四边形经典测试题及解析
- 格式:doc
- 大小:872.50 KB
- 文档页数:18
四边形测试题及答案一、选择题1. 下列哪个选项不是四边形的性质?A. 四边形的内角和为360度B. 四边形的对角线互相平分C. 四边形的对边相等D. 四边形的对角互补答案:C2. 一个平行四边形的对角线长度分别为10厘米和8厘米,其面积是多少平方厘米?A. 40B. 30C. 20D. 50答案:C3. 菱形的对角线互相垂直,那么它的面积可以通过以下哪个公式计算?A. 面积 = 对角线长度的平方B. 面积 = 对角线长度的乘积 / 2C. 面积 = 对角线长度的和 / 2D. 面积 = 对角线长度的差 / 2答案:B二、填空题1. 矩形的四个角都是_________角。
答案:直角2. 梯形中,不平行的一对边称为_________。
答案:腰3. 平行四边形的对角线互相_______。
答案:平分三、简答题1. 请简述四边形的分类及其特点。
答案:四边形可以分为平行四边形、矩形、菱形、梯形等。
平行四边形的对边平行且相等,对角线互相平分;矩形是所有内角都是直角的平行四边形;菱形是四边相等且对角线互相垂直的平行四边形;梯形是只有一对边平行的四边形。
2. 什么是等腰梯形?它有哪些特性?答案:等腰梯形是两腰相等的梯形。
它的主要特性包括:两腰相等,底角相等,对角线相等。
四、计算题1. 已知一个梯形的上底为6厘米,下底为10厘米,高为4厘米,请计算它的面积。
答案:梯形面积 = (上底 + 下底)× 高/ 2 = (6 + 10) × 4 / 2 = 32平方厘米2. 给定一个矩形,长为15厘米,宽为10厘米,求它的周长和面积。
答案:周长= 2 × (长 + 宽) = 2 × (15 + 10) = 50厘米面积 = 长× 宽= 15 × 10 = 150平方厘米五、证明题1. 证明:平行四边形的对角线互相平分。
答案:设平行四边形ABCD,对角线AC和BD相交于点E。
冀教版小学二年级数学下册第五章四边形的认识单元测试题一、单选题(共8题;共16分)1.下面哪个图形是平行四边形?A. B. C.2.正方形是由()条线段组成的。
A. 4B. 3C. 23.把正方形的纸片折成完全相同的四块,正确的折法是()。
A. B. C.4.两个完全相同的三角形一定能拼成一个()A. 长方形B. 正方形C. 平行四边形5.对边相等的四边形()是长方形。
A. 可能B. 不可能C. 一定6.这个图形中一共有()个长方形。
A. 6B. 5C. 37.在右图中截一个最大的正方形,这个正方形的边长是()。
A. 10cmB. 6cmC. 4cmD. 不能确定8.下图中有()个平行四边形。
A. 4B. 6C. 8D. 9二、判断题(共5题;共10分)9.正方形有四个角,而且都是直角。
()10.一张长方形纸的四个角都是直角。
()11.长方形和正方形的四个角都是直角。
()12.由四条线段围成的图形不是长方形就是正方形。
()13.用两个正方形能拼成一个长方形。
()三、填空题(共8题;共11分)14.两个长方形里有________个直角。
15.9个正方形有________个直角。
16.黑板有________个角。
17.长方形有________个直角,正方形________条边相等。
18.正方形是由________条线段围成的。
19.下图中一共有________正方形。
20.填序号长方形:________ 正方形:________21.长方形长边的长叫做________,短边的长叫做________。
四、解答题(共7题;共40分)22.一个长方形长80厘米,宽60厘米,把它剪成一个最大的正方形,这个正方形的边长是多少?剩下的长方形的长和宽各是多少?23.平行四边形有什么特征?24.请你在下面的钉子板上画出两个不同的长方形和正方形.25.按要求回答问题。
(1)在下面的长方形中画一条线,使其成为两个相等的长方形。
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
四边形单元测试题及答案一、选择题1. 下列哪个图形不是四边形?A. 正方形B. 长方形C. 平行四边形D. 三角形答案:D2. 一个四边形的对角线数量是多少?A. 1B. 2C. 3D. 4答案:B3. 菱形具有以下哪些特性?A. 对角线相等B. 对角线互相垂直C. 四边相等D. 所有选项都正确答案:D二、填空题1. 一个平行四边形的对边_________。
答案:平行且相等2. 正方形是特殊的_________。
答案:平行四边形3. 菱形的对角线_________。
答案:互相垂直且平分三、简答题1. 请简述四边形的基本性质。
答案:四边形是一个平面图形,由四条直线段依次首尾相连组成。
其基本性质包括:对边平行且相等,对角线互相平分。
2. 什么是梯形?请简述其特点。
答案:梯形是一个四边形,其中一组对边平行,另一组对边不平行。
其特点是:非平行的两边称为腰,平行的两边称为底,两底之间的距离称为高。
四、计算题1. 已知一个平行四边形的两邻边长分别为3厘米和5厘米,求其对角线的长度。
答案:由于题目没有给出足够的信息,无法直接计算对角线的长度。
需要知道平行四边形的其他信息,如角度或对角线与边的关系。
2. 如果一个正方形的边长为4厘米,计算其面积。
答案:正方形的面积 = 边长× 边长 = 4厘米× 4厘米 = 16平方厘米。
五、解答题1. 如何证明一个四边形是平行四边形?答案:要证明一个四边形是平行四边形,可以采用以下方法之一:- 两组对边分别平行。
- 两组对边分别相等。
- 对角线互相平分。
2. 已知一个菱形的边长为6厘米,求其面积。
答案:菱形的面积可以通过以下公式计算:面积 = (对角线1 ×对角线2) / 2。
由于题目没有给出对角线的长度,我们可以使用菱形的边长和其特性来求解。
设对角线分别为d1和d2,根据菱形的性质,d1² + d2² = 4 × 边长² = 4 × 6² = 144。
沪科版八年级数学下册第19章 四边形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD 中,2,1AD CD ==,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形11AB C C ,再连接1AC ,以对角线1AC 为边作矩形11AB C C 的相似矩形221AB C C ,…按此规律继续下去,则矩形1n n n AB C C 的周长为( )A .3n ⨯⎝⎭B .13n -⨯⎝⎭C .6n ⨯⎝⎭D .16n -⨯⎝⎭2、将一块三角尺和一张矩形纸片如图排放,若∠1=25°,则∠2的大小为( )A .55°B .65°C .45°D .75°3、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A.2.5km B.4.5km C.5km D.3km4、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为EBD∆,那么下列说法错误的是()A.EBD∆是等腰三角形B.EBA∆全等∆和EDC∠相等C.折叠后得到的图形是轴对称图形D.折叠后ABE∠和CBD5、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是()A.A,B,C都不在B.只有BC.只有A,C D.A,B,C6、下图是文易同学答的试卷,文易同学应得()A.40分B.60分C.80分D.100分7、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式()A.1种B.2种C.3种D.4种8、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形B.矩形C.正方形D.三角形9、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.4410、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A .7B .6C .4D .8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在□ABCD 中,AC 与BD 相交于点O ,∠AOB =60°,BD =4,将△ABC 沿直线AC 翻折后,点B 落在点B ′处,那么DB ′的长为_________2、如图,每个小正方形的边长都为1,△ABC 是格点三角形,点D 为AC 的中点,则线段BD 的长为 _____.3、点D 、E 、F 分别是△ABC 三边的中点,△ABC 的周长为24,则△DEF 的周长为______.4、已知□ABCD 的周长是20cm ,且AB :BC =3:2,则AB =_______cm .5、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图,DE是ABC∆的中位线,延长DE到F,使EF DE=,连接BF.=.求证:BF DC2、如图,四边形ABCD是平行四边形,∠BAC=90°.(1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD 于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.3、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.(1)则∠CDF=(2)若ED=CD,AE=BC,求证:AF=BF.4、如图, ABCD 的对角线AC 、 BD 相交于点O ,BD =12cm ,AC =6cm ,点E 在线段BO 上从点B 以1cm/s 的速度向点O 运动,点F 在线段OD 上从点O 以2cm /s 的速度向点D 运动.(1)若点E 、F 同时运动,设运动时间为t 秒,当t 为何值时,四边形AECF 是平行四边形.(2)在(1)的条件下,当AB 为何值时, AECF 是菱形;(3)求(2)中菱形AECF 的面积.5、已知平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程 ()244210x mx m -+-=的两个实数根.(1)当m 为何值时,平行四边形ABCD 是菱形?(2)若AB 的长为2,那么平行四边形ABCD 的周长是多少?-参考答案-一、单选题1、C【分析】根据已知和矩形的性质可分别求得AC ,AC 1,AC 2的长,从而可发现规律,根据规律即可求得第n 个矩形的周长.【详解】∵四边形ABCD 是矩形,∴AD ⊥DC ,2,1AD CD ==∴AC =∵按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,∴矩形AB 1C 1C 的边长和矩形ABCD 2∴矩形AB 1C 1C 的周长和矩形ABCD 2,∵矩形ABCD 的周长=(2+1)×2=6,∴矩形AB 1C 1C 的周长6,依此类推,矩形AB 2C 2C 1的周长和矩形AB 1C 1C 2∴矩形AB 2C 2C 1的周长=26⨯∴矩形AB 3C 3C 2的周长=36⨯ ……按此规律矩形1n n n AB C C 的周长为:6n ⨯ 故选:C .【点睛】 本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.2、B【分析】延长CE,交矩形边于点B,利用三角形外角性质,平行线的性质计算.【详解】延长CE,交矩形边于点B,∴∠ABE=90°-∠1=65°,∵纸片是矩形,∴AB∥CD,∴∠ABE=∠2=65°,故选B.【点睛】本题考查了矩形的性质,平行线的性质,三角形外角的性质,三角板的特点,熟练掌握平行线的性质是解题的关键.3、D【详解】AB,即可求出CM.根据直角三角形斜边上的中线性质得出CM=12【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.4、D【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.【详解】解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.5、D【分析】根据三角形边长然后利用勾股定理逆定理可得ABC∆为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD,∵300AB =,400BC =,500AC =,∴222AC AB BC =+,∴ABC ∆为直角三角形,∵D 为AC 中点,∴250AD CD BD ===,∵覆盖半径为300 ,∴A 、B 、C 三个点都被覆盖,故选:D .【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.6、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键7、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.故只购买一种瓷砖进行平铺,有3种方式.故选:C.【点睛】本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.8、B【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.9、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE 是直角三角形,是解答本题的关键.10、A【分析】如图所示,连接AC ,OB 交于点D ,先求出C 和A 的坐标,然后根据矩形的性质得到D 是AC 的中点,从而求出D 点坐标为(2,1),再由当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,进行求解即可.【详解】解:如图所示,连接AC ,OB 交于点D ,∵C 是直线32y x =+与y 轴的交点,∴点C 的坐标为(0,2),∵OA =4,∴A 点坐标为(4,0),∵四边形OABC 是矩形,∴D 是AC 的中点,∴D 点坐标为(2,1),当直线32y x =+经过点D 时,可将矩形OABC 的面积平分,由题意得平移后的直线解析式为32y x m =+-,∴3221m ⨯+-=,∴7m =,故选A .【点睛】 本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.二、填空题1、2【分析】BD=2.连接B′O.证明△B′OD是等边三角形,即可求得B′D=OD=12【详解】解:如图,连接B′O.∵∠AOB=∠B′OA=60°,∴∠B′OD=60°,∵OB=OB′=OD,∴△B′OD是等边三角形,BD=2,∴B′D=OD=12故答案为:2.【点睛】本题考查了折叠变换的性质、平行四边形的性质以及等边三角形的判定和性质;熟练掌握翻折变换和平行四边形的性质是解题的关键.2##【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:3AB==BC===AC222AB BC AC∴+=,∴∠ABC=90°,∵点D为AC的中点,∴BD为AC边上的中线,∴BD=12AC=【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.3、12【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】解:∵如图所示,D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴△DEF 的周长=DF +FE +DE 12=BC 12+AB 12+AC 12=(AB +BC +CA )12=⨯24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路. 4、6【分析】由平行四边形ABCD 的周长为20cm ,根据平行四边形的性质,即可求得AB +BC =10cm ,又由AB :BC =3:2,即可求得答案.【详解】解:∵平行四边形ABCD 的周长为20cm ,∴AB =CD ,AD =BC ,AB +BC +CD +AD =20cm ,∴AB +BC =10cm ,∵AB :BC =3:2, ∴3=106cm 32AB ⨯=+. 故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.5、180°-α根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∴∠AEO=∠ADO=90°,又BACα∠=,∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.三、解答题1、见解析【分析】由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.【详解】∵DE是ABC∆的中位线∴DE∥AB,12DE AB=,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四边形ABFD为平行四边形∴AD=BF∴BF=DC本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.2、(1)图形见解析;(2)FM FC =,证明见解析【分析】(1)以C 为圆心CD 长为半径画弧于BC 交点即为E ;连DE 与AC 交点即为F ;过F 作AD 的垂直平分线与AD 交点即为M ;(2)证明DF 平分ADC ∠,再利用角平分线的性质判定即可.【详解】(1)图形如下:(2)FM FC =,证明如下:由(1)可得:90FMD ∠=︒,CE =CD∴CED CDE ∠=∠∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD∴CED ADE ∠=∠,∴ADE CDE ∠=∠即DF 平分ADC ∠∵∠BAC =90°∴90ACD FMD ∠=∠=︒∴FM FC =【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.3、(1)54°;(2)见解析.【分析】(1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC 内角和计算出∠CDF 的度数;(2)连接AD 、DB ,然后证明△DEA ≌△DCB 可得AD =DB ,再根据等腰三角形的性质可得AF =BF .【详解】解:(1)∵五边形ABCDE 的内角都相等,∴∠C =∠B =∠EDC =180°×(5﹣2)÷3=108°,∵DF ⊥AB ,∴∠DFB =90°,∴∠CDF =360°﹣90°﹣108°﹣108°=54°,故答案为:54°.(2)连接AD 、DB ,在△AED 和△BCD 中,DE DC E C AE BC =⎧⎪∠=∠⎨⎪=⎩, ∴△DEA ≌△DCB (SAS ),∴AD =DB ,∵DF ⊥AB ,∴AF =BF .【点睛】本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.4、(1)t =2s ;(2)AB =(3)24【分析】(1)若是平行四边形,所以BD =12cm ,则BO =DO =6cm ,故有6-t=2t ,即可求得t 值;(2)若是菱形,则AC 垂直于BD ,即有222AO BO AB +=,故AB 可求;(3)根据四边形AECF 是菱形,求得BO AC OE OF ⊥=,,根据平行四边形的性质得到BO =OD ,求得BE =DF ,列方程到底BE =DF =2,求得EF =8,于是得到结论.【详解】解:(1)∵四边形ABCD 为平行四边形,∴AO =OC ,EO =OF ,∵BO =OD =6cm ,∴62EO t OF t -=,=,∴62t t -=,∴2t s =,∴当t 为2秒时,四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,则AC BD ⊥,222AO BO AB ∴+=,B A ==∴当AB 为AECF 是菱形;(3)由(1)(2)可知当t =2s ,AB =AECF 是菱形,∴EO =6−t =4,∴EF =8,∴菱形AECF 的面积=11682422AC EF ⋅=⨯⨯=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.5、(1)当m 为1时,四边形ABCD 是菱形.(2)▱ABCD 的周长是5.【分析】(1)根据一元二次方程有实根求出△=16(m -1)2≥0,结合根的判别式,当△=0时,AB =AD ,平行四边形ABCD 为菱形,得出16(m -1)2=0求出m 的值即可;(2)根据AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根,将x =2代入原方程可求出m 的值,将m 的值代入原方程,求出方程的另一根AD 的长,再根据平行四边形的周长公式即可求出▱ABCD 的周长.【详解】解:(1)∵平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程()244210x mx m -+-=的两个实数根∴△=(-4m )2-4×4(21m -)=16(m -1)2≥0,当△=0时,AB =AD ,平行四边形ABCD 为菱形,∴16(m -1)2=0∴m =1,∴当m 为1时,四边形ABCD 是菱形.(2)∵AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根把x =2代入原方程,得:()4442210m m ⨯-⨯+-=解得:m =52.将m =52代入原方程,得:24104=0x x -+整理得2252=0x x -+,因式分解得()()2120x x --=∴x 1=2,x 2=12∴AD =12,∴▱ABCD 的周长是2×(2+12)=5.【点睛】本题考查一元二次方程的根的判别式,菱形的性质,平四边形周长,一元二次方程的解,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
冀教版小学二年级数学下册第五章四边形的认识单元测试题一、单选题(共8题;共16分)1.下面的四边形中,()是平行四边形A. B. C.2.下面说法错误的是()。
A. 四个角都是直角的四边形一定是长方形B. 四个角都是直角的四边形一定是正方形C. 正方形是特殊的长方形3.至少用()个一样的小正方形可以拼成一个大正方形.A. 2B. 4C. 164.把一个可以活动的平行四边形拉成一个长方形,比较它们的周长( )。
A. 长方形长B. 平行四边形长C. 一样长5.下列()不是长方形和正方形的共同特征。
A. 四条边都相等B. 四个角都是直角C. 都是四边形6.看看下图是()种不同图形组合而成的。
A. 2B. 3C. 47.梯形有()条高。
A. 4B. 3C. 无数D. 18.把一个长方形框架拉成一个平行四边形后,周长()。
A. 不变B. 变大C. 变小D. 无法判断二、判断题(共5题;共10分)9.正方形也需要画高。
()10.正方形是特殊的长方形。
()11.周长相等的两个正方形,边长也一定相等。
()12.面积相等的两个梯形一定能拼成一个平行四边形。
()13.用2个同样的小正方形可以拼成一个大正方形,对吗?()三、填空题(共8题;共10分)14.两个长方形里有________个直角。
15.一个长方形的长如果减少5厘米,面积就减少40平方厘米,剩下的恰好是一个正方形。
原长方形的面积是________平方厘米。
16.长方形和正方形都是________形,它们都有________条边,都有________个直角。
其中________的对边相等,________的四条边都相等。
17.正方形相邻的两条边互相________,________的两条边互相平行。
18.有多少个长方形(正方形)?(________)个长方形(________)个正方形19.一个正方形可以折成2个完全一样的________或________。
四边形经典考点1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。
(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。
矩形具有________的一切性质。
矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。
矩形被对角线分成了____________个等腰三角形。
(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线__ ___的平行四边形是矩形。
温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再一个角为直角或对角线相等。
很多同学容易忽视这个问题。
2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。
(2)菱形的性质菱形的_______都相等;菱形的对角线互相____ ___,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。
菱形即是轴对称图形也是中心对称图形,对称轴有__ __条。
(3)菱形的面积菱形的面积=底×高,菱形的面积=21ab ,其中a ,b 分别为菱形两条对角线的长。
菱形被对角线分成了4个全等的直角三角形。
(4)菱形的判定:_______都相等的四边形是菱形;对角线______的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。
温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。
3.正方形的性质及判定方法(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形。
数学平行四边形测试试题及解析一、选择题1.如图,矩形ABCD 中,AB =23,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .43+3B .221C .23+6D .452.如图,边长为1的正方形EFGH 在边长为4的正方形ABCD 所在平面上移动,始终保持EF//AB ,CK=1.线段KG 的中点为M ,DH 的中点为N ,则线段MN 的长为 ( ).A .26B .17C .17D .26 3.如图,在▭ABCD 中,AB =4,BC =6,∠ABC =60°,点P 为▭ABCD 内一点,点Q 在BC 边上,则PA +PD +PQ 的最小值为( )A 3719B .3C .3D .104.如图,四边形ABCD 中,,,,AC a BD b AC BD ==⊥顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D ...如此进行下去,得到四边形.n n n n A B C D 则下列结论正确的个数有( ) ①四边形1111D C B A 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长为4a b +; ④四边形n n n n A B C D 的面积是12n ab +.A .4个B .3个C .2个D .1个5.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E 且AB =AE ,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①△ABC ≌△EAD ;②△ABE 是等边三角形;③BF =AD ;④S △BEF =S △ABC ;⑤S △CEF =S △ABE ;其中正确的有( )A .2个B .3个C .4个D .5个6.线段AB 上有一动点C (不与A ,B 重合),分别以AC ,BC 为边向上作等边△ACM 和等边△BCN ,点D 是MN 的中点,连结AD ,BD ,在点C 的运动过程中,有下列结论:①△ABD 可能为直角三角形;②△ABD 可能为等腰三角形;③△CMN 可能为等边三角形;④若AB=6,则AD+BD 的最小值为37. 其中正确的是( )A .②③B .①②③④C .①③④D .②③④7.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连结EF ,则线段EF 的长的最小值是( )A .2.5B .2.4C .2.2D .2 8.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个 9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.510.如图,△ABC 中,AB =24,BC =26,CA =14.顺次连接△ABC 各边中点,得到△A 1B 1C 1;再顺次连接△A 1B 1C 1各边中点,得到△A 2B 2C 2…如此进行下去,得到n n n A B C ,则△A 8B 8C 8的周长为( )A .1B .12C .14D .18二、填空题11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.12.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.13.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.14.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.15.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.16.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.17.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.18.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).19.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②S △ABG =32S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.22.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.25.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD是平行四边形;(2)线段BE和线段CD有什么数量关系,请说明理由;BC 求EF的长度(结果用含根号的式子表示).(3)已知2,26.已知:在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C 重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BD与CF的位置关系为__________;CF、BC、CD三条线段之间的数量关系____________________.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请你写出CF、BC、CD三条线段之间的数量关系并加以证明;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.△的形状,并说明理②若连接正方形对角线AE、DF,交点为O,连接OC,探究AOC由.27.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.28.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG 2=,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.29.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
四边形测试题〔通用8篇〕篇1:数学四边形测试题数学四边形测试题一、选择题(每题3分,共30分)。
1、顺次连结四边形各边的中点,所成的四边形必定是A等腰梯形B直角梯形C矩形D平行四边形2、如图1:等腰梯形ABCD中,AD∥BC,对角线AC、BD 相交于点O,那么图中的全等三角形共有A1对B2对C3对D4对3、如图2,在矩形ABCD中,AD∥BC,AC与BD交于点O,那么图中面积相等的三角形有A4对B5对C6对D8对4、不能断定四边形ABCD为平行四边形的命题是AAB∥CD且AB=CDBAB=AD、BC=CDCAB=CD,AD=BCD∠A=∠C,∠B=∠D5、以下命题中,真命题是A一组对边平行,另一组对边相等的'四边形是平行四边形B有一组对边和一组对角分别相等的四边形是平行四边形C两组对角分别相等的四边形是平行四边形D两条对角线互相垂直且相等的四边形是平行四边形6、正方形具有而菱形不一定具有的性质是A对角线相等B对角线互相垂直且平分C四条边都相等D对角线平分一组对角篇2:初中数学四边形单元测试题参考初中数学四边形单元测试题参考一、精心选一选,相信你一定能选对!(每题3分,共30分)1.如图1,用两个完全一样的直角三角板,不能拼成以下图形的是( ).A.平行四边形B.矩形C.等腰三角形D.梯形2.以下说法中,正确的选项是( ).A.等腰梯形的对角线互相垂直B.菱形的对角线相等C.矩形的对角线互相垂直;D.正方形的对角线互相垂直且相等3.四边形ABCD是平行四边形,以下结论中,错误的选项是( ).A.AB=CD;B.AC=BD;C.当AC⊥BD时,它是菱形;D.当∠ABC =90°时,它是矩形4.如图2,将一张矩形纸片ABCD那样折起,使顶点C落在C′处,其中AB=4,假设∠C ′ED=30°,那么折痕ED的长为( ) .A.4B.4C.5D.85.如图3,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影局部的面积是矩形面积的( ).A. B. C. D.6.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①, ②两局部,将①展开后得到的平面图形是( ).A.三角形B.矩形C.菱形D.梯形7. 等腰梯形ABCD的中位线EF的长为6,腰AD的长为5,那么等腰梯形的周长为(• ).A.11B.16C.17D.228.顺次连结菱形各边中点所围成的四边形是( ).A.一般的平行四边形B.矩形C.菱形D.等腰梯形9.如图4是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,•那么该主板的周长是( ).A.88mmB.96mmC.80mmD.84mm10.如图5,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,那么DN+MN的最小值为( ).A.8B.8C.2D.10二、细心填一填,相信你填得又快又准!(每题2分,共16分)11. ABCD两邻角∠A:∠B=1:2,那么∠C=_ ____度.12.如图6,在 ABCD中,E、F和G、H分别是AD和BC的三等分点,那么图中平行四边形的个数共有______个.13., ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD 于E,那么DE=_____cm.14.如图,在长方形ABCD中,AB=3,BC=2,E为BC的中点,F在AB上,且BF=2AF,那么四边形AFEC的面积为________.15.如图,矩形纸片ABCD中,AB=6cm,AD=9cm,再按以下步骤折叠:①将∠BAD对折,使AB落在AD上,得折痕AF(如图2);②将△AFB沿BF折叠,AF与CD交于点G(如图3),•那么CG的长等于_______c m.16.过边长为1的正方形的中心O引两条互相垂直的射线,分别与正方形的边交于A、B两点,那么线段 AB长的取值范围是_______.17.菱形ABCD的边长为6,∠A=60°,假如点P是菱形内一点,且PB=PD=2 ,那么AP的长为_______.18.下面图1的梯形符合_______条件时,可以经过旋转和翻折成图案三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,•对而不全酌情给分)19.如图,在等腰梯形ABCD中,AD∥BC,AC与BD相交于点O.下面结论正确的选项是( ).A.AC=BDB.∠DAO=∠DBCC.S△BOC= S梯形ABCDD.△AOB≌△DOC20.如图,把两个边长为3的正方形叠放在一起,假设∠BCF=30°,•那么下面结论正确的选项是( ).A.∠DCG=30°B.∠AHF与∠BCF互余C.DH=FHD.DH=四、用心做一做,展示你的证明才能!21.如图,在矩形ABCD中,点E、F在BC边上,且BE=CF,AF、DE交于点M.求证:AM=DM.(6分)22.如图,等腰梯形ABCD中,AD∥BC,AB =CD,DE⊥BC 于E,AE=BE.BF⊥AE于F,请你判断线段BF与图中的哪条线段相等,先写出你的猜测,再加以证明.(6分)(1)猜测:BF=______.(2)证明:23.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.(8分)五、仔细想一想,相信你一定行!24.如图,以△ABC的各边向同侧作正△ABD,BCF,ACE.(1)求证:四边形AEFD是平行四边形;(2)当△ABC是______三角形时,四边形AEFD是菱形;(3)当∠BAC=_____时,四边形AEFD是矩形;(4)当∠BAC=_______时,以A、E、F、D 为顶点的四边形不存在.(8分)25.矩形,菱形由于其特殊的性质,为拼图提供了方便,因此墙面瓷砖一般设计为矩形,图案也以菱形居多.如图,是一种长30cm,宽20cm的矩形瓷砖,E、F、G、H•分别是矩形各边的中点,阴影局部为淡黄色,中间局部为白色,现有一面长4.2m,宽2.8m的墙壁准备贴瓷砖.问:(1)这面墙壁最少要贴这种瓷砖多少块?(2)全部贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?•其中淡黄色的菱形有多少个?六、动脑想一想,展示你的设计才能!26.在劳技课上,老师请同学们在一张长为17cm,宽为16cm的长方形纸板上,剪下一个腰长为10cm的等腰三角形(•要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).•请你帮助同学们计算剪下的'等腰三角形的面积.(6分)27.蓝天希望学校准备建一个多媒体教室,方案做长120cm,宽30cm的长方形桌面,现只有长80cm,宽45cm的木板,请你为该校设计不同的拼接方案,使拼起来的桌面符合要求.(只要求画出裁剪,拼接图形,并标上尺寸)(6分)七、理论与探究,展示你的创新才能!28.设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…….(1)记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4, ……,an,恳求出a2,a3,a4的值.(2)根据以上规律写出an的表达式.(8分)29.在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,•用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如下图1.仿照上述的方法,按要求完成以下操作设计,并在规定位置画出图示.(1)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置上.(2)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置上.(3)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置上.(4)在△ABC中(AB≠AC),一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,•其操作过程(剪切线的作法)是:___________,然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置上.(10分)篇3:四边形四边形有关概念四边形内角和例1十、随堂练习教材P122中1、2、3.篇4:四边形性质探究的测试题(有答案) 一、选择题(每题3分,共30分)1.以下各组图形中有可能不相似的是A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.以下说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60o的两个直角三角形相似,其中正确的说法是A.①③B.②④C.①②④D.②③④3.△ABC和△DEF满足以下条件,其中使△ABC和△DEF不相似的是A.∠A=∠D=45°,∠C=27°,∠E=108°B.AB=1,AC=1.5,BC=2,DE=12,EF=8,DF=16C.BC=a,AC=b,AB=c,DE=,EF=,DF=D.AB=AC,DE=DF,∠A=∠D=40o,4.如下图,给出以下条件:①; ②;③; ④.其中单独可以断定的个数为A.1B.2C.3D.45.假如一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值A.只有1个B.可以有2个C.有2个以上但有限D.有无数个6.如图,△ABC中,EF∥BC,DG∥AB,EF和DG相交于点H,那么图中与△ABC相似的三角形共有A.1个B.2个C.3个D.4个7.△ABC中,D是AB上一固定点。
第2章四边形测试题总分数 100分时长:90分钟一、选择题(共10题 ,总计30分)1.(3分)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A. 20B. 24C. 28D. 402.(3分)平行四边形一边长为12 cm,那么它的两条对角线的长度可能是()A. 10 cm和34 cmB. 18 cm和20 cmC. 10 cm和14 cmD. 8 cm和14 cm3.(3分)当一个n边形的边数增加1时,它的外角和增加()A. 180°B. 0°C. n·180°D. 360°4.(3分)将一张长方形纸片按如图所示的方式折叠,则∠CBD的度数为()A. 60°B. 75°C. 90°D. 95°5.(3分)菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为()A.B.C.D.6.(3分)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形,其中正确的是()A. ①②B. ①③C. ②③D. ①②③7.(3分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A. 53°B. 37°C. 47°D. 123°8.(3分)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A. 1B. 2C.D.9.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD10.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A. 10°B. 15°C. 20°D. 25°二、填空题(共8题 ,总计24分)11.(3分)若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是____1____度.12.(3分)如图,在▱ABCD中,BD为对角线,E,F分别是AD,BD的中点,连接EF.若EF=3,则CD的长为____1____.13.(3分)已知菱形两条对角线的长分别为5 cm和8 cm,则这个菱形的面积是____1____cm2.14.(3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____1____.15.(3分)若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____1____.16.(3分)平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长大2 cm,则CD=____1____cm.17.(3分)如图所示,菱形ABCD的边长为4,∠B=60°,则菱形的面积为____1____.18.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=____1____度.三、解答题(共5题 ,总计46分)19.(8分)如图,AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20.(8分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.21.(10分)如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.22.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACD的平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.23.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?参考答案与试题解析一、选择题(共10题 ,总计30分)1.(3分)如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A. 20B. 24C. 28D. 40【解析】略【答案】A2.(3分)平行四边形一边长为12 cm,那么它的两条对角线的长度可能是()A. 10 cm和34 cmB. 18 cm和20 cmC. 10 cm和14 cmD. 8 cm和14 cm【解析】略【答案】B3.(3分)当一个n边形的边数增加1时,它的外角和增加()A. 180°B. 0°C. n·180°D. 360°【解析】略【答案】B4.(3分)将一张长方形纸片按如图所示的方式折叠,则∠CBD的度数为()A. 60°B. 75°C. 90°D. 95°【解析】略【答案】C5.(3分)菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为()A.B.C.D.【解析】略【答案】D6.(3分)下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形,其中正确的是()A. ①②B. ①③C. ②③D. ①②③【解析】略【答案】C7.(3分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A. 53°B. 37°C. 47°D. 123°【解析】略【答案】B8.(3分)将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A. 1B. 2C.D.【解析】略【答案】D9.(3分)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD【解析】略【答案】D10.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A. 10°B. 15°C. 20°D. 25°【解析】略【答案】B二、填空题(共8题 ,总计24分)11.(3分)若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是____1____度.【解析】【答案】3012.(3分)如图,在▱ABCD中,BD为对角线,E,F分别是AD,BD的中点,连接EF.若EF=3,则CD的长为____1____.【解析】略【答案】613.(3分)已知菱形两条对角线的长分别为5 cm和8 cm,则这个菱形的面积是____1____cm2.【解析】【答案】2014.(3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为____1____.【解析】略【答案】2815.(3分)若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为____1____.【解析】【答案】16.(3分)平行四边形ABCD的周长为20 cm,对角线AC,BD相交于点O,若△BOC的周长比△AOB的周长大2 cm,则CD=____1____cm.【解析】略【答案】417.(3分)如图所示,菱形ABCD的边长为4,∠B=60°,则菱形的面积为____1____.【解析】略【答案】18.(3分)如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=____1____度.【解析】略【答案】22.5三、解答题(共5题 ,总计46分)19.(8分)如图,AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【解析】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,BE∥CF.∵AB∥CD,∴∠A=∠D.又∵AE=DF,∴△AEB≌△DFC.∴BE=CF.∴四边形BECF是平行四边形【答案】见解析20.(8分)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.【解析】证明:(1)∵AB=AC,∴∠B=∠ACB.∵∠FAC=∠B+∠ACB=2∠ACB,AD平分∠FAC,∴∠FAC=2∠CAD.∴∠CAD=∠ACB.在△ABC和△CDA中,∴△ABC≌△CDA.(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB.∴AD∥BC.∵∠BAC=∠ACD,∴AB∥CD.∴四边形ABCD是平行四边形.∵∠B=60°,AB=AC,∴△ABC是等边三角形.∴AB=BC.∴平行四边形ABCD是菱形【答案】见解析21.(10分)如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【解析】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.由(1)知△BED≌△CFD,∴DE=DF,∴四边形DFAE为正方形.【答案】见解析22.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACD的平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由.【解析】解:(1)OE=OF.理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE,CF分别平分∠BCA,∠ACD,∴∠BCE=∠OCE,∠DCF=∠OCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形.由(1)知,OE=OC=OF.∵O是AC的中点,∴OA=OC.∴OE=OC=OF=OA,∴四边形AECF是矩形.【答案】见解析23.(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【解析】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)解:GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°.又∵∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD【答案】见解析。
第19章四边形测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.若一个正多边形的每个外角都等于45°,则它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.若一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有()A.7条B.8条C.9条D.10条4.如图2-G-1所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B 两点间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10 m,则A,B间的距离为()图2-G-1A.15 mB.20 mC.25 mD.30 m5.如图2-G-2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2-G-2A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC6.如图2-G-3所示,在▱ABCD中,CE⊥AB,E为垂足.若∠A=125°,则∠BCE图2-G-3A.55°B.35°C.30°D.25°二、填空题(本大题共6小题,每小题4分,共24分)7.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=__________.8.如果一个四边形三个内角度数之比为2∶1∶3,第四个内角为60°,那么这三个内角的度数分别为______________________.9.正八边形一个内角的度数为________.10.如图2-G-4所示,若▱ABCD与▱EBCF关于BC所在的直线对称,∠ABE=90°,则∠F=________.图2-G-411.如图2-G-5,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等________.图2-G-512.如图2-G-6,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC 的周长为10,则△DEF的周长为________.图2-G-6三、解答题(本大题共5小题,共52分)13.(6分)如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?14.(10分)如图2-G-7所示,△ABC的中线BD,CE相交于点O,F,G分别是BO,求证:四边形DEFG是平行四边形.图2-G-715.(10分)如图2-G-8,在▱ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.图2-G-816.(12分)如图2-G-9,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.图2-G-917.(14分)(1)如图2-G-10①,在△ABC中,D,E分别为AB,AC的中点.请说明DE与BC的数量关系;(不必说明理由)图2-G-10(2)如图2-G-10②,点O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接.如果点D,E,F,G能构成四边形,根据问题(1)的结论,判断四边形DEFG是否为平行四边形,请说明理由;(3)当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.详答1.B[解析] 本题主要考查n边形的内角和公式(n-2)·180°,由(n-2)·180°=540°,得n =5.本题也用到方程的解题思想.2.B3.C [解析] 由题意求得该多边形的每一个外角为180°-150°=30°,所以这个多边形的边数为360°÷30°=12,所以从一个顶点出发引出的对角线有12-3=9(条).4.B5.D [解析] A 项,由“AB ∥DC ,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,所以该四边形是平行四边形.故本选项不符合题意;B 项,由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边分别相等,所以该四边形是平行四边形.故本选项不符合题意;C 项,由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,所以该四边形是平行四边形.故本选项不符合题意;D 项,由“AB ∥DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .6.B [解析] 根据平行四边形的性质得∠B =180°-∠A =55°.在Rt △BCE 中,∠BCE =90°-∠B =35°.故选B.7.8 [解析] 由题意,得(n -2)·180°=360°×3,解得n =8.8.100°,50°,150° [解析] 设这三个内角的度数分别为2x ,x ,3x ,则有2x +x +3x =360°-60°,解得x =50°,则2x =100°,3x =150°. 故答案为100°,50°,150°.9.135° [解析] 正八边形的内角和为(8-2)×180°=1080°,每一个内角的度数为18×1080°=135°.10.45° [解析] 根据轴对称的性质,得∠EBC =∠ABC =45°,因为平行四边形的对角相等,所以∠F =∠EBC =45°.11.20 [解析] ∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC .∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∴AE +DE =AD =BC =6,∴AE =4,∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20.12.5 [解析] ∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AC ,同理有EF =12AB ,DF =12BC ,∴△DEF 的周长=12(AC +BC +AB )=12×10=5.13.解:设每个内角的度数为x ,边数为n . 则x -(180°-x )=100°,解得x =140°. ∴(n -2)·180°=140°·n ,解得n =9. 即这个多边形的边数是9.14.证明:∵E ,D 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .又∵F ,G 分别是OB ,OC 的中点, ∴FG 是△OBC 的中位线,∴FG ∥BC ,FG =12BC .∴DE ∥FG ,DE =FG ,∴四边形DEFG 是平行四边形.15.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ), ∴AE =CF .(2)∵△ABE ≌△CDF , ∴∠AEB =∠CFD , ∴∠AEF =∠CFE , ∴AE ∥CF . ∵AE =CF ,∴四边形AECF 是平行四边形.16.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =CB ,∠A =∠C ,AD ∥CB , ∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD , ∴∠EDB =∠FBD =90°, ∴∠ADE =∠CBF ,在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,AD =CB ,∠A =∠C ,∴△AED ≌△CFB (ASA ). (2)作DH ⊥AB ,垂足为H ,在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°, ∴EB =2DH ,∴AD =EB . ∵△AED ≌△CFB , ∴DE =BF .∵∠EDB =∠DBF =90˚, ∴ED ∥BF ,∴四边形EBFD 为平行四边形, ∴FD =EB ,∴DA =DF .17.解:(1)根据三角形的中位线定理得DE =12BC .(2)四边形DEFG 是平行四边形.理由如下:∵D ,G 分别为AB ,AC 的中点, ∴DG 是△ABC 的中位线,∴DG ∥BC 且DG =12BC .∵E ,F 分别为OB ,OC 的中点, ∴EF 是△OBC 的中位线,∴EF ∥BC 且EF =12BC ,∴DG ∥EF 且DG =EF ,∴四边形DEFG 是平行四边形.(3)(2)中的结论仍然成立,如图所示.。
八年级数学四边形测试题 姓名之杨若古兰创作(考试时间:90分钟 满分:100分)一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形.2、如图⑴已知O 是平行四边形ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____.3、在平行四边形ABCD 中,∠C=∠B+∠D,则∠A=___,∠D =___.4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm.5、已知菱形的一条对角线长为12cm ,面积为30cm2,则这个菱形的另一条对角线长为__________cm.6、菱形ABCD 中,∠A=60o ,对角线BD 长为7cm ,则此菱形周长_____cm.7、如果一个正方形的对角线长为,那么它的面积______.8、如图(2)矩形ABCD 的两条对角线订交于O,∠AOB=60o,AB =8,则矩形对角线的长___.9、如图(3),等腰梯形ABCD 中,AD∥BC,AB∥DE,BC =8,AB =6,AD =5则△CDE 周长___.10、正方形的对称轴有___条11、如图(4),BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需添加的一个条件是______12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为AB C O ⑴ A B CO ⑵ A BD ⑶ A D B CF E ⑷18cm,宽为12cm的矩形纸片,最多能剪出______张.二、选择题:(每小题3分,共18分)13、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可所以()A、1:2:3:4B、1:2:2:1C、2:2:1:1D、2:1:2:114、菱形和矩形必定都具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角线互相平分且相等15、以下命题中的假命题是()A、等腰梯形在同一底边上的两个底角相等B、对角线相等的四边形是等腰梯形C、等腰梯形是轴对称图形D、等腰梯形的对角线相等16、四边形ABCD的对角线AC、BD交于点O,能判定它是正方形的是()A、AO=OC,OB=ODB、AO=BO=CO=DO,AC⊥BDC、AO=OC,OB=OD,AC⊥BDD、AO=OC=OB=OD17、给出以下四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形.其中准确命题的个数为()A、1个B、2个C、3个D、4个18、以下矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是()C D三、解答题(58分)19、(8分)如图:在□ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25o,求∠C、∠B的度数.ABCD中,AD∥BC,AB=DC,∠D=120o,对角线CA平分∠BCD,且梯形的周长20,求AC.ABCD中,E为CD边上的一点,F为BC的耽误线上一点,CE=CF.⑴△BCE与△DCF全等吗?说明理由;⑵若∠BEC=60o,求∠EFD.22、证实题:(8分)如图,△ABC中∠ACB=90o,点D、E分别是AC,AB的中点,点F在BC的耽误线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.中点ABDCFE60oABDCFE23、(8分)已知:如图所示,△ABC 中,E 、F 、D 分别是AB 、AC 、BC 上的点,且DE∥AC,DF∥AB,要使四边形AEDF 是菱形,在不改变图形的前提下,你需添加的一个条件是_______________试证实:这个多边形是菱形.24、利用题(8分)某村要挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,渠底宽为1.2米,腰与渠底的夹角为135o ,问挖此渠需挖出土多少方?25、(10分)观察下图⑴正方形A 中含有_____个小方格,即A 的面积为____个单位面积.⑵正方形B 中含有_____个小方格,即B 的面积为____个单位面积.⑶正方形C 中含有_____个小方格,即C 的面积为____个单位面积.⑷你从中得到的规律是:_______________________.25、附加题(10已知:如图,在直角梯形ABCD AD =24cm ,BC =26cm ,动点P 从A 点开始沿动,动点Q 从C 点开始沿CB 边向B 以、Q 分别AB DC F E从A 、C 同时出发,当其一点到端点时,另一点也随之停止活动,设活动时间为t 秒,t 分别为什么值时,四边形PQCD 是平行四边形?等腰梯形?八年级数学单元测试答案 一、⑴相等;⑵45;⑶∠A=120o ,∠D=60o ;⑷22.5,12.5;⑸5;⑹28;⑺1;⑻16;⑼15;⑽4;⑾略;⑿3.二、⒀D;⒁C;⒂B;⒃B;⒄B;⒅B19、解:∠BAD=2∠DAE=2×25o=50o (2分)又∵□ABCD ∴∠C=∠BAD=50o (4分)∴AD∥BC∴∠B=180o -∠BAD (6分)=180o -50o =130o (8分) 20、解:∵AD∥BC ∴∠1=∠2 又∠2=∠3 ∴∠1=∠3 AD =DC (2分)又AB =DC 得AB =AD =DC =在△ADC 中∵∠D=120o∠1=∠3=又∠BCD=2∠3=60o∴∠B=∠BCD=60o (4分)∠BAD=180o -∠B-∠2=90o∠2=30o则BC =2AB =2x (6分)AB =4 BC =8 在Rt△ABC 中AC =(8分)21、⑴△BCE≌△DCF (1分) 理由:由于四边形ABCD 是正方形∴BC=CD ,∠BCD=90o A P DD Q C A DB 1 2 3∴∠BCE =∠DCF又CE =CF ∴△BCE≌△DCF(4分) ⑵∵CE =CF∴∠CEF =∠CFE∵∠FCE =90o∴∠CFE =又∵△BCE≌△DCF ∴∠CFD=∠BEC=60o (6分) ∴∠EFD=∠CFD-∠CFE=60o -45o =15o (8分)22、证实:∵D、E 分别是AC 、AB 的中点 ∴DE∥BC (1分) ∵∠ACB=90o∴CE=AB =AE (3分)∵∠A=∠ECA ∴∠CDF=∠A (4分)∴∠CDF=∠ECA ∴DF∥CE (7分)∴四边形DECF 是平行四边形 (8分)23、答条件AE =AF (或AD 平分角BAC ,等) (3分) 证实:∵DE∥AC DF∥AB∴四边形AEDF 是平行四边形 (6分)又AE =AF∴四边形AEDF 是菱形(8分)24、如图所示设等腰梯形ABCD 为渠道横断面,分别作DE⊥AB,CF⊥AB (2分)垂足为E 、F 则CD =1.2米,DE =CF =0.8米∠ADC=∠BCD =135o (4分)AB∥CD ∠A+∠ADC=180o∴∠A=45o =∠B 又DE⊥AB CF⊥AB ∴∠EDA=∠A ∠BCF=∠B又∵四边形CDEF 是矩形 ∴EF=CD =1.2米 (6分)A D C E FS梯形ABCD=∴所挖土方为1.6×1500=2400(立方米)(8分)(解析:解决本题的关键是数学建模,求梯形面积时,留意作辅助线,把梯形成绩向三角形和矩形转化)25、①4,4 (2分)②9,9 (4分)③13,13 (6分)④在直角三角形中两直角边的平方和等于斜边的平方(10分)26、解由于AD∥BC,所以,只需QC=PD,则四边形PQCD就是平行四边形,此时有3t=24-t.(3分)解之,得t=6(秒)(4分)当t=6秒时,四边形PQCD平行四边形. (5分)同理,只需PQ=CD,PD≠QC,四边形PQCD为等腰梯形.过P、D分别作BC的垂线交BC于E、F,则由等腰梯形的性质可知,EF=PD,QE=FC=26-24=2,所以2,解得.(10分)所以当t=7秒时,四边形PQCD是等腰梯形.。
四边形章节测试姓名 成绩一、选择题(本大题共12小题,每小题3分,共36分) 1、如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对B.2对C.3对D.4对2、如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( )A.OEOF =B.DEBF =C.ADE CBF ∠=∠D.ABE CDF ∠=∠3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4、如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是A B C D 6. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=.其中,正确的个数有( ) A.1个 B.2个C.3个D.4个8、如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A.6 B.8C.9D.109、把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm 2,则打开后梯形的周长是 ( )中点 中点 中点ABF ECDDCABOFEABCDOAB CDEA 、(10+25)cm B 、(12+25)cm C 、22cm D 、20cm10、如图,正方形ABCD 的边长为2,点E 在AB 边 上,四边形EFGB 也为正方形,设AFC △的面积为 S ,则( ) A.2S = B. 2.4S = C.4S = D.S 与BE 长度有关11、梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )A .49B .43C .41D .4612、 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别 为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④(D )②③④二、填空题(本大题共4小题,每小题3分,共12分) 13、已知任意直线l把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在的位置需满足的条件是_______________________________________________________________________________________________________. (只要填上一个你认为合适的条件).14、已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =23,那么AP 的长为.15、在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D 是菱形. 16、如下图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k = .三、解答题(本大题共8小题,其中第17、18、19、20、21、22小题每题7分,第23小题8分、第24小题10分、第25小题12分,共72分,)17、(7分)已知任意..四边形ABCD ,且线段AB 、BC 、CD 、DA 、AC 、BD 的中点分别是E 、F 、G 、H 、P 、Q .(1)若四边形ABCD 如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”). 甲:顺次连接EF 、FG 、GH 、HE 一定得到平行四边形;( ) 乙:顺次连接EQ 、QG 、GP 、PE 一定得到平行四边形.( )(2)请选择甲、乙中的一个,证明你对它的判断. (3)若四边形ABCD 如图②,请你判断(1)中的两个结论是否成立?DCFD C HPGQGCDBF A E ABCDO M ENF ……GF EDCBA18、(7分)如图,已知四边形纸片ABCD ,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片.如果限定裁剪线最多有两条,能否做到: (用“能”或“不能”填空).若填“能”,请确定裁剪线的位置,并说明拼接方法;若填“不能”,请简要说明理由.答案:能 如图,取四边形ABCD 各边的中点E G F H ,,,,连接EF GH ,,则EF GH ,为裁剪线.EF GH ,将四边形ABCD 分成1,2,3,4四个部分,拼接时,图中的1不动,将2,4分别绕点H F ,各旋转180,3平移,拼成的四边形满足条件.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.ABCDA BCD H F GE1 2 3 4A BCD HFGE12 343中点中点 ① ②③ ①②③19、(7分)如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.(1) 求证:四边形BDEF 是菱形;(2) 若12AB =cm ,求菱形BDEF 的周长.20、(7分)如图,将一张矩形纸片A B C D ''''沿EF 折叠,使点B '落在A D '' 边上的点B 处;沿BG 折叠,使点D '落在点D处,且BD 过F 点.⑴试判断四边形BEFG 的形状,并证明你的结论. ⑵当∠BFE 为多少度时,四边形BEFG 是菱形.21、(7分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE ,连接EC 并延长,使CG=CE ,连接FG .H 为FG 的中点,连接DH . (1) 求证:四边形AFHD 为平行四边形;(2)若CB=CE ,∠BAE=600 ,∠DCE=200 求∠CBE 的度数.22、(7分)如图,梯形ABCD 中,120AD BC AB DC ADC =∠= ∥,,,对角线CA 平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.AFBDCEADBEC23、(8分)在矩形纸片ABCD 中,33AB =,6BC =,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠= .(1)求BE 、QF 的长; (2)求四边形PEFH 的面积.24、(本小题10分)如图1,在正方形ABCD 中,点E 、F 分别为边BC 、CD 的中点,AF 、DE 相交于点G ,则可得结论:①AF=DE ,②AF ⊥DE (不须证明).(1)如图②,若点E 、F 不是正方形ABCD 的边BC 、CD 的中点,但满足CE=DF ,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”) (2)如图③,若点E 、F 分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE=DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE 和EF ,若点M 、N 、P 、Q 分别为AE 、EF 、FD 、AD 的中点,请先判断四边形MNPQ 是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.25、(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2=上,且AB ∥CD ∥y轴,AD ∥x 轴,B (1,0)、C (3,0)。
四边形测试题及答案# 四边形测试题及答案题目1:定义题题目:请定义什么是四边形,并列举出四边形的三种基本类型。
答案:四边形是由四条直线段依次首尾相连围成的平面图形。
四边形的三种基本类型包括:平行四边形、矩形和梯形。
题目2:计算题题目:给定一个平行四边形,其两组对边分别长为10cm和6cm,求其周长。
答案:平行四边形的周长等于两组对边之和的两倍。
因此,周长= 2 ×(10cm + 6cm) = 32cm。
题目3:判断题题目:所有的矩形都是平行四边形。
答案:正确。
矩形是特殊的平行四边形,其四个角都是直角。
题目4:应用题题目:一个梯形的上底长为3cm,下底长为7cm,高为4cm,求其面积。
答案:梯形的面积 = (上底 + 下底) × 高÷ 2面积= (3cm + 7cm) × 4cm ÷ 2 = 20cm²。
题目5:选择题题目:下列哪个选项不是四边形的特性?A. 内角和为360度B. 对边平行C. 对角线相等D. 有四条边答案:C. 对角线相等。
不是所有四边形的对角线都相等,只有矩形和正方形的对角线相等。
题目6:解析题题目:解释为什么正方形既是矩形也是菱形。
答案:正方形是特殊的四边形,其四条边都相等,且四个角都是直角。
由于四个角都是直角,它满足矩形的定义;由于四条边相等,它也满足菱形的定义。
因此,正方形既是矩形也是菱形。
题目7:证明题题目:证明平行四边形的对角线互相平分。
答案:在平行四边形ABCD中,设对角线AC和BD相交于点E。
由于AB平行于CD,根据平行线的性质,三角形ABC与三角形ADC全等(SAS),因此BE = EC。
同理,三角形ABD与三角形CBD全等,因此AE = ED。
这证明了平行四边形的对角线互相平分。
题目8:填空题题目:如果一个四边形的对角线互相垂直且相等,那么这个四边形是________。
答案:正方形。
当四边形的对角线互相垂直且相等时,它是一个正方形。
湘教版2017—2018学年八年级数学下学期《四边形》(2.1~2.3)同步测试与解析一.选择题(共10小题)1.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.272.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°3.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.104.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm5.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm6.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B7.点P、Q、R是平面内不在同一条直线上的三个定点,点M 是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个B.2个C.3个D.4个8.下列说法不正确的是()A.平行四边形对边平行B.两组对边平行的四边形是平行四边形C.平行四边形对角相等D.一组对角相等的四边形是平行四边形9.下列图形中,是中心对称图形的为()A.B.C.D.10.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有()A.3对B.4对C.5对D.6对二.填空题(共8小题)11.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.12.一个n边形的内角和为1080°,则n= .13.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.14.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.15.在四边形ABCD中,若AB=CD,请你补充一个条件,使四边形ABCD是平行四边形.则你补充的条件是.(只需填一个你认为正确的条件即可).16.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为.17.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为.18.用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到.三.解答题(共6小题)19.在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.20.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为.21.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB 边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.如图,在▱ABCD中,点E,F分别在AB,DC上,且ED ⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.24.已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC= (用含x、y的代数式表示);(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC 相邻的外角,请写出DE 与BF 的位置关系,并说明理由.(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,①当x<y时,若x+y=140°,∠DFB=30°试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.试题解析参考:一.选择题(共10小题)1.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.27解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,解得n=9,∴9﹣3=6.故选:A.2.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=1(∠BCD+∠CDE)=120°,2∴∠P=180°﹣120°=60°.故选:A.3.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,BF=3,∴AO⊥BF,BO=FO=12∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.4.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.5.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=1AC=5cm,OB=OD=BD=3cm,2∵∠ODA=90°,∴AD==4cm.故选A.6.已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.7.点P、Q、R是平面内不在同一条直线上的三个定点,点M 是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个B.2个C.3个D.4个解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l ∥QR、m∥PR、n∥PQ,分别交于点D、E、F,∵DP∥QR,DQ∥PR,∴四边形PDQR为平行四边形,同理可知四边形PQRF、四边形PQER也为平行四边形,故D、E、F三点为满足条件的M点,故选C.8.下列说法不正确的是()A.平行四边形对边平行B.两组对边平行的四边形是平行四边形C.平行四边形对角相等D.一组对角相等的四边形是平行四边形解:A、正确;B、正确;C、正确;D、一组对角相等而另一组对角不相等的四边形不是平行四边形,故命题错误.故选D.9.下列图形中,是中心对称图形的为()A.B.C.D.解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选:B.10.如图,四边形ABCD是中心对称图形,对称中心为点O,过点O的直线与AD,BC分别交于E,F,则图中相等的线段有()A.3对B.4对C.5对D.6对解:如图,连接OA、OB、OC、OD,∵四边形ABCD是中心对称图形,对称中心为点O,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴AB=CD,BC=AD,OE=OF,AE=CF,BF=DE,相等的线段共有5对.故选C.二.填空题(共8小题)11.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是 6 ,内角和是720°.解:设此多边形有n条边,由题意,得n=2(n﹣3),解得n=6,(6﹣2)×180°=720°,故答案为:6,720°.12.一个n边形的内角和为1080°,则n= 8 .解:(n﹣2)•180°=1080°,解得n=8.13.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20 .解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.14.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120 度.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,×180°=120°,∴∠C=23故答案为:120.15.在四边形ABCD中,若AB=CD,请你补充一个条件,使四边形ABCD是平行四边形.则你补充的条件是AB∥CD .(只需填一个你认为正确的条件即可).解:补充条件:AB∥CD;理由如下:∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形);故答案为:AB∥CD.16.如图,▱ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB与CD间的距离为10 .解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.由题意得,S四边形ABCD=AE×BC=CD×AF,∴24×5=12×AF,∴AF=10,即AB与CD间的距离为10.故答案是:10.17.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为 4 .解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,根据中心对称的性质得到BB′=2AB=4.故答案为:4.18.用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到.解:依题意,由图1可知:一个平行四边形有4条边,两个平行四边形有4+3条边,∴m=1+3x,由图2可知:一组图形有7条边,两组图形有7+5条边,∴m=2+5y,得1+3x=3y+2(y+1),整理,得y=x﹣,故答案为:y=x﹣.三.解答题(共6小题)19.在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.证明:∵在□ABCD中,BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).20.嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD 求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.21.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB 边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′,∵四边形ABCD是平行四边形,∴AB DC,∴CE D′B,∴四边形BCED′是平行四边形;(2)∵BE平分∠ABC,∴∠CBE=∠EBA,∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠DAE=∠BAE,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∴AB2=AE2+BE2.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.23.如图,在▱ABCD中,点E,F分别在AB,DC上,且ED ⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.证明:(1)∵平行四边形ABCD,∴AD=CB,∠A=∠C,AD∥CB,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.24.已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC= 360°﹣x﹣y (用含x、y的代数式表示);(2)如图1,若x=y=90°,DE平分∠ADC,BF平分与∠ABC 相邻的外角,请写出DE 与BF 的位置关系,并说明理由.(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角,①当x<y时,若x+y=140°,∠DFB=30°试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在.解:(1)∠ABC+∠ADC=360°﹣x﹣y;故答案为:360°﹣x﹣y;(2)如图1,延长DE交BF于G∵DE平分∠ADC,BF平分∠MBC,∴∠CDE=12∠ADC,∠CBF=12∠CBM,又∵∠CBM=180°﹣∠ABC=180°﹣(180°﹣∠ADC)=∠ADC,∴∠CDE=∠CBF,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE,∴∠BGE=∠C=90°,∴DG⊥BF(即DE⊥BF);(3)①由(1)得:∠CDN+∠CBM=x+y,∵BF、DF分别平分∠CBM、∠CDN,∴∠CDF+∠CBF=12(x+y),如图2,连接DB,则∠CBD+∠CDB=180°﹣y,得∠FBD+∠FDB=180°﹣y+12(x+y)=180°﹣12y+12x,∴∠DFB=12y﹣12x=30°,解方程组:,解得:;②当x=y时,DC∥BF,此时∠DFB=0,故x、y满足x=y时,∠DFB不存在.。
《四边形》测试卷(2)——菱形、正方形、梯形的性质和判定的证明和计算专题(满分100分,测试时间45分钟)班级___________ 姓名_________ 得分____________1、(10分)如图,已知四边形ABCD 是菱形,DE ⊥AB ,DF ⊥BC ,求证:△ADE ≌△CDF.2、(15分)如图,在△ABC 中,AB =BC ,点D 、E 、F 分别是BC 、AC 、AB 边上的中点. (1)求证:四边形BDEF 是菱形; (2)若AB =12,求菱形BDEF 的周长。
3、(15分)如图,A 、B 、C 三点在同一条直线上,AB =2BC ,分别以AB 、BC 为边作正方形ABEF 和正方形BCMN ,连接FN ,EC ;求证:FN =EC.4、(15分)如图,正方形ABCD 中,E 、F 分别是AB 、BC 边上的点,且AE =BF ,求证:AF ⊥DE.ACDEF ABCDE FABCE F MN ABC D F5、(15分)如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,E 为AD 的中点. (1)求证:△ABE ≌△DCE ;(2)若BE 平分∠ABC ,且AD =10,求AB 的长。
6、(15分)如图,在梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E ,求证四边形AECD 是菱形。
7、(15分)如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD. 求证:四边形ABCD 是等腰梯形。
A BDEABDCEABCDM。