d /d , (4) t a t =d /d v。
(A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的; (D) 只有(3)是对的。
3. ⼀质点在平⾯上运动,已知质点位置⽮量的表⽰式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[]。
(A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)⼀般曲线运动。
4. ⼀⼩球沿斜⾯向上运动,其运动⽅程为s=5+4t -t 2 (SI), 则⼩球运动到最⾼点的时刻是[]。
(A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。
5. ⼀质点在xy 平⾯内运动,其位置⽮量为j t i t r ?)210(?42-+=(SI ),则该质点的位置⽮量与速度⽮量恰好垂直的时刻为[]。
(A) s t 2=;(B )s t 5=;(C )s t 4=;(D )s t 3=。
6. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为⼤于零的常量。
当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是[]。
(A) 0221v v +=kt ; (B) 0221v v +-=kt ; (C) 02121v v +=kt ; (D) 02121v v +-=kt 。
大学物理练习一(力学部分)一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) -5 m .(C) 0. (D)-2 m .(E) 2m.[ ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 一般曲线运动. (B) 变速直线运动.(C) 抛物线运动. (D) 匀速直线运动. [ ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )-20 m/s 、-4 m/s 2; (B );20 m/s 、4 m/s 2(C )-12 m/s 、-4 m/s 2; (D )12m/s 、4m/s 2;5. 下列哪一种说法是正确的 ( )(A )作直线运动的物体,加速度越来越小,速度也越来越小(B )运动物体加速度越大,速度越快(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x (B) t r d d(C) t r d d (D) t r d d [ ] -127.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( )(A) 恒为零.(B) 不为零,但保持不变.(C) 开始随F 增大,达到某一最大值后,就保持不变.(D) 随F 成正比地增大8、 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 02121v v +-=kt , (C) 02121v v +=kt , (D) 0221v v +-=kt [ ] 9、 质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) -10 N·s . (B) -9 N·s .(C)10 N·s . (D) 9 N·s. [ ]10、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(B).总动量守恒(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]11、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) –2mv . (B) 0.(C) 2mv . (D) mv . [ ]12、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 外力和非保守内力都不作功.(B) 合外力不作功.(C) 合外力为0.(D)外力和保守内力都不作功.[]13、下列叙述中正确的是(A) 物体的动能变化,动量却不一定变化.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D) 物体的动量不变,动能也不变.[]14.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[]15.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹动能的减少等于木块动能的增加.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹、木块组成的系统水平方向的动量守恒.[]16、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m、M和地球组成的系统机械能守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m和M组成的系统动量守恒.(D) M对m的正压力恒不作功.[]17.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于刚体的质量,与质量的空间分布和轴的位置无关.[]18.刚体角动量守恒的充分而必要的条件是(A) 刚体所受的合外力和合外力矩均为零.(B) 刚体所受合外力矩为零.(C) 刚体不受外力矩的作用.(D) 刚体的转动惯量和角速度均保持不变. [ ]19. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在负方向的端点时,速度最大,加速度为零;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在运动正方向的端点时,速度和加速度都达到最大值。
大学物理上册习题Last revision on 21 December 2020练习一 位移 速度 加速度一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s, v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s .(B) m/s . (C) m/s .(D) m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图所示,则以下说法正确的是(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D)t 1时刻质点的加速度不等于零.图5. 质点沿XOY平面作曲线运动,其运动方程为:x=2t, y=19-2t2.则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和秒.(B)秒.(C)秒和3秒.(D)0秒和3秒.二. 填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cos t i+B sin t j, A, B ,为常量.则质点的加速度矢量为a= , 轨迹方程为.三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为(斜向上),山坡与水平面成角. (1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s; (2) 如果值与v0值一定,取何值时s最大,并求出最大值s max.练习二圆周运动相对运动一.选择题1. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.4. 质点沿半径R=1m的圆周运动,某时刻角速度=1rad/s,角加速度=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.5. 一抛射体的初速度为v0,抛射角为,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cos ,0 , v02 cos2/g.(B) g cos , g sin, 0.(C) g sin, 0, v02/g.(D) g , g , v 02sin 2 /g . 二.填空题1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 .2. 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是运动; 任意时刻a =0的运动是 运动; 任意时刻a t =0, a n =常量的运动是 运动.3. 已知质点的运动方程为r =2t 2i +cos t j (SI), 则其速度v = ;加速度a = ;当t =1秒时,其切向加速度a t = ;法向加速度a n = . 三.计算题1. 一轻杆CA 以角速度绕定点C 转动,而A 端与重物M 用细绳连接后跨过定滑轮B ,如图.试求重物M 的速度.(已知CB =l为常数,=t,在t 时刻∠CBA =,计算速度时作为已知数代入).2. 升降机以a =2g 的加速度从静止开始上升,机顶有一螺帽在t 0=时因松动而落下,设升降机高为h =,试求螺帽下落到底板所需时间t 及相对地面下落的距离s .练习三 牛顿运动定律一.选择题1. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动; (B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.图2. 如图(A)所示,m A >m B 时,算出m B向右的加速度为a ,今去掉m A 而代之以拉力T = m A g , 如图(B)所示,算出m B 的加速度a ,则(A) a > a . (B) a = a . (C) a < a . (D) 无法判断.3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图所示,斜面与地面之间无摩擦,则(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动.(D) 无法判断斜面是否运动.4. 如图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.5. 如图所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动.图图图 < < < < < 图am 图(C) 立即处于静止状态.(D) 在重力作用下向上作减速运动. 二.填空题1. 如图所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos mg = 0 (1)也有人在沿绳子拉力方向求合力写出T mg cos = 0 (2)显然两式互相矛盾,你认为哪式正确答 . 理由是 .2. 如图所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为,圆盘绕中心轴OO 转动,当其角速度 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为 m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为的匀速圆周运动,如图所示.则l 1, l 2两绳上的张力T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少环与绳之间的摩擦力多大a 2图图A图2. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式;(2) 子弹射入沙土的最大深度.练习四动量与角动量功一.选择题1. 以下说法正确的是(A) 大力的冲量一定比小力的冲量大;(B) 小力的冲量有可能比大力的冲量大;(C) 速度大的物体动量一定大;(D) 质量大的物体动量一定大.2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体(A) 动量守恒,合外力为零.(B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反.(C) 此过程动量守恒,合外力的冲量为零.(D) 此过程前后动量相等,重力的冲量为零.4. 质量为M 的船静止在平静的湖面上,一质量为m 的人在船上从船头走到船尾,相对于船的速度为v ..如设船的速度为V ,则用动量守恒定律列出的方程为(A) MV +mv = 0. (B) MV = m (v +V ). (C) MV = mv .(D) MV +m (v +V ) = 0. (E) mv +(M +m)V = 0. (F) mv =(M +m)V .5. 长为l 的轻绳,一端固定在光滑水平面上,另一端系一质量为m 的物体.开始时物体在A 点,绳子处于松弛状态,物体以速度v 0垂直于OA 运动,AO 长为h .当绳子被拉直后物体作半径为l 的圆周运动,如图所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A) 0, mv 0(h/l -1). (B) 0, 0. (C) mv 0(l -h ), 0. (D) mv 0(l -h , mv 0(h/l -1). 二.填空题1. 力 F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填、、), 两船的速度方向 .3. 一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m . 三.计算题A图m 图1. 一质点作半径为r ,半锥角为的圆锥摆运动,其质量为m ,速度为v 0如图所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五 功能原理 碰撞一.选择题1. 以下说法正确的是(A) 功是标量,能也是标量,不涉及方向问题; (B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒; (D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;图(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.4. 悬挂在天花板上的弹簧下端挂一重物M ,如图所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则(A) A 1 > A 2. (B) A 1 < A 2. (C) A 1 = A 2. (D) 无法确定.5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小; (D) 汽车的动能与它通过的路程成正比. 二.填空题1. 如图所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O 点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O 点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O 点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .<图置图图B2. 己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .3. 如图所示, 一半径R =的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos = mg sin (如图示C 点)答 . 三.计算题1. 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x , 力与伸长x 的关系为F = x + (SI)求:(1) 将弹簧从定长 x 1 = 拉伸到定长x 2 = 时,外力所需做的功.(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为的物体,然后将弹簧拉伸到一定长x 2= ,再将物体由静止释放,求当弹簧回到x 1 = 时,物体的速率.(3) 此弹簧的弹力是保守力吗为什么 2. 如图所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O .整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(=60)处乙球对轨道的压力.练习六 力矩 转动惯量 转动定律一.选择题1. 以下运动形态不是平动的是图(A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动. 2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.3. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为,求摩擦力矩M . 先取微元细杆d r ,其质量d m = d r = (m /l )d r .它受的摩擦力是d f = (d m )g =(mg /l )d r ,再进行以下的计算,(A) M =r d f =⎰lr r lmgd μ=mgl/2.(B) M =(d f )l/2=(⎰l r l mgd μ)l/2=mgl/2. (C) M =(d f )l/3=(⎰l r l mg0d μ)l/3=mgl/3.(D) M =(d f )l =(⎰l r lmg0d μ)l =mgl .4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图所示.宽圆环的质量面密度为 = m /S =m /[ (R 22-R 12)],细圆环的面积为d S =2r d r ,得出微元质量d m = d S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰.图(B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F) I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12) .(G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B .. (B) I A <I B ..(C) 无法确定哪个大. (D) I A =I B . 二.填空题1. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量 I 2 = . 如果M = m , r = R , 则I 1 I 2 .2. 如图所示,两个质量和半径都相同的均匀滑轮,轴处无摩2(填 ) .擦, 1和2分别表示图(1)、图(2)中滑轮的角加速度,则1 3. 如图所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度A :B = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度a t A : a t B = ;法向加速度a n A :a n B = .图(1)(2)图三.计算题1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60角时的角加速度和角速度.2. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为 ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题1. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 2. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大. 3. 质量相同的三个均匀刚体A 、B 、C(如图所示)以相同的角速度绕其对称轴旋转, 己知R A =R C <R B ,若从某时刻起,它们受到相同的阻力矩,则图图(A) A 先停转. (B) B 先停转. (C) C 先停转. (D) A 、C 同时停转.4. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变.(D) 转速可能不变,也可能改变.5. 一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边小于右边. (C) 右边小于左边. (D) 无法判断. 二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8 rad/s ,则主动轮在这段时间内转过了 圈.2. 在OXY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 =2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-图图2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .3. 一薄圆盘半径为R , 质量为m ,可绕AA 转动,如图所示,则此情况下盘的转动惯量I AA = .设该盘从静止开始,在恒力矩M 的作用下转动, t 秒时边缘B 点的切向加速度a t = ,法向加速度a n = . 三.计算题1. 如图所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力2. 飞轮为质量m = 60kg , 半径r = 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图所示, 闸瓦与飞轮的摩擦系数 = , 飞轮的转动惯量可按圆盘计算.(1) 设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转. (2) 欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八 转动中的功和能 对定轴的角动量一.选择题1. 在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能, 以下说法正确的是(A) m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;图图(B) m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒;(C) 只有m 1、m 2组成系统对过O 点轴的角动量守恒; (D) 只有m 1、m 2和地组成系统的机械能守恒;(E) m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒. 2. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小. (B) 自转周期变小,动能增大. (C) 自转周期变大,动能增大. (D) 自转周期变大,动能减小. (E) 自转周期不变,动能减小. 3. 以下说法正确的是:(A) 力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B) 力矩的功与力的功在量纲上不同, 力矩做功使转动动能增大, 力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C) 转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同; (D) 转动动能和平动动能, 力矩的功与力的功在量纲上完全相同. 4. 如图所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足图(A) 1一定大于2.(B) 1一定等于2.(C)1一定小于2.(D) 都不一定.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒.(D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒.二.填空题1. 一辆能进行遥控的电动小汽车(质量m=可在一绕光滑竖直轴转动的水平平台上(平台半径为R=1m,质量M=2kg)作半径为r=的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v=5m/s的匀速圆周运动时,平台转动的角速度为1 = ;当小车急刹车停下来时,平台的角速度= ;当小车从静止开始在平台上运行一周时,平台转动的角度2= .2. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R1速率为v1的圆周运动,今用力F慢慢往下拉绳子,当圆周运动的半径减小到R2时,则小球的速率为 , 力F做的功为.3. 转动着的飞轮转动惯量为J , 在t =0时角速度为0, 此后飞轮经历制动过程,阻力矩M 的大小与角速度的平方成正比, 比例系数为k (k 为大于0的常数), 当 =0/3 时, 飞轮的角加速度= , 从开始制动到 =0/3 所经过的时间t = . 三.计算题1. 落体法测飞轮的转动惯量,如图所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m 的重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2. 如图所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为,求小球击中细棒前的速度值.练习九 力学习题课一.选择题1. 圆盘绕O 轴转动,如图所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度将(A) 增大. (B) 不变. (C) 减小. (D) 无法判断.2. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为(A) 20 .图图(B) 20 . (C) 40 . (D) 0/2 . (E) 0/2.3. 转动惯量相同的两物体m 1、m 2 都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为1和2.则以下说法不正确的是(A) 1可能大于2 ; (B) 1可能小于2 ; (C) 1可能等2 ; (D) 1一定大于2 .4. 一圆锥摆,如图,摆球在水平面内作圆周运动.则 (A) 摆球的动量, 摆球与地球组成系统的机械能都守恒. (B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒.守恒. (C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒. (D) 摆球的动量守恒, 摆球与地球组成系统的机械能不5. 如图,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量、机械能都守恒.图图二.填空题1. 铀238的核(质量为238原子质量单位),放射一个粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,粒子射出时速度大小为×107m/s,则钍核的速度大小为 ,方向为 .2. 如图所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .3. 最大摆角为0的摆在摆动进程中,张力最大在 = 处,最小在 = 处,最大张力为 ,最小张力为 ,任意时刻(此时摆角为, 0≤≤0)绳子的张力为 . 三.计算题1. 如图,一块宽L =、质量M =1kg 的均匀薄木板,可绕水平固定光滑轴OO 自由转动,当木板静止在平衡位置时,有一质量为m =10×10-3kg 的子弹垂直击中木板A 点,A离转轴OO 距离为l =,子弹击中木板前速度为500m·s -1,穿出木板后的速度为200m·s -1.求(1) 子弹给予木板的冲量; (2) 木板获得的角速度.(已知:木板绕OO 轴的转动惯量J =ML 2 / 3)2. 用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,在铁锤击第一次时,能将铁钉击入木板1cm,问击第二次时,能击多深设铁锤两次击钉的速度相同.图图。
目录练习一质点运动学(一) ............ 错误!未定义书签。
练习二质点运动学(二) ............ 错误!未定义书签。
练习三牛顿运动定律(一) ........ 错误!未定义书签。
练习四牛顿运动定律(二)...... 错误!未定义书签。
练习五动量冲量质点角动量(一) .. 错误!未定义书签。
练习六动量冲量质点角动量(二) .. 错误!未定义书签。
练习七功和能(一) ................. 错误!未定义书签。
练习八功和能(二) ................. 错误!未定义书签。
~练习九刚体力学(一) ............. 错误!未定义书签。
练习十刚体力学(二) ............. 错误!未定义书签。
练习十一分子运动论(一).......... 错误!未定义书签。
练习十二分子运动论(二).......... 错误!未定义书签。
练习十三热力学(一) ................. 错误!未定义书签。
练习十四热力学(二) ................. 错误!未定义书签。
练习十五热力学(三) ................. 错误!未定义书签。
练习十六静电场(一) ................. 错误!未定义书签。
练习十七静电场(二) ................. 错误!未定义书签。
练习十八静电场(三) ................. 错误!未定义书签。
!练习十九静电场中的导体与电介质(一) ... 错误!未定义书签。
练习二十静电场中的导体与电介质(二) ... 错误!未定义书签。
练习二十一电流的磁场(一) .......... 错误!未定义书签。
练习二十二电流的磁场(二) .......... 错误!未定义书签。
练习二十三磁场对电流的作用(一)错误!未定义书签。
练习二十四磁场对电流的作用(二)错误!未定义书签。
练习二十五电磁感应(一).............. 错误!未定义书签。
第一章 质点运动学一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。
(填“改变”或“不变”)2. 一质点作半径为 0.1 m 的圆周运动,其角位移随时间t 的变化规律是= 2+ 4t 2 (SI)。
在t =2 s 时,它的法向加速度大小a n =_______25.6_______m/s 2;切向加速度大小a t =________0.8______ m/s 2。
3. 一质点在OXY 平面内运动,其运动方程为22,192x t y t ==-,则质点在任意时刻的速度表达式为 j t i42-=ν ;加速度表达式为j a4-=。
4、沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为a n =( 16 R t 2 ) ;角加速度β=( 4 rad /s 2 )(1 分).5. 一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:2214πt +=θ,则其切向加速度大小为t a =______0.1______2m s -⋅, 第1秒末法向加速度的大小为na =______0.1______2m s -⋅.6.一小球沿斜面向上作直线运动,其运动方程为:245t t s -+=,则小球运动到最高点的时刻是t =___2___s .7、一质点在OXY 平面内运动,其运动方程为22,192x t y t ==-,则质点在任意时刻的速度表达式为( j t i42-=ν );加速度表达式为( j a4-= )。
8. 一质点沿半径R=0.4 m 作圆周运动,其角位置θ=2+3t 2,在t=2s 时,它的法向加速度n a =( 57.6 )2/s m ,切向加速度t a =( 2.4 ) 2/s m 。
9、已知质点的运动方程为j t i t r )2(22-+=,式中r 的单位为m ,t 的单位为s 。
大学物理大一试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 299,792,458 m/sB. 299,792,458 km/sC. 3.0 x 10^8 m/sD. 3.0 x 10^5 km/s答案:C2. 牛顿第一定律描述的是:A. 物体的加速度与作用力成正比B. 物体的加速度与作用力成反比C. 物体在没有外力作用下保持静止或匀速直线运动D. 物体在受到外力作用下保持静止或匀速直线运动答案:C3. 以下哪个不是电磁波?A. 无线电波B. 微波C. 可见光D. 声波答案:D4. 根据热力学第一定律,系统内能的增加等于:A. 系统吸收的热量B. 系统释放的热量C. 系统吸收的热量与对外做功之和D. 系统释放的热量与对外做功之和答案:C5. 一个物体的质量为2kg,受到的重力是:A. 19.6 NB. 9.8 NC. 39.2 ND. 4.9 N答案:A6. 以下哪个是波动现象?A. 电子的轨道运动B. 光的反射C. 光的折射D. 光的干涉答案:D7. 根据库仑定律,两个点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比。
这个定律是由哪位科学家提出的?A. 牛顿B. 法拉第C. 库仑D. 麦克斯韦答案:C8. 以下哪个量不是矢量?A. 速度B. 力C. 功D. 温度答案:D9. 根据能量守恒定律,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
这个定律是:A. 热力学第一定律B. 热力学第二定律C. 能量守恒定律D. 动量守恒定律答案:C10. 光的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比或反比,取决于介质答案:B二、填空题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成_________。
答案:反比2. 光年是_________的单位。
4、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=y mt t 223+;加速度y a = 4m/s 2。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m kev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k0+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
13、关于刚体的转动惯量,以下说法正确的是:( A )。
A 、刚体的形状大小及转轴位置确定后,质量大的转动惯量大;B 、转动惯量等于刚体的质量;C 、转动惯量大的角加速度一定大;D 、以上说法都不对。
14、关于刚体的转动惯量,以下说法中哪个是错误的?( B )。
A 、转动惯量是刚体转动惯性大小的量度;B 、转动惯量是刚体的固有属性,具有不变的量值;C 、对于给定转轴,刚体顺转和反转时转动惯量的数值相同;D 、转动惯量是相对的量,随转轴的选取不同而不同。
15、两个质量均匀分布、重量和厚度都相同的圆盘A 、B ,其密度分别为A ρ和B ρ。
若B A ρρ>,两圆盘的旋转轴都通过盘心并垂直盘面,则有( B )。
A 、B A J J >; B 、B A J J <;C 、B A J J =;D 、不能确定A J 、B J 哪个大。
19、均匀细棒OA ,可绕通过其一端而与棒垂直的水平固定光滑轴转动,如右下图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( C )。
A 、角速度从小到大,角加速度不变;B 、角速度从小到大,角加速度从小到大;C 、角速度从小到大,角加速度从大到小;D 、角速度不变,角加速度为零。
一、选择题:(共30分,每题3分)1.如图所示,几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜 面的倾角应选(A)30° (B)45° (C)60° (D)75°.2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有(A )v v =,v v = ; (B )v v ≠,v v = ; (C )v v ≠,v v ≠ ; (D )v v =,v v ≠ 。
3.下列叙述中正确的是 (A)物体的动量不变,动能也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.4.对质点组有以下几种说法:(1)质点组总动量的改变与内力无关;(2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关.在上述说法中:(A)只有(1)是正确的. (B)(1)、(3)是正确的. (C)(1)、(2)是正确的. (D)(2)、(3)是正确的.5.如图,一定量的理想气体经历acb 过程时吸热J 200.则经历acbda 过程时,吸热为 (A)J 1200- (B)J 1000- (C)J 700-(D)J 1000 6.甲说:“由热力学第一定律可证明任何热机的效率不可能等于1。
”乙说:“热力学第二定律可表述为效率等于100%的热机不可能制造成功。
”丙说:“由热力学第一定律可证明任何卡诺循环的效率都等于121T T -。
”丁说:“由热力学第一定律可证明理想气体卡诺热机(可逆的)循环的效率等于121T T -。
”对以上说法,有如下几种评论,哪种是正确的?(A)甲、乙、丙、丁全对。
(B)甲、乙、丙、丁全错。
(C)甲、乙、丁对,丙错。
(D)乙、丁对,甲、丙错。
7、一平面简谐波沿x 轴负方向传播,已知0x x =处质点的振动方程为()0cos φω+=t A y 。
4、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=y mt t 223+;加速度y a = 4m/s 2。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m kev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k0+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
13、关于刚体的转动惯量,以下说法正确的是:( A )。
A 、刚体的形状大小及转轴位置确定后,质量大的转动惯量大;B 、转动惯量等于刚体的质量;C 、转动惯量大的角加速度一定大;D 、以上说法都不对。
14、关于刚体的转动惯量,以下说法中哪个是错误的?( B )。
A 、转动惯量是刚体转动惯性大小的量度;B 、转动惯量是刚体的固有属性,具有不变的量值;C 、对于给定转轴,刚体顺转和反转时转动惯量的数值相同;D 、转动惯量是相对的量,随转轴的选取不同而不同。
15、两个质量均匀分布、重量和厚度都相同的圆盘A 、B ,其密度分别为A ρ和B ρ。
若B A ρρ>,两圆盘的旋转轴都通过盘心并垂直盘面,则有( B )。
A 、B A J J >; B 、B A J J <;C 、B A J J =;D 、不能确定A J 、B J 哪个大。
19、均匀细棒OA ,可绕通过其一端而与棒垂直的水平固定光滑轴转动,如右下图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( C )。
A 、角速度从小到大,角加速度不变;B 、角速度从小到大,角加速度从小到大;C 、角速度从小到大,角加速度从大到小;D 、角速度不变,角加速度为零。
4、一个质量为M 、半径为R物体m 由静止下落h 高度时的速度和此时滑轮的角速度。
R M m m ga )2(2+=,Mm mgh ah v +==2225、一细而轻的绳索跨过一质量为M ,半径为R 的定滑轮C ,绳的两端分别系有质量为1m 和2m 的物体,且1m >2m ,绳的质量、轮轴间的摩擦不计且绳与轮间无相对滑动。
轮可视为圆盘,求物体的加速度的大小和绳的张力。
(注:只需列出足够的方程,不必写出结果) 2、t F x430+=(式中x F 的单位为N,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为:s N⋅68;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为:1240-⋅=s m v 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为0.02s 时。
若打击前棒是静止的,则打击时棒的角动量大小变化为s m s mkg ⋅⋅⋅⋅-2N 212或,打击后瞬间棒的角速度为s rad /6。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为J 64;合外力对小球作用的冲量大小为18-⋅⋅sm kg 。
9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F)43(+=作用下,无摩擦地运动,则物体运动到3米处,在这段路程中力F所做的功为J27W =。
14、旋转着的芭蕾舞演员要加快旋转时,总是把两臂收拢,靠近身体,这样做的目的是 减小自身相对转轴的转动惯量以增大角速度 。
当旋转加快时,转动动能有无变化? 有 ,原因是 演员在转动过程中角动量ωJ 可近似看作守恒,而其转动动能的值为221ωJ 。
2、质量为20g 的子弹以1500-⋅s m 的速率击入一木块后与木块一起以150-⋅s m 的速率前进。
若以子弹的速度方向为正方向,则在这一过程中木块给予子弹的冲量为( B )。
A、s N⋅9 B、s N ⋅-9; C、s N ⋅10; D、s N ⋅-10。
7、花样滑冰运动员通过自身竖直轴转动,开始时两臂张开,转动惯量为0J ,角速度为0ω;然后将手臂合拢使其转动惯量为032J ,则转动角速度变为 ( C )。
A 、032ω; B 、032ω;C 、023ω; D 、023ω。
8、飞轮A 与飞轮B 同轴,飞轮A 的转动惯量是飞轮B 的一半,即B AJ J 21=。
开始时,飞轮A 以角速度0ω旋转,飞轮B 静止,如右下图所示。
现将飞轮B 沿轴推向飞轮A ,使二者啮合,则啮合后(两轮转速相同)飞轮A 、B 转动的角速度为( A)。
A、3ω; B、320ω; C、60ω; D、0ω。
12、子弹的速率为v( A )。
A、2v ;B 、2v ; C 、3v ; D 、4v 。
13、劲度系数为k 的轻弹簧,竖直放置,下端悬挂一质量为m 的小球,使弹簧为原长而小球恰好与地面接触,今将弹簧上端缓缓地提高直到小球刚好离开地面为止,在此过程中,外力所做的功为(A )。
A 、m 2g 2/2k ;B 、m 2g 2/k ;C 、m 2g 2/4k ;D 、4m 2g 2/k 。
16、如下图所示,质量分别为m 1和m 2的物体A 和B 用弹簧连结后置于光滑桌面上,而A 、B 上面又分别放有质量为m 3和m 4的C 和D ;且A 与C 之间、B 与D 之间均有摩擦。
今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统应满足( A )。
A 、动量守恒,机械能不守恒;B 、动量和机械能都守恒;C 、动量不守恒,机械能守恒;D 、动量和机械能都不守恒。
下滑,斜20、如右图,一质量为m 的小物体从高位h 的三种光滑斜面顶上,由静止开始面不动。
物体从三种光滑斜面滑到斜面底时,速度大小关系为( D )。
A 、321v v v >>; B 、312v v v >>; C 、132v v v >>; D 、321v v v ==。
22、一子弹以水平速度ν射入一静止于光滑水平面上的木块后,随木块一起运动,对于这一过程的分析是(B )。
A、子弹、木块系统的机械能守恒; B、子弹、木块系统水平方向的动量守恒; C、子弹所受冲量等于木块所受冲量; D、子弹动能的减少等于木块动能的增加。
A6、质量为1m 的弹丸A ,沿水平方向穿过如左下图(a )所示的摆锤B 后,速率由v 减少到2v 。
已知摆锤的质量为2m ,摆线的长度为l 。
(1)若摆锤摆动的最大偏角为θ(060=θ),则弹丸入射前的速率v 为多少?(摆线的质量与伸长略去不计)(2)若以质量为2m 的均匀细棒代替摆线,如右上图(b)所示,当摆锤摆动的最大偏角为θ(060=θ)时,弹丸入射前的速率v 又为多少?2、一质点作简谐运动,其振动曲线如题2图所示。
根据此图,它的振幅=A cm 4,用余弦函数描述时初相位=ϕ32π-,P 点的速度方向 向下 。
3、已知某简谐运动的振动曲线如题3图所示,则此简谐运动的运动方程为:)365cos(4ππ-=t x 。
5、如题5图所示0=t 时一沿x 轴正方向传播的平面简谐波的波形曲线,则:(1)此平面简谐波的振幅=A cm 2,=λm 40,(2)0=t 时O 、P 两处质点的速度方向: O 向下,P 向上 。
6、一质点作简谐振动,其振动曲线如题6图所示,根据此图,它的周期T= 3.43s ,用余弦函数描述时初相位=ϕπ32-。
12、已知一简谐运动的运动方程为)5310cos(41π+=t x ,另有一同方向的简谐运动)10cos(62φ+=t x ,则合振幅的最大值为cm 10,此时φ值最小为53π。
(1x 、2x 单位为cm )13、题10图所画的是两个简谐运动的振动曲线, 若这两个简谐运动可叠加,则合成的余弦振动的合振幅为2A,初相位为0。
1、下列说法正确的是( A )。
A 、简谐运动的运动周期与初始条件无关√B 、一个质点在指向平衡位置的力的作用下,一定做简谐运动C 、已知一个谐振子在0=t时刻处在平衡位置,则其振动周期为2πD 、因为简谐运动机械能守恒,所以机械能守恒的运动一定是简谐运动 4、一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A-,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( B )6、一质点作简谐运动的方程为:)22cos(5ππ+=t x ,它在运动一个周期后(B )。
A 、速度为零B 、加速度为零√C 、相位为零D 、振动能量为零 8、已知某简谐运动的振动曲线如题7图所示,则此简谐运动的运动方程为( D )。
A 、))(3232cos(2cm t x ππ-=B 、))(3232cos(2cm t xππ+=C 、))(3234cos(2cm t xππ-=D 、))(3234cos(2cm t x ππ+=√10、质点作周期为T 、振幅为A 的简谐运动,则质点由平衡位置运动到离平衡位置2A处所需的最短时间是( D )。
A 、4T B 、6T C 、8T D 、12T √14、两小球A 、B 作同频率、同方向的简谐运动,当A 球自正方向回到平衡位置时,B 球恰好在正方向的端点,则它们的相位关系为( B )。
A 、A 比B 落后2πB 、A 比B 超前2π√ C 、A 比B 超前32π D 、A 比B 落后3π 15、一弹簧振子作简谐运动,当位移为振幅的一半时,其势能为总能量的( A )。
A 、41√ B 、43 C 、21D 、23 18、两个同周期的简谐运动曲线如题18图所示,则1x 的相位比2x 的相位(B )。
A 、落后2π B 、超前2π√ C 、落后π D 、超前π 19、题19图所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( D )。
A 、π23B 、π21C 、π D 、0√20、如题20图所示,两列波长为λ的相干波在P 点相遇。
S 1点的出相位是1ϕ,S 1点到P 点的距离是1r ;S 2点的出相位是2ϕ,S 2点到P 点的距离是2r ,以k 代表零或正、负整数,则P 点事干涉极大地条件为( D )。
A 、λk r r =-12B 、πϕϕk 212=-C 、πλπϕϕk r r 2)(21212=-+- D 、πλπϕϕk r r 2)(22112=-+-4、频率为Hz 100,传播速度为1300-⋅s m 的平面简谐波,同一波线上两点振动的相位差为3π,则此两点之间的距离为:m 5.0。