基于PLC的风电混合动力系统
- 格式:pdf
- 大小:599.03 KB
- 文档页数:5
基于PLC的风力发电控制系统设计随着科学技术的进步,新能源得以广泛应用,风力发电是我国科研人员掌握最熟练的技术之一。
这种技术是在我国丰富风能与配套系统的共同作用下,将风能转为电能。
由于风力发电控制系统仍存在一些问题,本文将在PLC的基础上对风力发电控制系统的设计技术进行研究。
标签:PLC;风力发电;控制系统0 前言社会经济的不断发展导致人们对能源的需求大幅度上升,但这种扩大的需求量加速了传统能源的损耗,各个国家开始重视能源的可持续发展问题。
在这基础上,新能源的出现与利用逐渐成为经济发展的重点,其中风能以其易开采、成本低的特点成为最受人们喜爱的一种能源。
同时,风力发电系统仍存在着一些问题,但通过PLC编程的控制系统可以有效的解决这些问题,提高其工作效率。
1 风力发电控制系统的原理叶片、加速齿轮箱、偏航装置、变频装置和控制系统等是风力发电系统的组成部分,每一个模块的互相配合才能保障整个系统的平稳运行。
下面对PLC风力发电系统中的每一个组成部件进行详细的介绍[1]。
1.1 叶片叶片是构成风轮的主要部件,其在风能转化为电能的过程中起着很重要的作用。
系统中叶片有着一定的要求,那就是要有良好的结构气动性。
通常是将两到三个结构气动性良好的叶片安装在轮毂,通过风的动力带动叶片,从而促进轮毂的运转,但这个速度相对来说是比较慢的,所以要在发动机与轮毂之间加入一套加速系统,使其速度达到可以发电的要求。
同时,由于风速的方向会不断发生变化,风向传感系统会将监测到的风向信息实时传送给PLC控制系统,因此需要根据实际情况及时调整叶片的角度,使其可以最大限度的利用风能。
1.2 加速齿轮箱由于依靠自然风力所带动的叶片转动的速度并不能满足风力发电的需求,因此需要通过加速齿轮箱的运用来加快轴旋转的速度,从而带动风轮上叶片的转速,使其达到发电设备对速度的标准。
1.3 偏航装置偏航装置的作用是根据实际情况改变风速与叶片之间的角度,以保证其能最大程度上的合理利用风能。
基于PLC的风力发电系统的设计简介本文档旨在介绍基于可编程逻辑控制器(PLC)的风力发电系统的设计。
风力发电是一种可再生能源,通过将风的动能转化为电能来供给家庭和工业设施使用。
PLC作为自动化控制系统的关键组成部分,可以实现对风力发电系统的监测、控制和保护。
系统构成风力发电系统通常包括以下组成部分:1. 风力涡轮机:将风的动能转化为机械能,并驱动发电机产生电能。
2. 发电机:将机械能转化为电能。
3. 变频器:将发电机输出的电能转化为适用于电网的交流电。
4. PLC:监测风力涡轮机的状态、控制发电机的运行和变频器的输出,并对系统进行保护。
5. 电力配电系统:将变频器输出的电能输送到电网或负载。
PLC的功能PLC在风力发电系统中扮演着至关重要的角色。
其主要功能包括:1. 监测风力涡轮机的旋转速度、温度、振动等状态,以及发电机的电压、电流等参数,以确保系统运行正常。
2. 控制风力涡轮机的启动和停止,调节涡轮机的转速以匹配当前风速。
3. 监测和控制发电机的输出,确保电能的稳定和安全。
4. 控制和调节变频器的输出频率和电压,以适应电网的要求。
5. 实施系统的保护机制,如过载保护、短路保护等,以保证系统的安全运行。
设计要点在设计基于PLC的风力发电系统时,应注意以下要点:1. 确保PLC具备足够的输入和输出端口,以满足系统对信号的获取和控制需求。
2. 选择适合风力涡轮机和发电机的传感器和测量设备,以获取准确可靠的数据。
3. 设计合理的控制逻辑,包括风力涡轮机的启动和停止策略、发电机输出的调节策略等。
4. 添加必要的保护机制,如过流保护、电压保护等,以保证系统的安全性。
5. 考虑系统的可扩展性和可维护性,以便未来对系统进行升级和维护。
总结基于PLC的风力发电系统的设计涉及多个组成部分和功能模块,其中PLC起到了关键的监测、控制和保护作用。
在设计过程中,需要注意选择合适的硬件设备、设计合理的控制逻辑和保护机制,以确保系统的正常运行和安全性。
基于PLC的风力发电控制系统设计导言风力发电已经成为一种重要的可再生能源,被广泛应用于各个领域。
风力发电系统包括风轮、转子、发电机等组成部分,而风力发电系统的控制是保证其高效稳定运行的关键。
本文将基于PLC设计一个风力发电控制系统。
1.系统结构设计风力发电控制系统的基本结构包括传感器、PLC、执行器和人机界面。
传感器用于实时监测风力发电系统的各个参数,如风速、转子转速等。
PLC作为控制中心,接收传感器信号并进行逻辑控制。
执行器根据PLC的控制输出信号来控制风力发电系统的各个部分,如调节风机转速等。
人机界面用于显示系统状态、设置参数等。
2.控制策略设计2.1风速监测与控制通过风速传感器实时监测风速,当风速低于一定阈值时,关闭风机,避免风机受到损坏;当风速在一定范围内时,根据发电机的负载情况自动调整风机转速,以保证风力发电系统的稳定运行。
2.2风轮传感器监测与控制风轮传感器用于监测转子的转速及转向,当转速过高时,PLC将自动减小风机转速;当转速过低时,PLC将自动增加风机转速。
2.3发电机控制发电机的电压、频率等参数需要监测和控制,PLC将通过与发电机的连接,监测其电压和频率,当参数超过设定范围时,PLC将调节风机的转速,以确保发电机稳定运行。
2.4过载保护控制当发电机过载时,PLC将根据预设的过载保护策略,立即切断风机的供电,以保护发电机的安全运行。
3.软件编程设计PLC的软件编程需要根据控制策略进行设计,通常使用PLC编程语言(如LD、FC等)进行编程。
根据控制策略中描述的各种情况及相应的控制动作,设计相应的逻辑流程和控制算法。
4.人机界面设计人机界面通常使用触摸屏显示,显示风力发电系统的各项参数,如风速、转速、电压、频率等,并提供实时监控和报警功能。
用户可以通过触摸屏进行参数设置、故障诊断及报警解除等操作。
结论基于PLC的风力发电控制系统设计是实现风力发电系统高效稳定运行的关键。
通过PLC的控制,可以对风速、转速、电压、频率等参数进行实时监测和控制,提高风力发电系统的可靠性和效率。
摘要全球人口增长和发展中国家的经济扩张,到2050年,世界能源需求可能翻番甚至增加两倍。
地球上的全部生命都依赖于能源和碳循环。
能源对经济级社会发展都至关重要,但这也带来了环境方面的挑战。
我们必须探索能源生产与消费的各个方面,包括提高能效、清洁能源、全球碳循环、碳资源、废弃物和生物质,还要关注它们与气候和自然资源问题之间的关系。
风力发电的发展是时代的需要。
在风力发电控制系统中,基于PLC为主控制器的设计是未来的发展方向。
本设计基于PLC的风力发电控制系统,旨在保证风力发电机偏航系统、齿轮箱、液压系统、发电机正常工作;通过选择合适的控制方法,使系统能更加稳定的运行,进而可以有效提高风力利用率。
设计中主要对发电机控制电路、偏航控制电路、齿轮箱及液压站的运行和工作情况进行了设计,并绘制了相应的电气原理图。
在控制电路中还说明了PLC、电动机及相应低压器件的型号选择,绘制了I/O接线图;在发电机控制电路中,设计了发电机的转速控制方面;偏航电路中,设计了对风、解缆功能;在液压系统中,设计了温控、压力控制功能;在齿轮箱系统中,设计了油位控制功能。
同时在设计中还详细编写了各部分的控制程序,并进行了相关调试,另外利用S7-200仿真软件进行了系统仿真验证,仿真结果满足设计要求。
关键词:可编程控制器;偏航;液压系统;控制系统;风力发电ABSTRACTGlobal population growth and developing economic expansion, to 2050, world energy demand may double or even increased two times. The whole of life on earth depends on both the energy and the carbon cycle. Energy for economic social development are crucial, but it has also brought environmental challenges. We must explore the energy production and consumption in all aspects, including improving energy efficiency, clean energy, the global carbon cycle, carbon resource, waste and biomass, but also pay attention to them and climate and natural resource problems between. Wind power development is the need of the times.In the wind power control system based on Programmable Logic Controller (PLC), mainly is the design of future development direction. Based on the design of PLC wind power control system, in order to ensure the windmill generator yaw system, gear box, hydraulic system, the generator work; by selecting appropriate control method, making the system more stable operation, which can effectively improve the utilization rate of wind power.Design of the main generator control circuit, control circuit, gearbox and hydraulic station running and working conditions for the design, and draw the corresponding electrical schematic diagram. The control circuit also shows PLC, motor and corresponding low voltage devices model selection, rendering the I / O wiring diagram; in generator control circuit, design of the generator speed control; yaw circuit, design of wind, starting function; in the hydraulic system, design temperature control, pressure control function; in the gear box system, design the level control function.In the design of the detailed written parts control program, and the relevant debugging, while using S7-200 simulation software simulation system, and the simulation results and meet the design requirements.Key word:Programmable Logic Controller;Yaw;Hydraulic system;Control system;Wind Power目录1引言1.1选题目的和意义....................................1.2国内外风力发电现状.............................. 1.2.1国外风力发电现状............................. 1.2.2国内风力发电现状.............................. 1.2.3风电机组发展趋势............................. 1.2.4海上风电场的兴起..........................1.3 研究设想及方法.............................1.4 预期成果及意义..............................2系统整体方案设计...................................2.1 系统工作原理................................2.2 系统工艺流程................................2.2.1控制模式介绍...............................2.2.2各部分控制介绍.............................2.3 系统总体设计方案...........................2.4本章小结.....................................3控制系统硬件设计................................3.1 PLC概述..................................3.1.1 PLC的发展历程............................3.1.2 PLC的工作原理...........................3.1.3 控制系统的I/O通道地址分配.................3.1.4 PLC系统选型...........................3.2 扩展模块选型...........................3.2.1 数字量输出扩展模块EM222................3.2.2 数字量输入∕输出扩展模块EM223...........3.2.3 模拟量输入扩展模块EM231...........3.2.4 模拟量输入∕输出扩展模块EM235........3.3 电机及驱动器选型与应用设计................3.3.1 电机及驱动器选型........................3.3.2 偏航电机主电路设计......................3.4 检测元件选型与应用设计....................3.4.1 温度传感器选型.......................................3.4.2 压力传感器选型......................................3.4.3 液位传感器选型......................................3.4.4 偏航角度传感器和转速传感器选型......................3.4.5风向标、风速仪选型..................................3.5 低压电器选型..........................................3.5.1 接触器选型..........................................3.5.2 断路器选型..........................................3.5.3 熔断器选型..........................................3.5.4 主令电器选型........................................3.5.5 信号电器选型....................................... 3.6 系统配电及电源选型...................................3.7 本章小结............................................. 4控制系统软件设计.......................................4.1 程序流程图的设计.....................................4.1.1 启停控制流程图....................................4.1.2 偏航解缆控制流程图................................4.1.3 齿轮箱系统控制流程图..............................4.1.4 发电机系统控制流程图..............................4.1.5 液压系统控制流程图.................................4.2 控制程序设计.........................................4.3 组态界面设计.........................................4.4 程序调试.............................................4.5本章小结.............................................. 5结束语.................................................. 参考文献.................................................. 致谢..................................................第1章引言1.1 目的和意义由于全球人口增长和发展中国家的经济扩张,到2050年,世界能源需求可能翻番甚至增加两倍。
学号:常州大学毕业设计(论文)题目基于PLC的风力发电控制系统设计学生学院专业班级校内指导教师专业技术职务校外指导老师专业技术职务二○一二年六月基于PLC的风力发电控制系统设计摘要:近年来随着经济的不断发展和人们生活水平的不断改善,在世界范围内石油、煤炭这些不可再生资源的使用量已经大大超过环境所能承受的范围,燃烧发电厂产生的污染物也对地球环境产生了负影响。
然而风能是一种清洁、可再生的能源,在发电这一领域具有巨大的开发潜力和商业活力。
随着科技的不断进步,计算机和可编程控制的科研水平在提升,这对于风电控制的研究又提供了新的途径。
针对风能具有随机性、不确定性的特点,本文用西门子可编程控制器S7-200来对风力发电进行控制。
主要内容包括电气原理图和设计流程图的绘制,PLC、电气元件的选型,发电机组启动控制、偏航控制、温度控制和变压器控制等.在论文中给出详细的控制原理解释和各模块的功能介绍,并配有每一模块的控制程序。
最后进行相关调试和仿真,利用STEP7—Micro/WIN32编程软件对PLC程序进行调试、仿真运行和在线诊断等,使仿真结果满足设计要求。
关键词:风力发电;可编程控制器;偏航;温度控制The Control System of Wind Power Based on PLCAbstract:In recent years, with the continuous development of the economy and people’s living standards continue to improve, in the scope of world petroleum,oil and coal these non-renewable resource consumption was significantly more than the environment can stand。
Combustion power generation of pollutants generated also produced negative effect to the environment of the earth. However, the wind energy is a clean,renewable energy power generation,it has tremendous development potential and business activity in this area。
PLC在风力发电系统中的实际应用PLC(可编程逻辑控制器)作为一种专门用于工控系统的自动化组件,广泛应用于各种工业领域,其在风力发电系统中的实际应用也越来越受到重视。
本文将介绍PLC在风力发电系统中的具体应用,并探讨其优势和挑战。
1. 引言风力发电作为一种可再生能源,具有环保、可持续等优点,越来越多的国家和地区开始关注和大力发展。
而为了更高效地管理和控制风力发电系统,PLC的应用成为一种普遍选择。
2. 风力发电系统概述在介绍PLC的应用之前,我们先了解一下典型的风力发电系统。
风力发电系统由风机(或称风力涡轮机)、发电机、传输系统和监控系统组成。
风力涡轮机通过叶片转动来驱动发电机发电,并将发电过程中产生的电能传输到电网供电。
3. PLC在风力发电系统中的控制应用3.1 风机控制PLC通过监测风机的状态和环境信息,实现对风机的控制和调节。
例如,可以根据风速实时调整叶片的角度,以优化风机的输出功率和效率。
同时,PLC也可以实现对风机的安全保护功能,当风速过大或其他异常情况发生时,及时停止风机运行,以避免损坏或事故发生。
3.2 发电机控制PLC在发电机控制方面也发挥着重要作用。
PLC可以监测发电机的运行状态,包括温度、振动、电流等参数,并实时反馈给系统操作员。
当发电机出现异常时,PLC可以及时发出警报并采取相应的措施。
此外,PLC还可以控制发电机的起停、并联和自动恢复等功能,确保发电机的安全可靠运行。
3.3 传输和监控系统控制PLC在风力发电系统的传输和监控系统中也有广泛应用。
传输系统主要用于将发电机输出的电能传输到电网供电,而监控系统则用于对整个风力发电系统进行实时监测和管理。
PLC可以实现对传输系统的电压、频率和功率因数等参数进行监测和调节,确保电能的稳定传输。
同时,PLC还可以通过与监控系统的通信,将系统状态、报警信息等实时反馈给操作员,并实现对系统的远程监控和控制。
4. PLC在风力发电系统中的优势使用PLC作为风力发电系统的控制设备,具有以下几个优势:- 稳定可靠:PLC具备较高的抗干扰能力和稳定性,能够在恶劣的工作环境下稳定运行,确保系统的安全和可靠性。