北京市第四中学2016高考理科数学总复习例题讲解:概率与统计 b04随机变量的分布列
- 格式:doc
- 大小:102.00 KB
- 文档页数:3
绝密★启封并使用完毕前试题类型:A 2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x xx =-+<,{|230}B x x =->,则AB =(A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D考点:集合运算(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A)1 (B)2 (C 3 (D)2【答案】B 【解析】试题分析:因为(1)=1+,i x yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=所以故故选B.考点:复数运算(3)已知等差数列{}na 前9项的和为27,10=8a,则100=a(A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A)错误! (B )错误! (C )错误!(D )错误! 【答案】B考点:几何概型(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,错误!) (C )(0,3) (D)(0,错误!)【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234mn m n ++-=,解得:21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A .考点:双曲线的性质(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是错误!,则它的表面积是(A)17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析:由三视图知:该几何体是78个球,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是22734221784πππ⨯⨯+⨯⨯=,故选A .考点:三视图及球的表面积与体积(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C ) (D )【答案】D考点:函数图像与性质(8)若101a b c >><<,,则 (A )cc ab <(B )cc abba <(C )log log ba a cbc <(D )loglog ab c c <【答案】C考点:指数函数与对数函数的性质(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =【答案】C 【解析】试题分析:当0,1,1x y n ===时,110,1112x y -=+=⨯=,不满足2236x y +≥;2112,0,21222n x y -==+==⨯=,不满足2236x y +≥;13133,,236222n x y -==+==⨯=,满足2236xy +≥;输出3,62x y ==,则输出的,x y 的值满足4y x =,故选C 。
2016 年高考数学理试题分类汇编统计与概率一、1、( 2016 年北京高考)袋中装有偶数个球,其中球、黑球各占一半.甲、乙、丙是三个空盒 .每次从袋中任意取出两个球,将其中一个球放入甲盒,如果个球是球,就将另一个球放入乙盒,否就放入丙盒.重复上述程,直到袋中所有球都被放入盒中,()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中球与丙盒中黑球一多C.乙盒中球不多于丙盒中球D. 乙盒中黑球与丙盒中球一多【答案】 C2、( 2016 年山高考)某高校了200 名学生每周的自(位:小),制成了如所示的率分布直方,其中自的范是[17.5,30] ,本数据分[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方,200 名学生中每周的自不少于22.5 小的人数是(A ) 56(B)60(C)120(D)140【答案】 D3、( 2016 年全国 I 高考)某公司的班在7:30,8:00,8:30 ,小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是( A)1123 3( B )2( C)3(D )4【答案】 B4、( 2016 年全国 II 高考)从区0,1随机抽取 2n 个数x1,x2,⋯, x n, y1, y2,⋯, y n,构成 n 个数x, y, x , y x , y,其中两数的平方和小于 1 的数共有m个,则用随机模拟的方法得到的圆周率的近似值为(A)4n(B)2n(C)4m(D)2m m m n n【答案】 C5、( 2016 年全国III 高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中 A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A)各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C 的月份有 5 个【答案】 D二、填空题1 、( 2016年山东高考)在[-1,1]上随机的取一个数k,则事件“ 直线y = kx与圆(x-5)2 + y2 = 9 相交”发生的概率为3【答案】.42、( 2016 年上海高考)某次体检, 6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)【答案】 1.763、( 2016 年四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在 2 次试验中成功次数X 的均值是.【答案】3 2三、解答题1、( 2016 年北京高考)A、 B、C 三个班共有100 名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A 班6 6.577.58B 班6789101112C 班3 4.567.5910.51213.5( 1)试估计 C 班的学生人数;( 2)从 A 班和 C 班抽出的学生中,各随机选取一人, A 班选出的人记为甲, C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;( 3)再从 A 、 B、 C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7, 9, 8.25(单位:小时),这 3 个新数据与表格中的数据构成的新样本的平均数记1,表格中数据的平均数记为0 ,试判断0 和 1 的大小,(结论不要求证明)解析】⑴8100 40 , C班学生40 人20⑵在 A 班中取到每个人的概率相同均为15设 A 班中取到第 i 个人事件为 A i, i1,2,3,4,5C 班中取到第j 个人事件为C j,j 1,2,3,4,5,6,7,8A 班中取到 A i C j的概率为 P i所求事件为 D则 P( D )1P11P21P31P41P5555551213131314585858585838⑶ 10三组平均数分别为 7 , 9 , 8.25 , 总均值08.2但 1 中多加的三个数据7 , 9 , 8.25 , 平均值为 8.08 ,比0小,故拉低了平均值2、( 2016 年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得 3 分;如果只有一人猜对,则“星队”得 1 分;如果两人都没猜对,则“星队”得0 分.已知甲每轮猜对的概率是3,乙每轮4猜对的概率是2;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”3参加两轮活动,求:( Ⅰ )“星队”至少猜对 3 个成语的概率;( Ⅱ )“星队”两轮得分之和X 的分布列和数学期望EX .【解析】 ( Ⅰ ) “至少猜对 3 个成语”包括“恰好猜对 3 个成语”和“猜对 4 个成语”.设“至少猜对 3 个成语”为事件 A ;“恰好猜对 3 个成语”和“猜对 4 个成语”分别为事件B,C ,则 P( B) C213 3 2 1C21 3 1 2 25 ;443344331233221.P(C )43344所以 P( A)P( B)P(C )512.1243( Ⅱ )“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6于是 P( X0)11111;4343144P( X 1) C211 2 1 1C21 1 1 3 110 5 ;4343434314472P( X 2) 1 12 2 3 3 1 1C21 1 3 2 125 ;443344334433144 P( X3) C21 3 2 1 1 12 1 ;434314412P( X 4) C2132( 1 2 3 1)60 5 ;43434314412P( X6)3232361;43431444X012346P1525151 14472144121241525154155223X 的数学期望 EX01236144.144721441212463、( 2016 年四川高考)我国是世界上重缺水的国家,某市政府了鼓励居民用水,划整居民生活用水收方案,确定一个合理的月用水量准x (吨)、一位居民的月用水量不超 x 的部分按平价收,超出 x 的部分按价收.了了解居民用水情况,通抽,得了某年 100 位居民每人的月均用水量(位:吨),将数据按照 [0,0.5) ,[0.5,1) ,⋯,[4,4.5)分成 9 ,制成了如所示的率分布直方.( I)求直方中 a 的;( II )市有30 万居民,估全市居民中月均用水量不低于 3 吨的人数,并明理由;( III )若市政府希望使85%的居民每月的用水量不超准x (吨),估x 的,并明理由 .【解析】( I )由概率相关知,各率之和的1∵ 率 =(率 /距 )* 距∴ 0.50.080.160.40.520.120.080.042a1得 a0.3( II )由,不低于3吨人数所占百分比0.50.120.080.04 =12%∴全市月均用水量不低于3吨的人数:3012%=3.6 (万 )( III )由可知,月均用水量小于 2.5吨的居民人数所占百分比:0.50.080.160.30.40.520.73即 73% 的居民月均用水量小于 2.5吨 ,同理, 88%的居民月均用水量小于3吨,故 2.5x3假月均用水量平均分布,x 2.50.585%73%0.52.9 (吨) .0.3注:本次估计默认组间是平均分布,与实际可能会产生一定误差。
2016年高考备考之考前十天自主复习第七天(理科)【课本内容再回顾——查缺补漏】回顾一:排列组合与二项式定理(1)基本计数原理:①分类加法计数原理:做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,则完成这件事情,共有N=________________种不同的方法.②分步乘法计数原理:做一件事,完成它需要分成n个步骤,完成第一个步骤有m1种不同的方法,完成第二个步骤有m2种不同的方法,……,完成第n个步骤有m n种不同的方法,那么完成这件事情共有N=__________________种不同的方法.③两个基本计数原理的区别与联系:分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以独立完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.(2)排列与组合:①排列与排列数:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A 错误!表示。
排列数公式:!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21n nAn n n n ==--⋅。
规定0! = 1。
另外,!)!1(!n n n n -+=⋅; 111--++=⋅+=m n m n m n m m m n m n mA A C A A A ; 11--=m n m n nA A,!1)!1(1!1n n n n --=-。
注意:相同排列:如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.②组合与组合数:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
高考热点6—概率与统计的应用性北京四中 苗金利一、注意问题1.古典概型(1)有限性:在试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性:在试验中,可能出现的结果(基本事件)的可能性是均等的。
2.几何概型(1)试验结果有无限多;(2)每个结果的出现是等可能的.3.概率与统计的应用性(1)建模(2)解模(3)回归二、典型例题例1. 如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y =分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是__________.解析:本题考查几何概型,考查对立事件的概率及定积分。
评注:高考题大多一题多点,涉及较多的知识模块。
例2.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为。
解析:本题是食品厂制作了3种不同的精美卡片有足够多,数量巨大的抽取问题,无论放回与不放回,都是独立重复试验;但既不是古典概型也不是二项分布。
评注:应用题考查的是数学教育。
例3.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。
假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。
已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率。
【解析】本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。
评注:建模后要充分应用数学模型的严谨与逻辑。
例4.道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q≥80时,为醉酒驾车. 某市公安局交通管理部门在某路段的一次拦查行动中,(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的。
函数与方程的思想——北京四中吕宝珠一、【高考真题感悟】已知函数f(x)=错误!若f(f(0))=4a,则实数a=_____.解析∵f(f(0))=f(2)=4+2a,∴4+2a=4a,∴a=2.考题分析本小题考查了函数与方程的有关内容,体现了函数与方程的转化,突出了函数与方程思想的应用.易错提醒(1)函数是分段函数,在求函数值时,注意自变量所在区间.(2)准确构建方程,计算要正确.二、思想方法概述函数与方程是中学数学的重要概念,它们之间有着密切的联系.函数与方程的思想是中学数学的基本思想,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题,是历年高考的重点和热点.1.函数的思想用运动和变化的观点,集合与对应的思想分析和研究具体问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题使问题获得解决.函数思想是对函数概念的本质认识.4.函数与方程的思想在解题中的应用(1)函数与不等式的相互转化,对函数y=f(x),当y〉0时,就化为不等式f(x)〉0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.三、热点分类突破题型一函数与方程思想在求最值或参数范围中的应用例1已知实数a〉b〉c,a+b+c=1,a2+b2+c2=1,求a+b 与a2+b2的范围.解由a+b+c=1可得a+b=1-c。
由a2+b2+c2=1可得(a+b)2-2ab+c2-1=0即(1-c)2-2ab+c2-1=0故ab=c2-c,且a+b=1-c.构造一个一元二次方程x2-(1-c)x+c2-c=0,a,b是该方程的两个不相等的根,且两根都大于c,令f(x)=x2-(1-c)x+c2-c,(二次函数根的分布)则图象与x轴有两个交点且都在(c,+∞)内的充分必要条件:错误!解得:-错误!〈c〈0所以,1〈1-c〈错误!,错误!〈1-c2<1即a+b∈错误!,a2+b2∈错误!。
高考冲刺第9讲 解析几何综合问题一、知识要点:1、极坐标系2、参数方程3、 轨迹与方程问题4、定性与定值问题5、范围与最值问题6、探索与存在性问题二、典型例题例1 .(1)极坐标方程(1)()0 (0)ρθπρ--=≥所表示的图形是____________;(2)在极坐标系(,) (02)ρθθπ≤<中,曲线2sin ρθ= 与cos 1ρθ=- 的交点的极坐标为______。
答案:(1)一个圆和一条射线 (2)3)4π例2 .(1)直线x +D的圆,1x y θθ⎧=⎪⎨=+⎪⎩())0,2θπ⎡∈⎣交与A 、B 两点,则直线AD 与BD 的倾斜角之和为_________________.(2)求圆C :2222(1)10x y ax a y +++-+=圆心的轨迹方程,并图示轨迹图形。
例3 .若动点P 到定点(2,0)的距离减去到定直线6x =的距离为4,则动点P 的轨迹图形是。
例4 .在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。
解析:(I )因为点B 与A (1,1)-关于原点O 对称,所以点B 得坐标为(1,1)-.设点P 的坐标为(,)x y由题意得111113y y x x -+=-+- 化简得 2234(1)x y x +=≠±. 故动点P 的轨迹方程为2234(1)x y x +=≠±(II )若存在点P 使得PAB 与PMN 的面积相等,设点P 的坐标为00(,)x y则11||||sin ||||sin 22PA PB APB PM PN MPN ∠=∠. 因为sin sin APB MPN ∠=∠,所以||||||||PA PN PM PB = 所以000|1||3||3||1|x x x x +-=--即 2200(3)|1|x x -=-,解得0x 53= 因为220034x y +=,所以09y =± 故存在点P S 使得PAB 与PMN 的面积相等,此时点P 的坐标为5(,39±.。
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A. {0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5【答案】C【解析】考点:线性规划.【名师点睛】可行域是封闭区域时,可以将端点代入目标函数,求出最大值与最小值,从而得到相应范围.若线性规划的可行域不是封闭区域时,不能简单的运用代入顶点的方法求最优解.如变式2,需先准确地画出可行域,再将目标函数对应直线在可行域上移动,观察z 的大小变化,得到最优解.3.执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A.1B.2C.3D.4【答案】B 【解析】试题分析:输入1=a ,则0=k ,1=b ;进入循环体,21-=a ,否,1=k ,2-=a ,否,2=k ,1=a ,此时1==b a ,输出k ,则2=k ,选B.考点:算法与程序框图【名师点睛】解决循环结构框图问题,要先找出控制循环的变量的初值、步长、终值(或控制循环的条件),然后看循环体,循环次数比较少时,可依次列出,循环次数较多时,可先循环几次,找出规律,要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误.4.设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】D考点:1.充分必要条件;2.平面向量数量积. 【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.5.已知x ,y R ∈,且0x y >>,则() A.110x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +> 【答案】C【解析】试题分析:A :由0>>y x ,得y x 11<,即011<-yx ,A 不正确; B :由0>>y x 及正弦函数sin y x =的单调性,可知0sin sin >-y x 不一定成立; C :由1210<<,0>>y x ,得y x )21()21(<,故0)21()21(<-y x ,C 正确; D :由0>>y x ,得0>xy ,不一定大于1,故0ln ln >+y x 不一定成立,故选C. 考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.6.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12 D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.7.将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则()A.12t =,s 的最小值为6πB.t = ,s 的最小值为6πC.12t =,s 的最小值为3π D.2t =,s 的最小值为3π 【答案】A考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换8.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】C考点:概率统计分析.【名师点睛】本题将小球与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件有多种可能,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴上,则a =_______________.【答案】1-.【解析】试题分析:(1)()1(1)1i a i a a i R a ++=-++∈⇒=-,故填:1-.考点:复数运算【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化10.在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.【解析】试题分析:根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=,故填:60.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r r n r n r b a C T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.11.在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2考点:极坐标方程与直角方程的互相转化.【名师点睛】将极坐标或极坐标方程转化为直角坐标或直角坐标方程,直接利用公式 θρθρsin ,cos ==y x 即可.将直角坐标或直角坐标方程转化为极坐标或极坐标方程,要灵活运用x =θρθρsin ,cos ==y x 以及22y x +=ρ,)0(tan ≠=x xy θ,同时要掌握必要的技巧. 12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6【解析】试题分析:∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.考点:等差数列基本性质.【名师点睛】在等差数列五个基本量1a ,d ,n ,n a ,n S 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.13.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2考点:双曲线的性质【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.14.设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________;②若()f x 无最大值,则实数a 的取值范围是________.【答案】2,(,1)-∞-.【解析】试题分析:如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.考点:1.分段函数求最值;2.数形结合的数学思想.【名师点睛】1.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系.若自变量值为较大的正整数,一般可考虑先求函数的周期.若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;2.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13分)在∆ABC 中,222+=+a c b .(1)求B ∠ 的大小;(2cos cos A C + 的最大值.【答案】(1)4π;(2)1.考点:1.三角恒等变形;2.余弦定理.【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.16.(本小题13分)A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A 、B 、C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ ,表格中数据的平均数记为0μ ,试判断0μ和1μ的大小,(结论不要求证明)【答案】(1)40;(2)38;(3)10μμ<. 【解析】 试题分析:(Ⅰ)根据图表判断C 班人数,由分层抽样的抽样比计算C 班的学生人数;(Ⅱ)根据题意列出“该周甲的锻炼时间比乙的锻炼时间长”的所有事件,由独立事件概率公式求概率.(Ⅲ)根据平均数公式进行判断即可.考点:1.分层抽样;2.独立事件的概率;3.平均数【名师点睛】求复杂的互斥事件的概率的方法:一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式)(1)(A P A P -=,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.17.(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.【答案】(1)见解析;(2(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=. 因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅,即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM .考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.18.(本小题13分)设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.19.(本小题14分)已知椭圆C :22221+=x y a b (0a b >>,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析.(2)由(Ⅰ)知,)1,0(),0,2(B A ,考点:1.椭圆方程及其性质;2.直线与椭圆的位置关系.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.20.(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素;(2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N ),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(,记10=n .则p n n n n a a a a <⋅⋅⋅<<<210.对p i ,,1,0⋅⋅⋅=,记{}i n k i i a a N k n N k G >≤<∈=*,. 如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G .从而对任意n k n p ≤≤,p n k a a ≤,特别地,p n N a a ≤.考点:数列、对新定义的理解.【名师点睛】数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型,数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.。
变量的相关性北京四中 李伟知识讲解一、变量间的相关关系 变量之间存在着两种关系: 一类是确定的函数关系;一类是非确定的关系,有随机性正相关 两个变量的总体变化趋势一致知识和能力收入水平与其科技文化素质风险与利润负相关 两个变量的总体变化趋势相反儿童的铅指标与智商 家庭用于消费的资金与储蓄的资金数量散点图直观描述两个变量之间是否具有相关关系的图形某地10户家庭的年收入与年饮食支出表(单位:万元)相关收入 2 4 4 6 6 6 7 7 8 10 支出0.9 1. 4 1。
6 2。
0 2.1 1.9 1. 8 2。
1 2。
2 2。
3二、两个变量的线性相关线性相关 散点图中的点大致分布在一条直线附近非线性相关人的脂肪含量与年龄之间的关系相关1。
回归直线“最贴近”这些已知的数据点的直线y a bx,记直线为=+其中y表示计算值(估计值).当=x x时得到观测值(实际值)为i y.i方程=+y a bx称为y对x的回归直线方程,b叫做回归系数。
2。
回归直线的求解如何用数学语言来刻画“与这些个点最贴近”?()21niii y y =-∑21==-+∑[()]ni i i Q y a bx22221222==++--+∑()ni i i i i i i y a b x bx y ay abx222211111222======++--+∑∑∑∑∑nnn n niii i i i i i i i i y na bxb x y a y ab x222211122====--+-+∑∑∑()nn nii i i i i i na an y bx bxb x y y22222211122====--+---+-+∑∑∑()()()nn nii i ii i i na an y bx n y bx n y bx bxb x y y[]222221112====----+-+∑∑∑()()nn nii i ii i i n a y bx n y bx bxb x y y[]2222221112====--+⎛⎫⎛⎫⎛⎫---⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑()n n n i i i i i i i n a y bx b x nx b x y nx y y ny []222212211===⎡⎤-⋅⎢⎥⎛⎫⎢⎥=--+--+ ⎪⎢⎥⎝⎭-⎢⎥⎣⎦∑∑∑()ni i n i i ni i i x y nx y n a y bx x nx b x nx 21222211===⎛⎫-⋅ ⎪⎛⎫⎝⎭-- ⎪⎝⎭-∑∑∑n i i n i i n i ii x y nx y y ny x nx[]()()()()222121121222211======⎡⎤--⎢⎥⎛⎫⎢⎥=--+--+ ⎪⎢⎥⎝⎭-⎢⎥⎣⎦⎛⎫-⋅ ⎪⎛⎫⎝⎭-- ⎪⎝⎭-∑∑∑∑∑∑()ni i ni i n i i i n i i n i i n i ii x x y y n a y bx x x b x x x y nx y y ny x nx 上式中最后两项与a ,b 无关,当且仅当前两项均为0时取最小值,即()()()1122211n niii ii i nniii i x x y y x y nx yb xx xnx====---==--∑∑∑∑a y bx =-其中a ,b 上方加“"表示时由观测值按最小二乘法求得的估计值3.回归直线模型的应用(1)预测, 内插预测和外推预测 (2)控制,典型例题例1.对变量x , y 有观测数据(,iix y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,i i u v )(i=1,2,…,10),得散点图2。
第5讲 概率的计算 北京四中 李伟
知识要点
一、随机变量的概念
随机变量:随机试验的结果可以用变量X 来表示,
X 是随着试验的结果的不同而变化的.
随机变量建立了随机试验结果的集合与实数集之间的一种对应关系. 随机变量分类: 离散型随机变量: 连续型随机变量: 二、离散型随机变量的分布列
通常我们用离散型随机变量X 与这一变量所对应概率P (X )的 “二维表”表示离散型随机变量X 的所有可能取值和每一个取值的发生 概率p :
X 1x 2x …. n x …. p 1p
2p
….
n p
….
性质 (1)0,1,2,3,
,,i
p i n ≥=(2)121n p p p ++++
=三、随机变量的数学期望与方差
X 1x 2x …. n x ….
p 1p
2p
….
n p
….
称
1122()n n E X x p x p x p =++
++
为X 的数学期望,
()()()22
2
1122()()()()n n D X x E X p x E X p x E X p =-+-+
+-+
为X 的方差. 期望与方差的性质 若Y
aX b =+ (a, b 是常数),
则()()E Y aE X b =+,2
()()D Y a D X =.
X 1x 2x
…. n x …. Y 1ax b + 2ax b +
… n ax b +
… p 1p 2p ….
n p
….
典型例题分析
例1 设随机变量的分布如下:
解析:
例2某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每 辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获 9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发 生此种事故的概率分别为
19,1
10,111
,且各车是否发生事故相互独 立,求一年内该单位在此保险中:
(Ⅰ)获赔的概率;(Ⅱ)获赔金额X的分布列与期望.
解析:
例3 有10件产品,其中3件是次品.从中任取2件,若抽到的次品数为X,求X的分布列,期望和方差.
解析:。