山东省菏泽市中考数学试题及答案解析汇编
- 格式:doc
- 大小:8.88 MB
- 文档页数:11
2022年菏泽市中考数学考试卷及答案解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.2022的相反数是()A.2022 B.2022- C.12022 D.12022-【答案】B【解析】【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为()A.80.410⨯ B.7410⨯ C.84.010⨯ D.6410⨯【答案】B【解析】【分析】把比较大的数写成a ×10n ,其中1≤a <10,n 为正整数即可得出答案.【详解】解:40000000=4×107,故选:B .【点睛】本题考查了科学记数法表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.3.沿正方体相邻的三条棱的中点截掉一个角,得到如图所示的几何体,则他的主视图是()A. B.C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的和看不到的棱都应表现在图中.【详解】解:从几何体的正面看可得到一个正方形,正方形的右上角处有一个看得见的小三角形画为实线,故选:D .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.4.如图所示,将一矩形纸片沿AB 折叠,已知36ABC ∠=︒,则1D AD ∠=()A .48° B.66° C.72° D.78°【答案】C【解析】【分析】由折叠及矩形的性质可得1,AD BC DAB D AB ∠=∠∥,再根据平行线的性质求出1144DAB D AB ∠=︒=∠,根据周角的定义求解即可.【详解】∵将一矩形纸片沿AB 折叠,∴1,AD BC DAB D AB ∠=∠∥,180DAB ABC ∴∠+∠=︒,36ABC ︒∠= ,1144DAB D AB ∴∠=︒=∠,136014414472D AD ∠=︒-︒-︒=︒∴,故选:C .【点睛】本题考查了矩形的性质,折叠的性质及平行线的性质,熟练掌握知识点是解题的关键.5.射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是()A.平均数是9环B.中位数是9环C.众数是9环D.方差是0.8【答案】D【解析】【分析】分别求出平均数,中位数,众数以及方差即可求解【详解】解:根据题意得:10次射击成绩从小到大排列为8.4,8.6,8.8,9,9,9,9.2,9.2,9.4,9.4,A 、平均数是()9.48.49.29.28.898.619199.094=+++++++++环,故本选项正确,不符合题意;B 、中位数是9992+=环,故本选项正确,不符合题意;C 、9出现的次数最多,则众数是9环,故本选项正确,不符合题意;D 、方差是()()()()()()()()()(22222222218.498.698.899999999.299.299.499.410轾-+-+-+-+-+-+-+-+-+犏臌,故本选项错误,符合题意;故选:D【点睛】本题考查了折线统计图,平均数,中位数,众数以及方差,解答本题的关键是掌握相关统计量的求法.6.如图,在菱形ABCD 中,2,60AB ABC =∠=︒,M 是对角线BD 上的一个动点,CF BF =,则MA MF +的最小值为()A.1B.2C.3D.2【答案】C【解析】【分析】连接AF,则AF的长就是AM+FM的最小值,证明△ABC是等边三角形,AF是高线,利用三角函数即可求解.【详解】解:连接AF,则AF的长就是AM+FM的最小值.∵四边形ABCD是菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∵CF BF=∴F是BC的中点,∴AF⊥BC.则AF=AB•sin60°=233 2⨯=.即MA MF+3故选:C【点睛】本题考查了菱形的性质,等边三角形以及三角函数,确定AF的长就是MA MF+的最小值是关键.7.根据如图所示的二次函数2y ax bx c =++的图象,判断反比例函数a y x=与一次函数y bx c =+的图象大致是()A. B. C. D.【答案】A【解析】【分析】先根据二次函数的图象,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y a x=与一次函数y =bx +c 的图象经过的象限即可.【详解】解:由二次函数图象可知a >0,c <0,由对称轴x 2b a=->0,可知b <0,所以反比例函数y a x =的图象在一、三象限,一次函数y =bx +c 经过二、三、四象限.故选:A .【点睛】本题主要考查二次函数图象的性质、一次函数的图象的性质、反比例函数图象的性质,关键在于通过二次函数图象推出a 、b 、c 的取值范围.8.如图,等腰Rt ABC 与矩形DEFG 在同一水平线上,2,3AB DE DG ===,现将等腰Rt ABC 沿箭头所指方向水平平移,平移距离x 是自点C 到达DE 之时开始计算,至AB 离开GF 为止.等腰Rt ABC 与矩形DEFG 的重合部分面积记为y ,则能大致反映y 与x 的函数关系的图象为()A. B.C. D.【答案】B【解析】【分析】根据平移过程,可分三种情况,当01x ≤<时,当13x ≤<时,当34x ≤≤时,利用直角三角形的性质及面积公式分别写出各种情况下y 与x 的函数关系式,再结合函数图象即可求解.【详解】过点C 作CM ⊥AB 于N ,3DG =,在等腰Rt ABC 中,2AB =,1CN ∴=,①当01x ≤<时,如图,CM x =,2PQ x ∴=,211222y PQ CM x x x ∴=⋅⋅=⨯⋅=,∴01x ≤<,y 随x 的增大而增大;②当13x ≤<时,如图,12112ABC y S ∴==⨯⨯= ,∴当13x ≤<时,y 是一个定值为1;③当34x ≤≤时,如图,3CM x =-,()23PQ x ∴=-,()()2211112123132222y AB CN PQ CM x x ∴=⋅-⋅=⨯⨯-⨯⨯-=--,当x =3,y =1,当3<x <4,y 随x 的增大而减小,当x =4,y =0,结合ABCD 选项的图象,故选:B .【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.分解因式:229x y -=________.【答案】(3)(3)x y x y +-【解析】【分析】根据平方差公式分解因式即可得到答案.【详解】解:原式=22(3)(3)(3)x y x y x y -=+-,故答案为:(3)(3)x y x y +-.【点睛】本题主要考查了利用平方差公式分解因式,熟记平方差公式是解题的关键.10.在实数范围内有意义,则实数x 的取值范围是________.【答案】x >3【解析】【分析】根据分式有意义条件和二次根式有意义的条件得x -3>0,求解即可.【详解】解:由题意,得30x ≠-⎪⎩所以x -3>0,解得:x >3,故答案为:x >3.【点睛】本题考查分式有意义条件和二次根式有意义的条件,熟练掌握分式有意义条件:分母不等于0,二次根式有意义的条件:被开方数为非负数是解题的关键.11.如果正n 边形的一个内角与一个外角的比是3:2,则n =_______.【答案】5【解析】【分析】设多边形的一个内角为3x 度,一个外角则为2x 度,求得外角的度数,然后根据多边形的外角和为360°,进而求出n 的值.【详解】解:∵正n 边形的一个内角度数与其外角度数的比是3:2,∴设多边形的一个内角为3x 度,一个外角则为2x 度,∴3x +2x =180°,解得x =36°,∴一个外角为2x =72°,360°÷72°=5,∴n =5,故答案为:5.【点睛】本题考查了多边形的内角、外角的知识和外角和定理,理解一个多边形的一个内角与它相邻外角互补是解题的关键.12.如图,等腰Rt ABC 中,AB AC ==A 为圆心,以AB 为半径作 BDC﹔以BC 为直径作¼CAB .则图中阴影部分的面积是______.(结果保留π)【答案】2π-【解析】【分析】由图可知:阴影部分的面积=半圆CAB 的面积-△ABC 的面积+扇形ABC 的面积-△ABC 的面积,可根据各自的面积计算方法求出面积即可.【详解】解:∵等腰Rt ABC 中,AB AC ==∴BC =2∴S 扇形ACB 9023260ππ⨯==,S 半圆CAB 12=π×(1)22π=,S △ABC 12=⨯;所以阴影部分的面积=S 半圆CAB -S △ABC +S 扇形ACB -S △ABC 21122πππ=-+-=-.故答案是:2π-.【点睛】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.13.若22150a a --=,则代数式2442a a a a a -⎛⎫-⋅ ⎪-⎝⎭的值是________.【答案】15【解析】【分析】先按分式混合运算法则化简分式,再把已知变形为a 2-2a =15,整体代入即可.【详解】解:2442a a a a a -⎛⎫-⋅ ⎪-⎝⎭=22(2)2a a a a -⋅-=a (a -2)=a 2-2a ,∵a 2-2a -15=0,∴a 2-2a =15,∴原式=15.故答案为:15.【点睛】本题考查分式化简求值,熟练掌握分式混合运算法则是解题的关键.14.如图,在第一象限内的直线:l y =上取点1A ,使11OA =,以1OA 为边作等边11OA B ,交x 轴于点1B ;过点1B 作x 轴的垂线交直线l 于点2A ,以2OA 为边作等边22OA B △,交x 轴于点2B ;过点2B 作x 轴的垂线交直线l 于点3A ,以3OA 为边作等边33 OA B ,交x 轴于点3B ;……,依次类推,则点2022A 的横坐标为_______.【答案】20202【解析】【分析】根据一次函数图像上点的坐标特征和等边三角形的性质及等腰三角形的三线合一性质,得出:点1A 的横坐标为12,点2A 的横坐标为1,点3A 的横坐标为2,点4A 的横坐标为4,找出规律即可求解.【详解】解:过点1A 作1A C x ⊥轴于点C ,点3B 作34B A x ⊥轴交直线l 于点4A ,∵11OA B 是等边三角形,11OA =,∴11111A B OB OA ===,∴11122OC OB ==,∴点1A 的横坐标为12,即12-,∵22OA B △是等边三角形,21A B x ⊥轴,11OB =,∴点2A 的横坐标为1,即02,222OA A B =∴212212OB OB ==⨯=,∵33 OA B 是等边三角形,32A B x ⊥轴,∴点3A 的横坐标为2,即12,333OA A B =∴322224OB OB ==⨯=,∵44 OA B 是等边三角形,43A B x ⊥轴,∴点4A 的横坐标为4,即22,以此类推,点n A 的横坐标为22n -,∴当2022n =时,点2022A 的横坐标为20202.故答案为:20202【点睛】本题考查一次函数图像上点的坐标特征,等边三角形的性质,等腰三角形的三线合一性质.解题的关键是找出点n A 的横坐标的变化规律.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内,写在其他区域不得分.)15.计算:()1014cos 452022π2-⎛⎫+︒-- ⎪⎝⎭.【答案】3【解析】【分析】先计算乘方和化简二次根式,并把特殊三角函数值代入,再合并同类二次根式,即可求解.【详解】解:原式=2+4×22+1+1=3.【点睛】本题考查实数的混合运算,熟练掌握负整指数幂与零指数幂运算法则,熟记特殊角三角函数值是解题的关键.16.解不等式组()3122,321,32x x x x ⎧-≤-⎪⎨+++>⎪⎩①②并将其解集在数轴上表示出来.【答案】x ≤1,图见解析【解析】【分析】先分别求出不等式组中每一个不等式解集,再求出其公共解集即可求解,然后把解集用数轴表示出来即可.【详解】解:解①得:x ≤1,解②得:x <6,∴x ≤1,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了用数轴表示不等式的解集.17.如图,在Rt ABC 中,90ABC ∠=︒,E 是边AC 上一点,且BE BC =,过点A 作BE 的垂线,交BE 的延长线于点D ,求证:ADE ABC △△∽.【答案】见解析【解析】【分析】先根据等腰三角形的性质得∠C =∠BEC ,又由对顶角相等可证得∠AED =∠C ,再由∠D =∠ABC =90°,即可得出结论.【详解】证明:∵BE BC=∴∠C =∠BEC ,∵∠BEC =∠AED ,∴∠AED =∠C ,∵AD ⊥BD ,∴∠D =90°,∵90ABC ∠=︒,∴∠D =∠ABC ,∴ADE ABC △△∽.【点睛】本题考查等腰三角形的性质,相似三角形的判定,熟练掌握等腰三角形的性质和相似三角形的判定定理是解题的关键.18.荷泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB 的长为8米,更换后的电梯坡面为AD ,点B 延伸至点D ,求BD 的长.(结果精确到0.1米.参考数据:sin 370.60,cos370.80,tan 370,75,3 1.73≈≈≈︒︒︒)【答案】约为1.9米【解析】【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.【详解】解:在Rt△ABC中,AB=8米,∠ABC=37°,则AC=AB•sin∠ABC≈8×0.60=4.8(米),BC=AB•cos∠ABC≈8×0.80=6.40(米),在Rt△ADC中,∠ADC=30°,则CD=4.8 4.8tan tan3033ACADC==∠︒≈8.30(米),∴BD=CD-BC=8.30-6.40≈1.9(米),答:BD的长约为1.9米.【点睛】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.19.某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.(1)篮球、排球的进价分别为每个多少元?(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?【答案】(1)每个篮球的进价为120元,每个排球的进价为80元.(2)100个【解析】【分析】(1)设每个排球的进价为x 元,则每个篮球的进价为1.5x 元,根据“用3600元购进篮球的数量比用3200元购进排球的数量少10个”得到方程;即可解得结果;(2)设健身器材店可以购进篮球a 个,则购进排球(300﹣a )个,根据题意得不等式组即可得到结果.【小问1详解】设每个排球的进价为x 元,则每个篮球的进价为1.5x 元根据题意得36003200101.5x x=-.解得x =80.经检验x =80是原分式方程的解.∴1.5x =120(元).∴篮球的进价为120元,排球的进价为80元答:每个篮球的进价为120元,每个排球的进价为80元.【小问2详解】设该体育用品商店可以购进篮球a 个,则购进排球(300﹣a )个,根据题意,得120a +80(300﹣a )≤28000.解得a ≤100.答:该健身器材店最多可以购进篮球100个.【点睛】本题考查了一元一次不等式的应用,分式方程的应用,找准数量关系是解题的关键.20.如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数k y x=的图象都经过()()2,44,A B m --、两点.(1)求反比例函数和一次函数的表达式;(2)过O 、A 两点的直线与反比例函数图象交于另一点C ,连接BC ,求ABC 的面积.【答案】(1)反比例函数的表达式为8y x =-;一次函数的表达式为2y x =--(2)12【解析】【分析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,从而得出反比例函数表达式,再由点B 的坐标和反比例函数表达式即可求出m 值,结合点A 、B 的坐标利用待定系数法即可求出一次函数表达式;(2)利用分解图形求面积法,利用ABC ACD BCD S S S ∆∆∆=+,求面积即可.【小问1详解】将A (2,-4)代入k y x=得到24k -=,即:8k =-.∴反比例函数的表达式为:8y x =-.将B (-4,m )代入8y x=-,得:824m =-=-,()4,2B ∴-,将A ,B 代入y ax b =+,得:2442a b a b +=-⎧⎨-+=⎩,解得:12a b =-⎧⎨=-⎩∴一次函数的表达式为:2y x =--.【小问2详解】设AB 交x 轴于点D ,连接CD ,过点A 作AE ⊥CD 交CD 延长线于点E ,作BF ⊥CD 交CD 于点F .令20y x =--=,则2x =-,∴点D 的坐标为(-2,0),∵过O 、A 两点的直线与反比例函数图象交于另一点C ,∴A (2,-4)关于原点的对称性点C 坐标:(-2,4),∴点C 、点D 横坐标相同,∴CD ∥y 轴,∴ABC ACD BCDS S S ∆∆∆=+1122CD AE CD BF =⋅+⋅()12CD AE BF =⋅+12A B CD x x =⋅-1462=⨯⨯=12.【点睛】本题考查了反比例函数与一次函数的交点坐标、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求函数表达式;(2)利用分割图形求面积法求出△AOB的面积.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.21.为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出上面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了______名学生;并将条形统计图补充完整;(2)C组所对应的扇形圆心角为_______度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是__________;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.【答案】(1)40,图见解析(2)72(3)560(4)1 2【解析】【分析】(1)由A组人数及其所占百分比可得总人数,总人数减去A、B、D人数求出C组人数即可补全图形;(2)用360°乘以C组人数所占比例即可;(3)总人数乘以样本中B组人数所占比例即可;(4)画树状图,共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,再由概率公式求解即可.【小问1详解】本次调查总人数为410%40÷=(名),C 组人数为40416128---=(名),补全图形如下:故答案为:40;【小问2详解】83607240⨯︒=︒,故答案为:72;【小问3详解】16140056040⨯=(人),故答案为:560;【小问4详解】画树状图如下:共有12种等可能的结果,其中选出的2名学生恰好是1名男生与1名女生的结果共有6种,∴选出的2名学生恰好是1名男生与1名女生的概率为61122=.【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体及用列表法或树状图法求概率,准确理解题意,熟练掌握知识点是解题的关键.22.如图,在ABC 中,以AB 为直径作O 交AC 、BC 于点D 、E ,且D 是AC 的中点,过点D 作DG BC ⊥于点G ,交BA 的延长线于点H .(1)求证:直线HG 是O 的切线;(2)若23,cos 5HA B ==,求CG 的长.【答案】(1)见解析(2)65【解析】【分析】(1)连接OD ,利用三角形中位线的定义和性质可得∥OD BC ,再利用平行线的性质即可证明;(2)先通过平行线的性质得出HBG HOD ∠=∠,设OD OA OB r ===,再通过解直角三角形求出半径长度,再利用三角形中位线定理和相似三角形的判定和性质分别求出BC ,BG 的长度,即可求解.【小问1详解】连接OD ,DG BC ⊥ ,90BGH ∴∠=︒,∵D 是AC 的中点,AB 为直径,OD BC ∴∥,90BGH ODH ∴∠=∠=︒,∴直线HG 是O 的切线;【小问2详解】由(1)得∥OD BC ,∴HBG HOD ∠=∠,2cos 5HBG ∠=,2cos 5HOD ∴∠=,设OD OA OB r ===,3HA = ,3OH r ∴=+,在Rt HOD 中,90HDO ∠=︒,2cos 35OD r HOD OH r ∴∠===+,解得2r =,∴2,5,7OD OA OB OH BH =====,∵D 是AC 的中点,AB 为直径,24BC OD ∴==,90BGH ODH ∠=∠=︒ ,ODH BGH ∴ ,OH OD BH BG ∴=,即527BG=,145BG ∴=,146455CG BC BG ∴=-=-=.【点睛】本题考查了切线的判定,三角形中位线的性质,平行线的判定和性质,相似三角形的判定和性质及解直角三角形,熟练掌握知识点是解题的关键.23.如图1,在ABC 中,45,ABC AD BC ∠=︒⊥于点D ,在DA 上取点E ,使DE DC =,连接BE 、CE .(1)直接写出CE 与AB 的位置关系;(2)如图2,将BED 绕点D 旋转,得到B E D ''△(点B ',E '分别与点B ,E 对应),连接CE AB ''、,在BED 旋转的过程中CE '与AB '的位置关系与(1)中的CE 与AB 的位置关系是否一致?请说明理由;(3)如图3,当BED 绕点D 顺时针旋转30°时,射线CE '与AD 、AB '分别交于点G 、F ,若,CG FG DC ==AB '的长.【答案】(1)CE ⊥AB ,理由见解析(2)一致,理由见解析(3)【解析】【分析】(1)由等腰直角三角形的性质可得∠ABC =∠DAB =45°,∠DCE =∠DEC =∠AEH =45°,可得结论;(2)通过证明ADB CDE ''≅ ,可得DAB DCE ''∠=∠,由余角的性质可得结论;(3)由等腰直角的性质和直角三角形的性质可得AB '=,即可求解.【小问1详解】如图,延长CE 交AB 于H ,∵∠ABC =45°,AD ⊥BC ,∴∠ADC =∠ADB =90°,∠ABC =∠DAB =45°,∵DE =CD ,∴∠DCE =∠DEC =∠AEH =45°,∴∠BHC =∠BAD +∠AEH =90°,∴CE ⊥AB ;【小问2详解】在BED 旋转的过程中CE '与AB '的位置关系与(1)中的CE 与AB 的位置关系是一致的,理由如下:如图2,延长CE '交AB '于H ,由旋转可得:CD =DE ',B D '=AD ,∵∠ADC =∠ADB =90°,∴CDE ADB ''∠=∠,∵1CD AD DE DB =='',∴ADB CDE '' ,DAB DCE ''∴∠=∠,∵DCE '∠+∠DGC =90°,∠DGC =∠AGH ,∴∠DA B '+∠AGH =90°,∴∠AHC =90°,CE AB ''∴⊥;【小问3详解】如图3,过点D 作DH AB '⊥于点H ,∵△BED 绕点D 顺时针旋转30°,∴30,BDB BD BD AD ''∠=︒==,120,30ADB DAB AB D '''∴∠=︒∠=∠=︒,,DH AB AD B D ''⊥= ,∴AD =2DH ,AH 3=B H ',3AB '∴=,由(2)可知:ADB CDE '' ,30DAB DCE ''∴∠=∠=︒,∵AD ⊥BC ,CD =3∴DG =1,CG =2DG =2,∴CG =FG =2,30,DAB DH AB ''∠=︒⊥ ,∴AG =2GF =4,∴AD =AG +DG =4+1=5,∴33AB =='【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,旋转的性质,相似三角形的判定和性质等知识,证明三角形相似是解题的关键.24.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于()()2,08,0A B -、两点,与y 轴交于点()0,4C ,连接AC 、BC .(1)求抛物线的表达式;(2)将ABC 沿AC 所在直线折叠,得到ADC ,点B 的对应点为D ,直接写出点D 的坐标.并求出四边形OADC 的面积;(3)点P 是抛物线上的一动点,当PCB ABC ∠=∠时,求点P 的坐标.【答案】(1)213442y x x =-++(2)()8,8,24D -(3)()6,4P 或34100,39⎛⎫-⎪⎝⎭【解析】【分析】(1)直接利用待定系数法求抛物线解析式即可;(2)先利用勾股定理的逆定理证明ABC 为直角三角形,再根据折叠的性质得出点B 、C 、D 三点共线,继而通过证明DBE CBO ,利用相似三角形的性质即可得出点D 的坐标,根据四边形OADC 的面积ADC AOC ABC AOC S S S S =+=+ 进行求解即可;(3)分两种情况讨论:当点P 在x 轴上方时,当点P 在x 轴下方时,分别求解即可.【小问1详解】将()2,0A -,()8,0B ,()0,4C 代入抛物线2(0)y ax bx c a =++≠,得04206484a b c a b c c =-+⎧⎪=++⎨⎪=⎩,解得14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,所以,抛物线的表达式为213442y x x =-++;【小问2详解】如图,过点D 作DE ⊥x 轴于E ,90DEB COB ∴∠=∠=︒,∵()2,0A -,()8,0B ,()0,4C,10,8,4,2AB AC BC OC OA ∴======,222AB AC BC =+ ,ABC ∴ 为直角三角形且90ACB ∠=︒,将ABC 沿AC 所在直线折叠,得到ADC ,点B 的对应点为D ,此时,点B 、C 、D 三点共线,BC =DC ,ABC ADC S S =△△,DBE CBO ∠=∠ ,DBE CBO ∴ ,2DB DE BE CB OC BO∴===,8,28OB OE DE OC ∴====,()8,8D ∴-,∴四边形OADC 的面积111124242222ADC AOC ABC AOC S S S S AC BC OA OC =+=+=⋅⋅+⋅⋅=⨯+⨯⨯= ;【小问3详解】当点P 在x 轴上方时,∵PCB ABC ∠=∠,∴CP x ∥轴,∴点P 的纵坐标为4,即2134442x x =-++,解得6x =或0(舍去)()6,4P ∴;当点P 在x 轴下方时,设直线CP 交x 轴于F ,∵PCB ABC ∠=∠,∴CF BF =,设OF t =,则8CF BF t ==-,在Rt COF 中,由勾股定理得222OC OF CF +=,即()22248t t +=-,解得3t =,()3,0F ∴,()0,4C ,∴设直线CF 的解析式为4y kx =+,即034k =+,解得43k =-,∴直线CF 的解析式为443y x =-+,令241344342x x x -+=-++,解得343x =或0(舍去),当343x =时,2134334100443239y ⎛⎫=-⨯+⨯+=- ⎪⎝⎭34100,39P ⎛⎫∴- ⎪⎝⎭;综上,()6,4P 或34100,39⎛⎫- ⎪⎝⎭.【点睛】本题考查了二次函数的综合题目,涉及待定系数法求二次函数解析式,勾股定理的逆定理,折叠的性质,相似三角形的判定和性质,求一次函数的解析式,等腰三角形的性质等知识,熟练掌握知识点并能够灵活运用是解题的关键.。
菏泽市中考数学试题及答案一、选择题(每题3分,共30分)1. 下列选项中,正确的是()A. 平方根的定义是:如果一个数的平方等于a,那么这个数叫做a的平方根。
B. 两个等腰三角形全等,那么它们的底边一定相等。
C. 如果a > b,那么a - b > 0。
D. 相邻的两个整数一定互质。
答案:C2. 下列各数中,是无理数的是()A. √9B. 3πC. 1/2D. 0.333...答案:B3. 下列函数中,既不是奇函数也不是偶函数的是()A. y = x^3B. y = |x|C. y = x^2 + 1D. y = x^2 - x答案:D4. 下列图形中,一定是中心对称图形的是()A. 矩形B. 等边三角形C. 正方形D. 等腰梯形答案:C5. 已知a、b、c是三角形的三边,则下列关系式中正确的是()A. a + b > cB. a + c > bC. b + c > aD. a + b + c > 2a答案:C6. 下列各数中,最大的数是()A. 2√3B. √10C. 3√2D. 4√1.5答案:D7. 在三角形ABC中,a = 5, b = 7, sinA = 3/5,那么三角形ABC的面积S等于()A. 14B. 10.5C. 7D. 5.6答案:B8. 下列关于x的不等式中,有解的是()A. x(x - 3) < 0B. x(x - 3) > 0C. x(x + 3) < 0D. x(x + 3) > 0答案:C9. 下列关于x的方程中,有唯一解的是()A. x^2 - 4x + 4 = 0B. x^2 - 4x + 5 = 0C. x^2 + 4x + 4 = 0D. x^2 + 4x + 5 = 0答案:A10. 下列关于x的方程组中,有唯一解的是()A. x + y = 2x - y = 4B. x + y = 22x + y = 5C. x + y = 23x + 2y = 8D. x + y = 2x + 2y = 5答案:B二、填空题(每题3分,共30分)11. 已知a = 2 + √3,b = 2 - √3,则a - b的值为________。
2023年菏泽市初中学业水平考试一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列运算正确的是()A.632a a a ÷= B.235a a a ⋅= C.()23622a a = D.()222a b a b +=+3.一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=()A.30︒B.40︒C.50︒D.60︒4.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.()0c b a -<B.()0b c a -<C.()0a b c ->D.()0a c b +>5.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是()A.B.C.D.6.一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为()A.32B.3- C.3D.32-7.ABC 的三边长a ,b ,c满足2()||0a b c --=,则ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”,在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是()A.114c -≤< B.43c -≤<- C.154c -<< D.45c -≤<二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.因式分解:24m m -=______.10.计算:0|2|2sin 602023-+︒-=___________.11.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.12.如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为__________(结果保留π).13.如图,点E 是正方形ABCD 内的一点,将ABE 绕点B 按顺时针方向旋转90︒得到CBF V .若55ABE ∠=︒,则EGC ∠=__________度.14.如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩.16.先化简,再求值:223x x xx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=.17.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.18.无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC(结果保留根号)19.某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?20.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数ky x=在第一象限的图象于点(,1)C a .(1)求反比例函数ky x=和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.21.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?22.如图,AB 为O 的直径,C 是圆上一点,D 是 BC的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.23.(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.24.已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到AB D 'V ,当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求FG 的最大值.2023年菏泽市初中学业水平考试一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A 【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .既是轴对称图形,也是中心对称图形,故A 符合题意;B .是轴对称图形,不是中心对称图形,故B 不符合题意;C .不是轴对称图形,也不是中心对称图形,故C 不符合题意;D .不是轴对称图形,是中心对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2.下列运算正确的是()A.632a a a ÷=B.235a a a ⋅= C.()23622a a = D.()222a b a b +=+【答案】B 【解析】【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、633a a a ÷=,故选项错误;B 、235a a a ⋅=,故选项正确;C 、()23624a a =,故选项错误;D 、()2222a b a ab b +=++,故选项错误;故选:B .【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.3.一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=()A.30︒B.40︒C.50︒D.60︒【答案】B 【解析】【分析】根据平行线的性质,得出3120∠=∠=︒,进而260340Ð=°-Ð=°.【详解】由图知,3120∠=∠=︒∴2603602040Ð=°-Ð=°-°=°故选:B【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键.4.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.()0c b a -<B.()0b c a -<C.()0a b c ->D.()0a cb +>【答案】C 【解析】【分析】根据数轴可得,0a b c <<<,再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<,∴()0c b a ->,故A 选项错误;∴()0b c a ->,故B 选项错误;∴()0a b c ->,故C 选项正确;∴()0a c b +<,故D 选项错误;故选:C .【点睛】本题考查实数与数轴,根据0a b c <<<进行判断是解题关键.5.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是()A.B.C.D.【答案】A 【解析】【分析】根据主视图是从正面看到的图形进行求解即可.【详解】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示:故选:A .【点睛】本题主要考查了简单几何组合体的三视图,熟知三视图的定义是解题的关键.6.一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为()A.32B.3- C.3D.32-【答案】C 【解析】【分析】先求得123x x +=-,121x x ⋅=-,再将1211+x x 变形,代入12x x +与12x x ⋅的值求解即可.【详解】解:∵一元二次方程2310x x +-=的两根为12x x 、,∴123x x +=-,121x x ⋅=-∴1211+x x 1212x x x x +=31=--3=.故选C .【点睛】本题主要考查了一元二次方程根与系数的关系,牢记12b x x a+=-,12cx x a ⋅=是解决本题的关键.7.ABC 的三边长a ,b ,c满足2()||0a b c --=,则ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D 【解析】【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到ABC 为直角三角形.【详解】解∵2()|0a b c -+-=又∵()200a b c ⎧-≥≥-≥⎪⎩∴()2000a b c ⎧-==-=⎪⎩,∴02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩,∴222+=a b c ,且a b =,∴ABC 为等腰直角三角形,故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理.8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”,在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是()A.114c -≤< B.43c -≤<- C.154c -<< D.45c -≤<【答案】D【解析】【分析】由题意可得:三倍点所在的直线为3y x =,根据二次函数2y x x c =--+的图象上至少存在一个“三倍点”转化为2y x x c =--+和3y x =至少有一个交点,求0∆≥,再根据3x =-和1x =时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得:240x x c --+=,则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-,41642x±=-,∴12x =-+22x =--∴321-<-+或321-<--<当321-<-+时,13-<,即03≤<,解得45c -≤<,当321-<--时,31-<<,即01≤<,解得43c -≤<-,综上,c 的取值范围是45c -≤<,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.因式分解:24m m -=______.【答案】()4-m m【解析】【分析】直接提取公因式m ,进而分解因式即可.【详解】解:m 2-4m =m (m -4).故答案为:m (m -4).【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.计算:0|2|2sin 602023-+︒-=___________.【答案】1【解析】【分析】根据先计算绝对值,特殊角的三角函数值,零指数幂,再进行加减计算即可.22sin 602023-+︒-32212=⨯-1=故答案为:1.【点睛】本题考查了实数的运算,掌握绝对值、特殊角的三角函数值、零指数幂的运算是解题的关键.11.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.【答案】59【解析】【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.12.如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为__________(结果保留π).【答案】6π【解析】【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可.【详解】解:由题意,()821801358HAB -⋅︒∠==︒,4AH AB ==∴213546360S ππ⋅==阴,故答案为:6π.【点睛】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积2360n r S π=,正多边形的每个内角度数为()2180n n-⋅︒.13.如图,点E 是正方形ABCD 内的一点,将ABE 绕点B 按顺时针方向旋转90︒得到CBF V .若55ABE ∠=︒,则EGC ∠=__________度.【答案】80【解析】【分析】先求得BEF ∠和CBE ∠的度数,再利用三角形外角的性质求解即可.【详解】解:∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵55ABE ∠=︒,∴905535CBE ∠=︒-︒=︒,∵ABE 绕点B 按顺时针方向旋转90︒得到CBFV ∴90EBF ∠=︒,BE BF =,∴45BEF ∠=︒,∴EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒,故答案为:80.【点睛】本题考查了正方形的性质,等腰三角形的性质,旋转图形的性质和三角形外角的性质,利用旋转图形的性质求解是解题的关键.14.如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.【答案】292-##229-+【解析】【分析】设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',证明90DFA ∠=︒,可知点F 在以AD 为直径的半圆上运动,当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,据此求解即可.【详解】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD ,∴122AO OF AD '===,,∴BO ==,BF2-,2-.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F 的运动轨迹是解题的关键.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩.【答案】23x ≤【解析】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解()5231x x -<+得:52x <,解32232x x x --≥+得:23x ≤,∴不等式组的解集为23x ≤.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.16.先化简,再求值:223x x x x y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=.【答案】42x y +,6【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时将除法变为乘法,约分得到最简结果,将230x y +-=变形整体代入计算即可求解.【详解】解:原式()()()()()()()()3x x y x x y x y x y x y x y x y x y x ⎡⎤+--+=+⨯⎢⎥-+-+⎣⎦()()()()2233x y x y x xy x xy x y x y x -+++-=⨯-+()()()()242x y x y x xy x y x y x -++=⨯-+42x y =+;由230x y +-=,得到23x y +=,则原式()226x y =+=.【点睛】此题考查分式的化简求值,解题关键熟练掌握分式混合运算的顺序以及整体代入法求解.17.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.【答案】证明见解析【解析】【分析】由平行四边形的性质得B D ∠=∠,AB CD =,AD BC ∥,由平行线的性质和角平分线的性质得出BAE DCF ∠=∠,可证BAE DCF ≌△△,即可得出AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥,∵AE 平分BAD ∠,CF 平分BCD ∠,∴BAE DAE BCF DCF ∠=∠=∠=∠,在BAE 和DCF 中,B D AB CD BAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA BAE DCF ≌ ∴AE CF =.【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.18.无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC(结果保留根号)【答案】大楼的高度BC 为.【解析】【分析】如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,可得QH BC =,BH CQ =,求解sin 60802PH AP =︒=⨯= cos 6040AH AP =︒= ,可得704030CQ BH ==-=,tan 30PQ CQ =︒= BC QH ==【详解】解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,∴QH BC =,BH CQ =,由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =,∴3sin 60802PH AP =︒=⨯= cos 6040AH AP =︒= ,∴704030CQ BH ==-=,∴tan 30PQ CQ =︒=∴BC QH ===,∴大楼的高度BC 为.【点睛】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键.19.某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【解析】【分析】(1)根据中位数和众数的概念求解,先求出总人数,然后求出B 组所占的百分比,最后乘以360︒即可求出在统计图中B 组所对应的扇形圆心角;(2)根据样本估计总体的方法求解即可.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74,∴中位数为6870692+=;∵74出现的次数最多,∴众数是74;88%100÷=,1536054100︒⨯=︒∴在统计图中B 组所对应的扇形圆心角是54︒;故答案为:69,74,54;【小问2详解】10081545230----=∴C 组的人数为30,∴补全学生心率频数分布直方图如下:【小问3详解】304523001725100+⨯=(人),∴大约有1725名学生达到适宜心率.【点睛】本题主要考查调查与统计的相关知识,理解频数分布直方图,扇形统计图的相关信息,掌握运用样本百分比估算总体数量是解题的关键.20.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .(1)求反比例函数k y x=和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.【答案】(1)4y x=,14y x =(2)()2,2或18,2⎛⎫--⎪⎝⎭【解析】【分析】(1)如图,过点C 作CD x ⊥轴于点D ,证明ABO BCD ∽ ,利用相似三角形的性质得到2BD =,求出点C 的坐标,代入k y x=可得反比例函数解析式,设OC 的表达式为y mx =,将点()4,1C 代入即可得到直线OC 的表达式;(2)先求得直线l 的解析式,联立反比例函数的解析式即可求得交点坐标.【小问1详解】如图,过点C 作CD x ⊥轴于点D ,则1CD =,90CDB ∠=︒,∵BC AB ⊥,∴90ABC ∠=︒,∴90ABO CBD ∠+∠=︒,∵90CDB ∠=︒,∴90BCD CBD ∠+∠=︒,∴BCD ABO ∠=∠,∴ABO BCD ∽ ,∴OA BDOB CD =,∵()()0,4,2,0A B ,∴4OA =,2OB =,∴421BD=,∴2BD =,∴224OD =+=,∴点()4,1C ,将点C 代入k y x =中,可得4k =,∴4y x=,设OC 的表达式为y mx =,将点()4,1C 代入可得14m =,解得:14m =,∴OC 的表达式为14y x =;【小问2详解】直线l 的解析式为1342y x =+,当两函数相交时,可得13442x x +=,解得12x =,8x =-,代入反比例函数解析式,得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∴直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭【点睛】本题考查了相似三角形的判定与性质,待定系数法求函数的解析式,反比例函数与一次函数的交点问题,一次函数的平移问题,解一元二次方程等知识.21.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米(2)最多可以购买1400株牡丹【解析】【分析】(1)设长为x 米,面积为y 平方米,则宽为1203x -米,可以得到y 与x 的函数关系式,配成顶点式求出函数的最大值即可;(2)设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意列出不等式求得种植牡丹面积的最大值,即可解答.【小问1详解】解:设长为x 米,面积为y 平方米,则宽为1203x -米,∴()221140601200331203y x x x x x =⨯=--+-+=-,∴当60x =时,y 有最大值是1200,此时,宽为120203x -=(米)答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.【小问2详解】解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤,即牡丹最多种植700平方米,70021400⨯=(株),答:最多可以购买1400株牡丹.【点睛】本题考查二次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.22.如图,AB 为O 的直径,C 是圆上一点,D 是 BC的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.【答案】(1)证明见解析;(2)43(3)72【解析】【分析】(1)由D 是 BC的中点得 CD BD =,由垂径定理得 BE BD =,得到»»BC DE =,根据同圆中,等弧对等弦即可证明;(2)连接OD ,证明ACB OFD ∽ ,设O 的半径为r ,利用相似三角形的性质得=5r ,210AB r ==,由勾股定理求得BC ,得到84tan 63BC CAB AC ∠===,即可得到tan BPC ∠43=;(3)过点B 作BG CP ⊥交CP 于点G ,证明CBG 是等腰直角三角形,解直角三角形得到cos 4542CG BG BC ==︒=,由tan BPC ∠43=得到43BG GP =,解得32GP =【小问1详解】解:∵D 是 BC的中点,∴ CDBD =,∵DE AB ⊥且AB 为O 的直径,∴ BEBD =,∴»»BCDE =,∴BC DE =;【小问2详解】解:连接OD ,∵ CD BD =,∴CAB DOB ∠=∠,∵AB 为O 的直径,∴90ACB ∠=︒,∵DE AB ⊥,∴90DFO ∠=︒,∴ACB OFD ∽ ,∴AC OFAB OD =,设O 的半径为r ,则622r r r -=,解得=5r ,经检验,=5r 是方程的根,∴210AB r ==,∴228AB BC AC -==,∴84tan 63BCCAB AC ∠===,∵BPC CAB ∠=∠,∴tan BPC ∠43=;【小问3详解】解:如图,过点B 作BG CP ⊥交CP 于点G ,∴90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线,∴45ACP BCP ∠=∠=︒∴45CBG ∠=︒∴cos 45CG BG BC ==︒=∵tan BPC ∠43=∴43BG GP =,∴GP =∴CP =+=.【点睛】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.23.(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADFH ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.【答案】(1)见解析(2)见解析(3)3【解析】【分析】(1)由矩形的性质可得90ADE DCF ∠=∠=︒,则90CDF DFC ∠+∠=︒,再由AE DF ⊥,可得90DGE ∠=︒,则90CDF AED ∠+∠=︒,根据等角的余角相等得AED DFC ∠=∠,即可得证;(2)利用“HL ”证明 ≌ADE DCF ,可得DE CF =,由CH DE =,可得CF CH =,利用“SAS ”证明DCF DCH ≌,则DHC DFC ∠=∠,由正方形的性质可得AD BC ∥,根据平行线的性质,即可得证;(3)延长BC 到点G ,使8CG DE ==,连接DG ,由菱形的性质可得AD DC =,AD BC ∥,则ADE DCG ∠=∠,推出()SAS ADE DCG △≌△,由全等的性质可得60DGC AED ∠=∠=︒,DG AE =,进而推出DFG 是等边三角形,再根据线段的和差关系计算求解即可.【详解】(1)证明: 四边形ABCD 是矩形,90ADE DCF ∴∠=∠=︒,90CDF DFC ∴∠+∠=︒,AE DF ⊥,90DGE ∴∠=︒,90CDF AED ∴∠+∠=︒,AED DFC ∴∠=∠,ADE DCF ∴△∽△;(2)证明: 四边形ABCD 是正方形,AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒,AE DF = ,()HL ADE DCF ∴ ≌,DE CF ∴=,又 CH DE =,∴CF CH =,点H 在BC 的延长线上,∴90DCH DCF ∠=∠=︒,DC DC = ,()SAS DCF DCH ∴ ≌,H DFC ∴∠=∠,AD BC ∥,ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG ,四边形ABCD 是菱形,AD DC ∴=,AD BC ∥,ADE DCG ∴∠=∠,()SAS ADE DCG ∴ ≌,60DGC AED ∴∠=∠=︒,DG AE =,AE DF = ,DG DF ∴=,DFG ∴ 是等边三角形,11FG FC CG DF ∴=+==,111183FC CG ∴=-=-=.【点睛】本题是四边形综合题,主要考查了矩形的性质,正方形的性质,菱形的性质,相似三角形的判定,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握这些知识点并灵活运用是解题的关键.24.已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C ,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到AB D 'V ,当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求2FG 的最大值.【答案】(1)234y x x =--+(2)D ⎛ ⎝(3)496【解析】【分析】(1)由题易得c 的值,再根据对称轴求出b 的值,即可解答;(2)过B '作x 轴的垂线,垂足为H 求出A 和B 的坐标,得到5AB AB '==,52AH =,由52AB AB AH '===,推出1302DAB B AB '∠=∠=︒,解直角三角形得到OD 的长,即可解答;(3)求得BC 所在直线的解析式为144y x =-+,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,得2224y x m m =---+,令12y y =,解得223m m x +=,分别表示出FG ,再对FG 进行化简计算,配方成顶点式即可求解.【小问1详解】解:抛物线与y 轴交于点()0,4C,∴4c =,∵对称轴为32x =-,∴322b -=--,3b =-,∴抛物线的解析式为234y x x =--+;【小问2详解】如图,过B '作x 轴的垂线,垂足为H ,令2340x x --+=,解得:121,4x x ==-,∴()4,0A -,()10B ,,∴()145AB =--=,由翻折可得5AB AB '==,∵对称轴为32x =-,∴()35422AH =---=,∵52AB AB AH '===,∴30AB H '∠=︒,60B AB '∠=︒∴1302DAB B AB '∠=∠=︒,在Rt AOD中,tan 30OD OA =︒=,∴D ⎛ ⎝;【小问3详解】设BC 所在直线的解析式为111y k x b =+,把B 、C 坐标代入得:11104k b b +=⎧⎨=⎩,解得1144k b =-⎧⎨=⎩,∴144y x =-+,∵OA OC =,∴45CAO ∠=︒,∵90AEB ∠=︒,∴直线PE 与x 轴所成夹角为45︒,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,把点P 代入得2224b m m =--+,∴2224y x m m =---+,31令12y y =,则24424x x m m -+=---+,解得223m mx +=,∴()24243F m m FG y -+==+()()223F P x x m m ==-=-∴()()22422433m m m m FG -+-+=++22549326m ⎛⎫=-++ ⎪⎝⎭∵点P 在直线AC 上方,∴40m -<<,∴当52m =-时,FG +的最大值为496.【点睛】本题考查了二次函数综合问题,利用数形结合的思想是解题的关键.。
山东菏泽中考数学试卷真题一、选择题1. 某数的百位与十位之和是12,个位数是2,该数是()A. 332B. 423C. 542D. 6212. 8×0.125+0.125×0.625的积是()A. 1B. 2C. 3D. 43. 表格中每个框中填入的数为两数字母相同的数,则A与C的值分别为()A. |2-6|和6×2B. 6-2和2×6C. |2-6|6D. |6-2|64. (根号128-根号32)×根号2的值是()A. 48B. 64C. 32D. 165. 如果甲、乙、丙三人为真,那么“甲说的是假话”与“丙说的是真话”同时为真,则也有()A. 乙说的是真话B. 乙说的是假话C. 甲说的是真话D. 甲说的是假话二、填空题6. 除以384以后,商最小的两位数是__________。
7. 设集合A={x|3<x≤8,x为奇数},则集合A中的元素个数是__________。
8. 已知a:b=3:5,则2a:3b=__________。
三、解答题9. 某种草原上有羊和鹿两种动物,在草原上随机选择一只动物,如果它是羊的概率是0.6,那么它是鹿的概率是多少?10. 将一个立方体剖面如下图所示,则该图分别是截去了该立方体的二分之一(图1)、一个顶点(图2)和一个棱(图3)。
问:剩下的图形是什么?【图片占位符】四、解题过程及答案解析1. 根据题意,百位与十位之和是12,个位数是2,故该数是421,因此选B。
2. 计算可得:8×0.125+0.125×0.625 = 1+0.078125 = 1.078125,因此选A。
3. 设两个数字为a和b,则根据题意列方程得:|a-b|=4,ab=12。
解得a=6,b=2,因此选B。
4. 根据题意,先计算根号128-根号32 = 8-4 = 4,然后再计算4×根号2 = 4×1.414 ≈5.656,因此选D。
2023年菏泽市初中学业水平考试一、选择题1.【答案】A【解析】解:A 选项,既是轴对称图形,也是中心对称图形,故A 符合题意;B 选项,是轴对称图形,不是中心对称图形,故B 不符合题意;C 选项,不是轴对称图形,也不是中心对称图形,故C 不符合题意;D 选项,不是轴对称图形,是中心对称图形,故D 不符合题意.故选:A .2.【答案】B【解析】解:A 选项,633a a a ÷=,故选项错误;B 选项,235a a a ⋅=,故选项正确;C 选项,()23624a a =,故选项错误;D 选项,()2222a b a ab b +=++,故选项错误;故选:B .3.【答案】B【解析】由图知,3120∠=∠=︒∴2603602040Ð=°-Ð=°-°=°故选:B4.【答案】C【解析】由数轴可知0a b c <<<,∴()0c b a ->,故A 选项错误;∴()0b c a ->,故B 选项错误;∴()0a b c ->,故C 选项正确;∴()0a c b +<,故D 选项错误;故选:C .5.【答案】A【解析】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示:故选:A .6.【答案】C【解析】解:∵一元二次方程2310x x +-=的两根为12x x 、,∴123x x +=-,121x x ⋅=-∴1211+x x 1212x x x x +=31=--3=.故选C .7.【答案】D【解析】解∵2()|0a b c -+-=又∵()2000a b c ⎧-≥≥-≥⎪⎩∴()2000a b c ⎧-==-=⎪⎩,∴02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩,∴222+=a b c ,且a b =,∴ABC 为等腰直角三角形,故选:D .8.【答案】D【解析】解:由题意可得:三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得:240x x c --+=,则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-,当3x =-时,()()213312+y c c =----+-=,29y =-,∴912+c ->-,解得:3c <,当1x =时,111+y c c =--+-2=,23y =,∴3>2+c -,解得:5c <,综上:c 的取值范围是45c -≤<,故选:D .二、填空题9.【答案】()4-m m 【解析】解:m 2-4m =m (m -4).故答案为:m (m -4).10.【答案】122sin 602023-+︒-2212=+⨯-1=故答案为:1.11.【答案】59【解析】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.12.【答案】6π【解析】解:由题意,()821801358HAB -⋅︒∠==︒,4AH AB ==∴213546360S ππ⋅==阴,故答案为:6π.13.【答案】80【解析】解:∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵55ABE ∠=︒,∴905535CBE ∠=︒-︒=︒,∵ABE 绕点B 按顺时针方向旋转90︒得到CBFV ∴90EBF ∠=︒,BE BF =,∴45BEF ∠=︒,∴EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒,故答案为:80.14.2-##2-+【解析】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD ,∴122AO OF AD '===,,∴225229BO =+=,BF 292-,292-.三、解答题15.【答案】23x ≤【解析】解:解()5231x x -<+得:52x <,解32232x x x --≥+得:23x ≤,∴不等式组的解集为23x ≤.16.【答案】42x y +,6【解析】解:原式()()()()()()()()3x x y x x y x y x y x y x y x y x y x ⎡⎤+--+=+⨯⎢⎥-+-+⎣⎦()()()()2233x y x y x xy x xy x y x y x -+++-=⨯-+()()()()242x y x y x xy x y x y x -++=⨯-+42x y =+;由230x y +-=,得到23x y +=,则原式()226x y =+=.17.【答案】证明见解析【解析】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥,∵AE 平分BAD ∠,CF 平分BCD ∠,∴BAE DAE BCF DCF ∠=∠=∠=∠,在BAE 和DCF 中,B D AB CD BAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA BAE DCF ≌ ∴AE CF =.18.【答案】大楼的高度BC为.【解析】解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,∴QH BC =,BH CQ =,由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =,∴sin 60802PH AP =︒=⨯= cos6040AH AP =︒= ,∴704030CQ BH ==-=,∴tan 30PQ CQ =︒=∴BC QH ==-=∴大楼的高度BC 为.19.【答案】(1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【解析】(1)将A 组数据从小到大排列为:56,65,66,68,70,73,74,74,∴中位数为6870692+=;∵74出现的次数最多,∴众数是74;88%100÷=,1536054100︒⨯=︒∴在统计图中B 组所对应的扇形圆心角是54︒;故答案为:69,74,54;(2)10081545230----=∴C 组的人数为30,∴补全学生心率频数分布直方图如下:(3)304523001725100+⨯=(人),∴大约有1725名学生达到适宜心率.20.【答案】(1)4y x=,14y x =(2)()2,2或18,2⎛⎫--⎪⎝⎭【解析】(1)如图,过点C 作CD x ⊥轴于点D ,则1CD =,90CDB ∠=︒,∵BC AB ⊥,∴90ABC ∠=︒,∴90ABO CBD ∠+∠=︒,∵90CDB ∠=︒,∴90BCD CBD ∠+∠=︒,∴BCD ABO ∠=∠,∴ABO BCD ∽ ,∴OA BD OB CD=,∵()()0,4,2,0A B ,∴4OA =,2OB =,∴421BD =,∴2BD =,∴224OD =+=,∴点()4,1C ,将点C 代入k y x =中,可得4k =,∴4y x=,设OC 的表达式为y mx =,将点()4,1C 代入可得14m =,解得:14m =,∴OC 的表达式为14y x =;(2)直线l 的解析式为1342y x =+,当两函数相交时,可得13442x x +=,解得12x =,8x =-,代入反比例函数解析式,得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∴直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭21.【答案】(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米(2)最多可以购买1400株牡丹【解析】(1)解:设长为x 米,面积为y 平方米,则宽为1203x -米,∴()221140601200331203y x x x x x =⨯=--+-+=-,∴当60x =时,y 有最大值是1200,此时,宽为120203x -=(米)答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.(2)解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤,即牡丹最多种植700平方米,70021400⨯=(株),答:最多可以购买1400株牡丹.22.【答案】(1)证明见解析;(2)43(3)【解析】(1)解:∵D 是 BC的中点,∴ CDBD =,∵DE AB ⊥且AB 为O 的直径,∴ BEBD =,∴»»BCDE =,∴BC DE =;(2)解:连接OD ,∵ CDBD =,∴CAB DOB ∠=∠,∵AB 为O 的直径,∴90ACB ∠=︒,∵DE AB ⊥,∴90DFO ∠=︒,∴ACB OFD ∽ ,∴AC OF AB OD=,设O 的半径为r ,则622r r r -=,解得=5r ,经检验,=5r 是方程的根,∴210AB r ==,∴8BC ==,∴84tan 63BC CAB AC ∠===,∵BPC CAB ∠=∠,∴tan BPC ∠43=;(3)解:如图,过点B 作BG CP ⊥交CP 于点G ,∴90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线,∴45ACP BCP ∠=∠=︒∴45CBG ∠=︒∴cos 45CG BG BC ==︒=,∵tan BPC ∠43=∴43BG GP =,∴GP =∴CP =+=.23.【答案】(1)见解析(2)见解析(3)3【解析】(1)证明: 四边形ABCD 是矩形,90ADE DCF ∴∠=∠=︒,90CDF DFC ∴∠+∠=︒,AE DF ⊥,90DGE ∴∠=︒,90CDF AED ∴∠+∠=︒,AED DFC ∴∠=∠,ADE DCF ∴△∽△;(2)证明: 四边形ABCD 是正方形,AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒,AE DF = ,()HL ADE DCF ∴ ≌,DE CF ∴=,又 CH DE =,∴CF CH =,点H 在BC 的延长线上,∴90DCH DCF ∠=∠=︒,DC DC = ,()SAS DCF DCH ∴ ≌,H DFC ∴∠=∠,AD BC ∥,ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG ,四边形ABCD 是菱形,AD DC ∴=,AD BC ∥,ADE DCG ∴∠=∠,()SAS ADE DCG ∴ ≌,60DGC AED ∴∠=∠=︒,DG AE =,AE DF = ,DG DF ∴=,DFG ∴ 是等边三角形,11FG FC CG DF ∴=+==,111183FC CG ∴=-=-=.24.【答案】(1)234y x x =--+(2)D ⎛ ⎝(3)496【解析】(1)解:抛物线与y 轴交于点()0,4C,∴4c =,∵对称轴为32x =-,∴322b -=--,3b =-,∴抛物线的解析式为234y x x =--+;(2)如图,过B '作x 轴的垂线,垂足为H ,令2340x x --+=,解得:121,4x x ==-,∴()4,0A -,()10B ,,∴()145AB =--=,由翻折可得5AB AB '==,∵对称轴为32x =-,∴()35422AH =---=,∵52AB AB AH '===,∴30AB H '∠=︒,60B AB '∠=︒∴1302DAB B AB '∠=∠=︒,在Rt AOD中,tan 30OD OA =︒=,∴D ⎛⎝;(3)设BC 所在直线的解析式为111y k x b =+,把B 、C 坐标代入得:11104k b b +=⎧⎨=⎩,解得1144k b =-⎧⎨=⎩,∴144y x =-+,∵OA OC =,∴45CAO ∠=︒,∵90AEB ∠=︒,∴直线PE 与x 轴所成夹角为45︒,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,把点P 代入得2224b m m =--+,∴2224y x m m =---+,令12y y =,则24424x x m m -+=---+,解得223m m x +=,∴()24243F m m FG y -+==+()()223F P x x m m ==-=-∴()()22422433FG m m m m FG P -++-=+=+22549326m ⎛⎫=-++ ⎪⎝⎭∵点P 在直线AC 上方,∴40m -<<,∴当52m =-时,FG +的最大值为496.。
2022年山东省菏泽市中考数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.2022的相反数是( )A. −2022B. 2022C. −12022D. 120222.2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为( )A. 0.4×108B. 4×107C. 4.0×108D. 4×1063.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是( )A.B.C.D.4.如图所示,将一矩形纸片沿AB折叠,已知∠ABC=36°,则∠D1AD=( )A. 48°B. 66°C. 72°D. 78°5.射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是( )A. 平均数是9环B. 中位数是9环C. 众数是9环D. 方差是0.86.如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为( )A. 1B. √2C. √3D. 27.根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=a与一次函数y=bx+c的图象大致是( )xA. B. C. D.8.如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为( )A. B. C. D.二、填空题(本大题共6小题,共18.0分)9. 分解因式:x 2−9y 2=______.10. 若1√x−3在实数范围内有意义,则实数x 的取值范围是______.11. 如果正n 边形的一个内角与一个外角的比是3:2,则n =______.12. 如图,等腰Rt △ABC 中,AB =AC =√2,以A 为圆心,以AB 为半径作BDC⏜;以BC 为直径作CAB ⏜.则图中阴影部分的面积是______.(结果保留π)13. 若a 2−2a −15=0,则代数式(a −4a−4a )⋅a 2a−2的值是______.14. 如图,在第一象限内的直线l :y =√3x 上取点A 1,使OA 1=1,以OA 1为边作等边△OA 1B 1,交x 轴于点B 1;过点B 1作x 轴的垂线交直线l 于点A 2,以OA 2为边作等边△OA 2B 2,交x 轴于点B 2;过点B 2作x 轴的垂线交直线l 于点A 3,以OA 3为边作等边△OA 3B 3,交x 轴于点B 3;……,依次类推,则点A 2022的横坐标为______.三、解答题(本大题共10小题,共78.0分。
2022年山东省菏泽市中考数学试卷一、选择题〔本大题共8个小题,每题3分,共24分,在每题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置〕1.以下各对数是互为倒数的是〔〕A.4和﹣4B.﹣3和C.﹣2和D.0和0【解析】A、4×〔﹣4〕≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×〔﹣〕=1,选项正确;D、0×0≠1,选项错误.应选C.A.B.C.D.【解析】A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.应选D.3.如下列图,该几何体的俯视图是〔〕A.B.C.D.【解析】从上往下看,可以看到选项C所示的图形.应选:C.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是〔〕A.﹣1B.1C.3D.﹣3【解析】当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.应选:B.5.如图,A,B的坐标为〔2,0〕,〔0,1〕,假设将线段AB平移至A1B1,那么a+b的值为〔〕A.2B.3C.4D.5【解析】由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.应选:A.6.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,以下结论正确的有〔〕①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【解析】根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;应选:B.7.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,假设∠B+∠B′=90°,那么△ABC与△A′B′C′的面积比为〔〕A.25:9B.5:3C.:D.5:3【解析】过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC:S△A′B′C′=25:9.应选A.8.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,那么△OAC与△BAD的面积之差S△OAC﹣S△BAD为〔〕A.36B.12C.6D.3【解析】设△OAC和△BAD的直角边长分别为a、b,那么点B的坐标为〔a+b,a﹣b〕.∵点B在反比例函数y=的第一象限图象上,∴〔a+b〕×〔a﹣b〕=a2﹣b2=6.∴S△OAC﹣S△BAD=a2﹣b2=〔a2﹣b2〕=×6=3.应选D.二、填空题〔本大题共6个小题,每题3分,共18分,只要求把最后结果填写在答题卡的相应区域内〕9.2022年春节期间,在网络上用“百度〞搜索引擎搜索“开放二孩〞,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107.【解析】45100000这个数用科学记数法表示为4.51×107.故答案为:4.51×107.10.如图,将一副三角板和一张对边平行的纸条按以下方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,那么∠1的度数是15°.【解析】如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.11.某校九年级〔1〕班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,那么这个班同学年龄的中位数是15岁.【解析】∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.12.m是关于x的方程x2﹣2x﹣3=0的一个根,那么2m2﹣4m=6.【解析】∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.13.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,那么tan∠EBC=.【解析】作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即∠EBC=.故答案为.14.如图,一段抛物线:y=﹣x〔x﹣2〕〔0≤x≤2〕记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,假设点P〔11,m〕在第6段抛物线C6上,那么m=﹣1.【解析】∵y=﹣x〔x﹣2〕〔0≤x≤2〕,∴配方可得y=﹣〔x﹣1〕2+1〔0≤x≤2〕,∴顶点坐标为〔1,1〕,∴A1坐标为〔2,0〕∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为〔3,﹣1〕,A2〔4,0〕;照此类推可得,C3顶点坐标为〔5,1〕,A3〔6,0〕;C4顶点坐标为〔7,﹣1〕,A4〔8,0〕;C5顶点坐标为〔9,1〕,A5〔10,0〕;C6顶点坐标为〔11,﹣1〕,A6〔12,0〕;∴m=﹣1.故答案为:﹣1.三、解答题〔此题共78分,把解答和证明过程写在答题卡的相应区域内〕15.计算:2﹣2﹣2cos60°+|﹣|+〔π﹣3.14〕0.【解】原式=﹣2×+2+1=+2.16.4x=3y,求代数式〔x﹣2y〕2﹣〔x﹣y〕〔x+y〕﹣2y2的值.【解】〔x﹣2y〕2﹣〔x﹣y〕〔x+y〕﹣2y2=x2﹣4xy+4y2﹣〔x2﹣y2〕﹣2y2=﹣4xy+3y2=﹣y〔4x﹣3y〕.∵4x=3y,∴原式=0.17.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20〔1+〕海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.【解】如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20〔1+〕,CD+BD=BC,即x+x=20〔1+〕,解得:x=20,∴AC=x=20〔海里〕.答:A、C之间的距离为20海里.18.列方程或方程组解应用题:【解】设A4薄型纸每页的质量为x克,那么A4厚型纸每页的质量为〔x+0.8〕克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.19.如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.〔1〕求证:四边形DEFG是平行四边形;〔2〕假设M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.〔1〕证明:∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DE=EF,DG∥EF,∴四边形DEFG是平行四边形;〔2〕解:∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由〔1〕有四边形DEFG是平行四边形,∴DG=EF=6.20.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A〔﹣1,a〕.〔1〕求a,m的值;〔2〕求该双曲线与直线y=﹣2x+2另一个交点B的坐标.【解】〔1〕∵点A的坐标是〔﹣1,a〕,在直线y=﹣2x+2上,∴a=﹣2×〔﹣1〕+2=4,∴点A的坐标是〔﹣1,4〕,代入反比例函数y=,∴m=﹣4.〔2〕解方程组解得或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为〔2,﹣2〕.21.如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC 于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.〔1〕求证:PC是⊙O的切线;〔2〕假设PC=3,PF=1,求AB的长.〔1〕证明:如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.〔2〕解:延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.22.锐锐参加我市电视台组织的“牡丹杯〞智力竞答节目,答对最后两道单项选择题就顺利通关,第一道单项选择题有3个选项,第二道单项选择题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助〞可以用〔使用“求助〞一次可以让主持人去掉其中一题的一个错误选项〕.〔1〕如果锐锐两次“求助〞都在第一道题中使用,那么锐锐通关的概率是.〔2〕如果锐锐两次“求助〞都在第二道题中使用,那么锐锐通关的概率是.〔3〕如果锐锐将每道题各用一次“求助〞,请用树状图或者列表来分析他顺序通关的概率.【解】〔1〕第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;〔2〕锐锐两次“求助〞都在第二道题中使用,那么第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;〔3〕锐锐将每道题各用一次“求助〞,分别用A,B表示剩下的第一道单项选择题的2个选项,a,b,c 表示剩下的第二道单项选择题的3个选项,树状图如下列图:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.23.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.〔1〕如图1,假设∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.〔2〕如图2,假设∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.〔1〕①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE〔SAS〕,∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.〔2〕证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×〔180°﹣120°〕=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B〔﹣2,6〕,C〔2,2〕两点.〔1〕试求抛物线的解析式;〔2〕记抛物线顶点为D,求△BCD的面积;〔3〕假设直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC〔包括端点B、C〕局部有两个交点,求b的取值范围.【解】〔1〕由题意解得,∴抛物线解析式为y=x2﹣x+2.〔2〕∵y=x2﹣x+2=〔x﹣1〕2+.∴顶点坐标〔1,〕,∵直线BC为y=﹣x+4,∴对称轴与BC的交点H〔1,3〕,∴S△BDC=S△BDH+S△DHC=•3+•1=3.〔3〕由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4〔4﹣2b〕=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC〔包括端点B、C〕局部有两个交点,∴<b≤3.。
菏泽中考数学试卷真题记得那是一个温暖的夏日,学生们带着紧张和期待踏进了菏泽中考数学考场。
数学试卷摆在他们面前,仿佛是一道难以跨越的鸿沟,但他们却满怀信心地迎接挑战。
第一部分:选择题(共40分)1. 填入方框中的小数字使等式成立:3 × □ × □ = 3 × □解析:根据等式可以得出:3 × 1 × 3 = 3 × 1,因此空格中的数字应为1、3。
2. 解不等式组:{2x + 3y ≤ 5x - y ≥ 7解析:我们可以先通过第二个不等式将x表示为y+7,然后代入第一个不等式进行计算,即将x替换为y+7,得到2(y+7) + 3y ≤ 5,化简得到5y ≤ -9,再解出y的值,即可得到解。
3. 计算:(-1.5) ÷ [(-6) × 3 ÷ 0.5]解析:按照数学运算法则,首先计算括号内的表达式,即-6 × 3,然后再进行除法运算,得到-18 ÷ 0.5,最后再进行负数的除法运算,得到答案。
第二部分:填空题(共30分)4. 若函数f(x)满足f(3x) = 2f(x) + 5,则f(12) = □解析:根据给出的函数关系,可以得到f(12) = 2f(4) + 5,再根据f(3x) = 2f(x) + 5,可以将f(4)表示为2f(1) + 5,进一步带入f(12)的计算式中,得到f(12) = 2(2f(1) + 5) + 5,最终计算出f(12)的值。
5. 已知△ABC中,AB = 5,BC = 7,AC = 8,角B的平分线交AC 于点D,则BD:DC = □解析:根据角平分线的性质,可以得知BD:DC = AB:AC,即BD:DC = 5:8,化简得到BD:DC = 5/8。
第三部分:解答题(共30分)6. 解方程组:{2x + y = 7x - y = 1解析:我们可以采用消元法来解这个方程组。
菏泽市中考数学试题及答案1. 选择题(1)已知函数y=ax^2+bx+c与x轴交于点(-4,0)和(1,0),且抛物线的对称轴为x=1,则a、b、c的值分别为(A)。
A. 1,7,-12B. 1,-5,-4C. -4,-2,1D. -4,-2,-3(2)小明在菏泽市图书馆订阅了3份杂志,共花费46元。
他比他的小弟弟多订阅了2份杂志,小弟弟比姐姐多订阅了5份杂志。
则姐姐花费了多少元?(D)A. 8B. 6C. 12D. 14(3)某公司有10名员工,其中4名是男性,6名是女性。
从这10人中随机抽取3人,恰好1名为男性的概率是(A)。
A. 26/45B. 11/45C. 2/5D. 2/3(4)如图,直径为AB的ABCD是一个正方形。
线段BE和CF交于点O,并且满足∠AEO=∠CFO。
已知BE=12,BO=10,则CF的长度为(A)。
A. 6B. 8C. 9D. 102. 解答题(1)一根圆柱形的铅笔有底面半径为4mm、高为15mm。
小明用这根铅笔画图时,需要戴一个绘画套装,绘画套装会把铅笔末端的0.5cm遮挡住。
小明还需要再用铅笔身上0.2cm宽度的颜色纸胶带扎上。
小明需要准备多长的颜色纸胶带?(π取3.14)答案:25.12cm。
(2)某公司有10名员工,其中3名男性和7名女性。
为了开展一次市场调研,该公司从这10人中任命了一个调研小组,由3名成员组成。
求出调研小组中恰好有2名男性成员的概率。
(答案保留2位小数)答案:0.42。
(3)四年级一班有35人,其中男生21人,女生14人。
在一个紧急情况演练中,学生需要站成一个长方形队列。
要求队列的列数尽可能多,而每一列的人数相同。
求每一列的人数。
(答案:7人/列)3. 答案(1)A(2)D(3)A(4)C希望以上菏泽市中考数学试题及答案对您有所帮助。
祝您取得优异成绩!。
2024年山东菏泽中考数学试题及答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( )A. 3B. 12C. 1-D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形是( )A.B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910´B. 461.910´C. 56.1910´D. 66.1910´4. 下列几何体中,主视图是如图的是( )的A. B. C. D.5. 下列运算正确的是( )A. 437a a a += B. ()2211a a -=-C. ()2332a ba b = D. ()2212a a a a +=+6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN Ð=°,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )A 19 B. 29 C. 13 D. 239. 如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52 B.3 C. 72 D. 410. 根据以下对话,的.给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +³ìí-<î的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14. 如图,ABC V 是O e 的内接三角形,若OA CB ∥,25ACB Ð=°,则CAB Ð=________.15.如图,已知MAN Ð,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN Ð内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE Ð=°,则F 到AN 的距离为________.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-æö+--ç÷èø;(2)先化简,再求值:212139a a a +æö-¸ç÷+-èø,其中1a =.18. 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及ÐPAB 和PBA Ð,测量三次取平均值,得到数据:60AB =米,79PAB Ð=°,64PBA Ð=°.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90°»,sin790.98°»,cos790.19°»,sin370.60°»,tan370.75°»)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP Ð=Ð,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水x 表示),并将其分成如下四组:6070x £<,7080x £<,8090x £<,90100x ££.下面给出了部分信息:8090x £<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生模型设计成绩的中位数是________分;的(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?20.列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+图像在k y x=的图像上方时,直接写出x 的取值范围.21. 如图,在四边形ABCD 中,AD BC ∥,60DAB Ð=°,22AB BC AD ===.以点A 为圆心,以AD 为半径作»DE交AB 于点E ,以点B 为圆心,以BE 为半径作»E F 所交BC 于点F ,连接FD 交»E F 于另一点G ,连接CG .的(1)求证:CG 为»EF 所在圆的切线;(2)求图中阴影部分面积.(结果保留p )22. 一副三角板分别记作ABC V 和DEF V ,其中90ABC DEF Ð=Ð=°,45BAC Ð=°,30EDF Ð=°,AC DE =.作BM AC ^于点M ,EN DF ^于点N ,如图1.(1)求证:BM EN =;(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF V 绕C 按顺时针方向旋转a 后,延长BM 交直线DF 于点P .①当30a =°时,如图3,求证:四边形CNPM 为正方形;②当3060a °<<°时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120a °<<°时,直接写出线段MP ,DP ,CD 的数量关系.23.在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ££时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.参考答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】D二、填空题:本题共6小题,每小题3分,共18分.【11题答案】【答案】()2xy x +【12题答案】【答案】1-(答案不唯一)【13题答案】【答案】14##0.25【14题答案】【答案】40°##40度【15题答案】【16题答案】【答案】()2,1三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)3 (2)3a - 2-【18题答案】【答案】(1)A ,P 两点间的距离为89.8米;(2)②【19题答案】【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【20题答案】【答案】(1)25a b =-ìí=î,补全表格见解析 (2)x 的取值范围为702x -<<或1x >;【21题答案】【答案】(1)见解析 (23p -【22题答案】【答案】(1)证明见解析(2)①证明见解析;②当3060a °<<°时,线段MP ,DP ,CD 的数量关系为DP MP CD +=;当60120a °<<°时,线段MP ,DP ,CD 的数量关系为MP DP CD -=;【23题答案】【答案】(1)1m =(2)新的二次函数的最大值与最小值的和为11;(3)318a <<2024年山东菏泽中考数学试题及答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( )A. 3B. 12C. 1-D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形是( )A.B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910´B. 461.910´C. 56.1910´D. 66.1910´4. 下列几何体中,主视图是如图的是( )的A. B. C. D.5. 下列运算正确的是( )A. 437a a a += B. ()2211a a -=-C. ()2332a ba b = D. ()2212a a a a +=+6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN Ð=°,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )A 19 B. 29 C. 13 D. 239. 如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52 B.3 C. 72 D. 410. 根据以下对话,的.给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +³ìí-<î的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14. 如图,ABC V 是O e 的内接三角形,若OA CB ∥,25ACB Ð=°,则CAB Ð=________.15.如图,已知MAN Ð,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN Ð内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE Ð=°,则F 到AN 的距离为________.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-æö+--ç÷èø;(2)先化简,再求值:212139a a a +æö-¸ç÷+-èø,其中1a =.18. 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及ÐPAB 和PBA Ð,测量三次取平均值,得到数据:60AB =米,79PAB Ð=°,64PBA Ð=°.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90°»,sin790.98°»,cos790.19°»,sin370.60°»,tan370.75°»)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP Ð=Ð,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水x 表示),并将其分成如下四组:6070x £<,7080x £<,8090x £<,90100x ££.下面给出了部分信息:8090x £<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生模型设计成绩的中位数是________分;的(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?20.列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+图像在k y x=的图像上方时,直接写出x 的取值范围.21. 如图,在四边形ABCD 中,AD BC ∥,60DAB Ð=°,22AB BC AD ===.以点A 为圆心,以AD 为半径作»DE交AB 于点E ,以点B 为圆心,以BE 为半径作»E F 所交BC 于点F ,连接FD 交»E F 于另一点G ,连接CG .的(1)求证:CG 为»EF 所在圆的切线;(2)求图中阴影部分面积.(结果保留p )22. 一副三角板分别记作ABC V 和DEF V ,其中90ABC DEF Ð=Ð=°,45BAC Ð=°,30EDF Ð=°,AC DE =.作BM AC ^于点M ,EN DF ^于点N ,如图1.(1)求证:BM EN =;(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF V 绕C 按顺时针方向旋转a 后,延长BM 交直线DF 于点P .①当30a =°时,如图3,求证:四边形CNPM 为正方形;②当3060a °<<°时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120a °<<°时,直接写出线段MP ,DP ,CD 的数量关系.23.在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ££时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.参考答案本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【答案】D二、填空题:本题共6小题,每小题3分,共18分.【11题答案】【答案】()2xy x +【12题答案】【答案】1-(答案不唯一)【13题答案】【答案】14##0.25【14题答案】【答案】40°##40度【15题答案】【16题答案】【答案】()2,1三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)3 (2)3a - 2-【18题答案】【答案】(1)A ,P 两点间的距离为89.8米;(2)②【19题答案】【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【20题答案】【答案】(1)25a b =-ìí=î,补全表格见解析 (2)x 的取值范围为702x -<<或1x >;【答案】(1)见解析 (23p -【22题答案】【答案】(1)证明见解析(2)①证明见解析;②当3060a °<<°时,线段MP ,DP ,CD 的数量关系为DP MP CD +=;当60120a °<<°时,线段MP ,DP ,CD 的数量关系为MP DP CD -=;【23题答案】【答案】(1)1m =(2)新的二次函数的最大值与最小值的和为11;(3)318a <<。
山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(20xx 菏泽)点P (﹣2,1)在平面直角坐标系中所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点:点的坐标。
解答:解:点P (﹣2,1)在第二象限. 故选B .2.(20xx 菏泽)在算式()□()的□中填上运算符号,使结果最大,这个运算符号是( )A .加号B .减号C .乘号D .除号 考点:实数的运算;实数大小比较。
解答:解:当填入加号时:()+()=﹣;当填入减号时:()﹣()=0; 当填入乘号时:()×()=; 当填入除号时:()÷()=1.∵1>>0>﹣, ∴这个运算符号是除号. 故选D . 3.(20xx 菏泽)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A .B .C .D . 考点:简单组合体的三视图。
解答:解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加. 故选B .4.(20xx 菏泽)已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为( )A .±2B . 2C .2D . 4考点:二元一次方程组的解;算术平方根。
解答:解:∵⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,∴2821m n n m +=⎧⎨-=⎩,解得:32m n =⎧⎨=⎩,∴2m ﹣n=4,∴n m -2的算术平方根为2. 故选C . 5.(20xx 菏泽)下列图形中是中心对称图形是( )A .B .C .D .考点:中心对称图形。
山东省菏泽市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共2小题)1.(2022•菏泽)计算:()﹣1+4cos45°﹣+(2022﹣π)0.2.(2021•菏泽)计算:(2021﹣π)0﹣|3﹣|+4cos30°﹣()﹣1.二.分式的化简求值(共2小题)3.(2023•菏泽)先化简,再求值:(+)÷,其中x,y满足2x+y﹣3=0.4.(2021•菏泽)先化简,再求值:1+÷,其中m,n满足=﹣.三.一元二次方程的应用(共1小题)5.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?四.解一元一次不等式组(共1小题)6.(2022•菏泽)解不等式组,并将其解集在数轴上表示出来.五.反比例函数与一次函数的交点问题(共1小题)7.(2022•菏泽)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象都经过A(2,﹣4)、B(﹣4,m)两点.(1)求反比例函数和一次函数的表达式;(2)过O、A两点的直线与反比例函数图象交于另一点C,连接BC,求△ABC的面积.六.二次函数的应用(共1小题)8.(2023•菏泽)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?七.菱形的性质(共1小题)9.(2021•菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且∠ADM=∠CDN,求证:BM=BN.八.切线的判定与性质(共2小题)10.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=,求CG的长.11.(2021•菏泽)如图,在⊙O中,AB是直径,弦CD⊥AB,垂足为H,E为上一点,F 为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若FE=FP.(1)求证:FE是⊙O的切线;(2)若⊙O的半径为8,sin F=,求BG的长.九.相似三角形的判定(共1小题)12.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.一十.解直角三角形的应用-坡度坡角问题(共1小题)13.(2022•菏泽)菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B 延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)一十一.解直角三角形的应用-方向角问题(共1小题)14.(2021•菏泽)某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?一十二.列表法与树状图法(共1小题)15.(2022•菏泽)为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”.为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出下面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了 名学生;并将条形统计图补充完整;(2)C组所对应的扇形圆心角为 度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是 ;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.山东省菏泽市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共2小题)1.(2022•菏泽)计算:()﹣1+4cos45°﹣+(2022﹣π)0.【答案】3.【解答】解:原式=2+4×﹣2+1=2+2﹣2+1=3.2.(2021•菏泽)计算:(2021﹣π)0﹣|3﹣|+4cos30°﹣()﹣1.【答案】0.【解答】解:原式=1﹣(2﹣3)+4×﹣4=1﹣2+3+2﹣4=0.二.分式的化简求值(共2小题)3.(2023•菏泽)先化简,再求值:(+)÷,其中x,y满足2x+y﹣3=0.【答案】2(2x+y),6.【解答】解:(+)÷===2(2x+y),∵2x+y﹣3=0,∴2x+y=3,∴原式=2×3=6.4.(2021•菏泽)先化简,再求值:1+÷,其中m,n满足=﹣.【答案】,﹣6.【解答】解:原式=1+•=1﹣=﹣=,∵=﹣,∴m=﹣n,则原式===﹣6.三.一元二次方程的应用(共1小题)5.(2021•菏泽)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?【答案】见试题解答内容【解答】解:设每千克降低x元,超市每天可获得销售利润3640元,由题意得,(38﹣x﹣22)(160+×120)=3640,整理得x2﹣12x+27=0,∴x=3或x=9.∵要尽可能让顾客得到实惠,∴x=9,∴售价为38﹣9=29元/千克.答:水果的销售价为每千克29元时,超市每天可获得销售利润3640元.四.解一元一次不等式组(共1小题)6.(2022•菏泽)解不等式组,并将其解集在数轴上表示出来.【答案】x≤1,数轴表示见解答.【解答】解:由①得:x≤1,由②得:x<6,∴不等式组的解集为x≤1,解集表示在数轴上,如图所示:.五.反比例函数与一次函数的交点问题(共1小题)7.(2022•菏泽)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象都经过A(2,﹣4)、B(﹣4,m)两点.(1)求反比例函数和一次函数的表达式;(2)过O、A两点的直线与反比例函数图象交于另一点C,连接BC,求△ABC的面积.【答案】(1)反比例函数的表达式为y=﹣;一次函数的表达式为:y=﹣x﹣2;(2)12.【解答】解:(1)将A(2,﹣4),B(﹣4,m)两点代入y=中,得k=2×(﹣4)=﹣4m,解得,k=﹣8,m=2,∴反比例函数的表达式为y=﹣;将A(2,﹣4)和B(﹣4,2)代入y=ax+b中得,解得,∴一次函数的表达式为:y=﹣x﹣2;(2)如图,设AB与x轴交于点D,连接CD,由题意可知,点A与点C关于原点对称,∴C(﹣2,4).在y=﹣x﹣2中,当x=﹣2时,y=0,∴D(﹣2,0),∴CD垂直x轴于点D,∴S△ABC=S△ADC+S△BCD=×4×(2+2)+×4×(4﹣2)=8+4=12.六.二次函数的应用(共1小题)8.(2023•菏泽)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块内分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)垂直于墙的边为20米,平行于墙的边为60米,花园面积最大为1200平方米;(2)最多可以购买1400株牡丹.【解答】解:(1)设垂直于墙的边为x米,围成的矩形面积为S平方米,则平行于墙的边为(120﹣3x)米,根据题意得:S=x(120﹣3x)=﹣3x2+120x=﹣3(x﹣20)2+1200,∵﹣3<0,∴当x=20时,S取最大值1200,∴120﹣3x=120﹣3×20=60,∴垂直于墙的边为20米,平行于墙的边为60米,花园面积最大为1200平方米;(2)设购买牡丹m株,则购买芍药1200×2﹣m=(2400﹣m)株,∵学校计划购买费用不超过5万元,∴25m+15(2400﹣m)≤50000,解得m≤1400,∴最多可以购买1400株牡丹.七.菱形的性质(共1小题)9.(2021•菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且∠ADM=∠CDN,求证:BM=BN.【答案】见试题解答内容【解答】证明:∵四边形ABCD为菱形,∴AD=CD=AB=BC,∠A=∠C.在△AMD和△CND中,,∴△AMD≌△CND(ASA).∴AM=CN,∴AB﹣AM=BC﹣CN,即BM=BN.八.切线的判定与性质(共2小题)10.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=,求CG的长.【答案】(1)证明见解答过程;(2).【解答】(1)证明:连接OD,∵AD=DC,AO=OB,∴OD是△ABC的中位线,∴OD∥BC,OD=BC,∵DG⊥BC,∴OD⊥HG,∵OD是⊙O的半径,∴直线HG是⊙O的切线;(2)解:设⊙O的半径为x,则OH=x+3,BC=2x,∵OD∥BC,∴∠HOD=∠B,∴cos∠HOD=,即==,解得:x=2,∴BC=4,BH=7,∵cos B=,∴=,即=,解得:BG=,∴CG=BC﹣BG=4﹣=.11.(2021•菏泽)如图,在⊙O中,AB是直径,弦CD⊥AB,垂足为H,E为上一点,F 为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若FE=FP.(1)求证:FE是⊙O的切线;(2)若⊙O的半径为8,sin F=,求BG的长.【答案】见试题解答内容【解答】解:(1)如图,连接OE,∵OA=OE,∴∠A=∠AEO,∵CD⊥AB,∴∠AHP=90°,∵FE=FP,∴∠FPE=∠FEP,∵∠A+∠APH=∠A+∠FPE=90°,∴∠FEP+∠AEO=90°=∠FEO,∴OE⊥EF,∴FE是⊙O的切线;(2)∵∠FHG=∠OEG=90°,∴∠G+∠EOG=90°=∠G+∠F,∴∠F=∠EOG,∴sin F=sin∠EOG==,设EG=3x,OG=5x,∴OE===4x,∵OE=8,∴x=2,∴OG=10,∴BG=10﹣8=2.九.相似三角形的判定(共1小题)12.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【答案】证明见解答过程.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB=∠AED,∴∠C=∠AED,∵AD⊥BE,∴∠D=∠ABC=90°,∴△ADE∽△ABC.一十.解直角三角形的应用-坡度坡角问题(共1小题)13.(2022•菏泽)菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B 延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【答案】1.9米.【解答】解:由题意得,在△ABC中,∵∠ABC=37°,AB=8米,∴AC=AB•sin37°=4.8(米),BC=AB•cos37°=6.4(米),在Rt△ACD中,CD=≈8.304(米),则BD=CD﹣BC=8.304﹣6.4≈1.9(米).答:改动后电梯水平宽度增加部分BD的长为1.9米.一十一.解直角三角形的应用-方向角问题(共1小题)14.(2021•菏泽)某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?【答案】见试题解答内容【解答】解:过点C作CD⊥BA的延长线于点D,如图.由题意可得:∠CAD=60°,∠CBD=30°=∠DCA,∴∠BCA=∠CAD﹣∠CBD=60°﹣30°=30°.即∠BCA=∠CBD,∴AC=AB=200(海里).在Rt△CDA中,CD=sin∠CAD×AC==100(海里).在Rt△CDB中,CB=2CD=200(海里).故位于A处的济南舰距C处的距离200海里,位于B处的西安舰距C处的距离200海里.一十二.列表法与树状图法(共1小题)15.(2022•菏泽)为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”.为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出下面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了 40 名学生;并将条形统计图补充完整;(2)C组所对应的扇形圆心角为 72 度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是 560人 ;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.【答案】(1)40,补全图形见解答;(2)72;(3)560人;(4).【解答】解:(1)本次调查的学生总人数为4÷10%=40(名),C组人数为40﹣(4+16+12)=8(名),补全图形如下:故答案为:40;(2)C组所对应的扇形圆心角为360°×=72°,故答案为:72;(3)估计该校喜欢跳绳的学生人数约是1400×=560(人),故答案为:560人;(4)画树状图如下:共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,∴选出的2名学生恰好为一名男生、一名女生的概率为=.。
2022年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置。
)1.(3分)2022的相反数是()A.﹣2022B.2022C.﹣D.2.(3分)2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为()A.0.4×108B.4×107C.4.0×108D.4×1063.(3分)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.4.(3分)如图所示,将一矩形纸片沿AB折叠,已知∠ABC=36°,则∠D1AD=()A.48°B.66°C.72°D.78°5.(3分)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是()A.平均数是9环B.中位数是9环C.众数是9环D.方差是0.86.(3分)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为()A.1B.C.D.27.(3分)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是()A.B.C.D.8.(3分)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.(3分)分解因式:x2﹣9y2=.10.(3分)若在实数范围内有意义,则实数x的取值范围是.11.(3分)如果正n边形的一个内角与一个外角的比是3:2,则n=.12.(3分)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作;以BC为直径作.则图中阴影部分的面积是.(结果保留π)13.(3分)若a2﹣2a﹣15=0,则代数式(a﹣)•的值是.14.(3分)如图,在第一象限内的直线l:y=x上取点A1,使OA1=1,以OA1为边作等边△OA1B1,交x轴于点B1;过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2;过点B2作x轴的垂线交直线l于点A3,以OA3为边作等边△OA3B3,交x轴于点B3;……,依次类推,则点A2022的横坐标为.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内,写在其他区域不得分.)15.(6分)计算:()﹣1+4cos45°﹣+(2022﹣π)0.16.(6分)解不等式组,并将其解集在数轴上表示出来.17.(6分)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A 作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.18.(6分)菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)19.(7分)某健身器材店计划购买一批篮球和排球,已知每个篮球进价是每个排球进价的1.5倍,若用3600元购进篮球的数量比用3200元购进排球的数量少10个.(1)篮球、排球的进价分别为每个多少元?(2)该健身器材店决定用不多于28000元购进篮球和排球共300个进行销售,最多可以购买多少个篮球?20.(7分)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y=的图象都经过A(2,﹣4)、B(﹣4,m)两点.(1)求反比例函数和一次函数的表达式;(2)过O、A两点的直线与反比例函数图象交于另一点C,连接BC,求△ABC的面积.21.(10分)为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”.为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出下面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了名学生;并将条形统计图补充完整;(2)C组所对应的扇形圆心角为度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.22.(10分)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cos B=,求CG的长.23.(10分)如图1,在△ABC中,∠ABC=45°,AD⊥BC于点D,在DA上取点E,使DE=DC,连接BE、CE.(1)直接写出CE与AB的位置关系;(2)如图2,将△BED绕点D旋转,得到△B′E′D(点B′、E′分别与点B、E对应),连接CE′、AB′,在△BED旋转的过程中CE′与AB′的位置关系与(1)中的CE与AB的位置关系是否一致?请说明理由;(3)如图3,当△BED绕点D顺时针旋转30°时,射线CE′与AD、AB′分别交于点G、F,若CG=FG,DC=,求AB′的长.24.(10分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.2022年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置。
2023年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1. 剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 下列运算正确的是( )A. 632a a a ÷=B. 235a a a ⋅=C. ()23622a a =D. ()222a b a b +=+ 3. 一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=( )A. 30︒B. 40︒C. 50︒D. 60︒4. 实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是( )A. ()0c b a -<B. ()0b c a -<C. ()0a b c ->D. ()0a c b +> 5. 如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( )A. B. C. D. 6. 一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为( ) A. 32 B. 3- C. 3 D. 32- 7. ABC ∆的三边长a ,b ,c满足2()|0a b c --=,则ABC ∆是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形 8. 若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”.在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A. 114c -≤< B. 43c -≤<- C. 154c -<< D. 45c -≤<二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9. 因式分解:24m m -=______.10. 计算:0|2|2sin 602023+︒-=___________.11. 用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.12. 如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为__________(结果保留π).13. 如图,点E 是正方形ABCD 内的一点,将ABE ∆绕点B 按顺时针方向旋转90︒得到CBF ∆.若55ABE ∠=︒,则EGC ∠=__________度.14. 如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15. 解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩. 16. 先化简,再求值:223x x x x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=. 17. 如图,在▱ABCD 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.18. 无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)19. 某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度; (2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?20. 如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .(1)求反比例函数k y x=和直线OC 的表达式; (2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标. 21. 某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?22. 如图,AB 为O 的直径,C 是圆上一点,D 是BC 的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是⌒AE上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.23. (1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =.连接DH .求证:ADFH ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒.求CF 的长.24. 已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C ,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到D AB '∆.当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求FG +的最大值.2023年山东省菏泽市中考数学试卷答案一、选择题.1. A2. B3. B4. C5.A6. C7. D解∵2()|0a b c --=又∵()2000a b c ⎧-≥-≥⎪⎩∵()2000a b c ⎧-==-=⎪⎩.∵02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩ .∵222+=a b c ,且a b =.∵ABC 为等腰直角三角形.故选:D .8. D解:由题意可得:三倍点所在的直线为3y x =.在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”.即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点.令23x x x c =--+,整理得:240x x c --+=.则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-.x ==.∵12x =-22x =-∵321-<-+<或321-<-<当321-<-<时,13-<<,即03≤<,解得45c -≤<.当321-<-时,31-<<,即01≤<,解得43c -≤<-.综上,c 的取值范围是45c -≤<.故选:D . 二、填空题. 9. ()4-m m10. 1 11. 5912. 6π解:由题意,()821801358HAB -⋅︒∠==︒. 4AH AB ==∵213546360S ππ⋅==阴. 故答案为:6π.13. 80解:∵四边形ABCD 是正方形.∵90ABC ∠=︒.∵55ABE ∠=︒. ∵905535CBE ∠=︒-︒=︒.∵ABE ∆绕点B 按顺时针方向旋转90︒得到CBF ∆.∵90EBF ∠=︒,BE BF =.∵45BEF ∠=︒.∵EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒.故答案为:80.14. 2解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F '.∵90ABC BAD ∠=∠=︒.∵AD BC ∥.∵DAE AEB ∠=∠.∵ADF BAE =∠∠.∵90DFA ABE ==︒∠∠.∵点F 在以AD 为直径的半圆上运动.∵当点F 运动到OB 与O 的交点F '时,线段BF 有最小值. ∵4=AD . ∵122AO OF AD '===.∵BO ==BF 2.2.三、解答题. 15. 23x ≤ 16. 42x y +,617. 证明:∵四边形ABCD 是平行四边形.∵B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥.∵AE 平分BAD ∠,CF 平分BCD ∠.∵BAE DAE BCF DCF ∠=∠=∠=∠.在BAE 和DCF 中.B D AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∵()ASA BAE DCF ≌∵AE CF =.18. 大楼的高度BC为. 解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥.则四边形CQHB 是矩形.∵QH BC =,BH CQ =.由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =.∵sin 6080PH AP =︒==cos6040AH AP =︒=. ∵704030CQ BH ==-=.∵tan 30PQ CQ =︒=∵BC QH === ∵大楼的高度BC为. 19. (1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74. ∵中位数为6870692+=;∵74出现的次数最多.∵众数是74;88%100÷=.1536054100︒⨯=︒ ∵在统计图中B 组所对应的扇形圆心角是54︒; 故答案为:69,74,54;【小问2详解】10081545230----=∵C 组的人数为30.∵补全学生心率频数分布直方图如下:【小问3详解】304523001725100+⨯=(人).∵大约有1725名学生达到适宜心率. 20.(1)4y x =,14y x =(2)()2,2或18,2⎛⎫-- ⎪⎝⎭【小问1详解】如图,过点C 作CD x ⊥轴于点D .则1CD =,90CDB ∠=︒.∵BC AB ⊥.∵90ABC ∠=︒.∵90ABO CBD ∠+∠=︒.∵90CDB ∠=︒.∵90BCD CBD ∠+∠=︒.∵BCD ABO ∠=∠.∵ABO BCD ∽. ∵OA BDOB CD =.∵()()0,4,2,0A B .∵4OA =,2OB =. ∵421BD=.∵2BD =.∵224OD =+=.∵点()4,1C .将点C 代入ky x =中.可得4k =. ∵4y x =.设OC 的表达式为y mx =.将点()4,1C 代入可得14m =. 解得:14m =.∵OC 的表达式为14y x =;【小问2详解】直线l 的解析式为1342y x =+.当两函数相交时,可得13442x x +=.解得12x =,8x =-,代入反比例函数解析式.得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∵直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭21.(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米 (2)最多可以购买1400株牡丹【小问1详解】解:设长为x 米,面积为y 平方米,则宽为1203x -米. ∵()221140601200331203y x x x x x =⨯=--+-+=-. ∵当60x =时,y 有最大值是1200. 此时,宽为120203x -=(米) 答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.【小问2详解】解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米. 由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤.即牡丹最多种植700平方米.70021400⨯=(株).答:最多可以购买1400株牡丹.22. (1)证明见解析;(2)43(3)【小问1详解】解:∵D 是BC 的中点.∵CD BD =.∵DE AB ⊥且AB 为O 的直径.∵BE BD =.∵⌒BC =⌒DE∵BC DE =;【小问2详解】解:连接OD .∵CD BD =.∵CAB DOB ∠=∠.∵AB 为O 的直径.∵90ACB ∠=︒.∵DE AB ⊥.∵90DFO ∠=︒.∵ACB OFD ∽. ∵AC OFAB OD =.设O 的半径为r . 则622rr r -=.解得=5r ,经检验,=5r 是方程的根.∵210AB r ==.∵8BC ==. ∵84tan 63BCCAB AC ∠===.∵BPC CAB ∠=∠.∵tan BPC ∠43=;【小问3详解】解:如图,过点B 作BG CP ⊥交CP 于点G .∵90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线.∵45ACP BCP ∠=∠=︒∵45CBG ∠=︒∵cos 45CG BG BC ==︒=∵tan BPC ∠43=∵43BG GP =.∵GP =∵CP ==23. (1)见解析 (2)见解析 (3)3【详解】(1)证明:四边形ABCD 是矩形. 90ADE DCF ∴∠=∠=︒.90CDF DFC ∴∠+∠=︒.AE DF ⊥.90DGE ∴∠=︒.90CDF AED ∴∠+∠=︒.AED DFC ∴∠=∠.ADE DCF ∴△∽△;(2)证明:四边形ABCD 是正方形.AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒. AE DF =.()HL ADE DCF ∴≌.DE CF ∴=.又CH DE =.∴CF CH =.点H 在BC 的延长线上.∴90DCH DCF ∠=∠=︒.DC DC =.()SAS DCF DCH ∴≌.H DFC ∴∠=∠.AD BC ∥.ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG .四边形ABCD 是菱形.AD DC ∴=,AD BC ∥.ADE DCG ∴∠=∠.()SAS ADE DCG ∴≌.60DGC AED ∴∠=∠=︒,DG AE =.AE DF =.DG DF ∴=.DFG ∴是等边三角形.11FG FC CG DF ∴=+==.111183FC CG ∴=-=-=.24.( 1)234y x x =--+(2)D ⎛ ⎝ (3)496【小问1详解】解:抛物线与y 轴交于点()0,4C . ∵4c =.∵对称轴为32x =-. ∵322b-=--,3b =-.∵抛物线的解析式为234y x x =--+;【小问2详解】如图,过B '作x 轴的垂线,垂足为H .令2340x x --+=.解得:121,4x x ==-. ∵()4,0A -,()10B ,.∵()145AB =--=.由翻折可得5AB AB '==. ∵对称轴为32x =-. ∵()35422AH =---=.∵52AB AB AH '===.∵30AB H '∠=︒,60B AB '∠=︒ ∵1302DAB B AB '∠=∠=︒.在Rt AOD 中,tan 30OD OA =︒=.∵D ⎛ ⎝;【小问3详解】设BC 所在直线的解析式为111y k x b =+. 把B ,C 坐标代入得:11104k b b +=⎧⎨=⎩. 解得1144k b =-⎧⎨=⎩. ∵144y x =-+.∵OA OC =.∵45CAO ∠=︒.∵90AEB ∠=︒.∵直线PE 与x 轴所成夹角为45︒. 设()2,34P m m m --+. 设PE 所在直线的解析式为:22y x b =-+.把点P 代入得2224b m m =--+.∵2224y x m m =---+. 令12y y =,则24424x x m m -+=---+. 解得223m m x +=. ∵()24243F m m FG y -+==+()()223F P x x m m ==-=-∵()()22422433m mm mFG -+-=++22549326m ⎛⎫=-++ ⎪⎝⎭ ∵点P 在直线AC 上方. ∵40m -<<.∵当52m =-时,FG 的最大值为496.。
绝密★启用前2023年山东省菏泽市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.剪纸文化是我国最古老的民间艺术之一.下列剪纸图案中既是轴对称图形又是中心对称图形的是( )A. B.C. D.2.下列运算正确的是( )A. a6÷a3=a2B. a2⋅a3=a5C. (2a3)2=2a6D. (a+b)2=a2+b23.一把直尺和一个含30°角的直角三角板按如图方式放置,若∠1=20°,则∠2=( )A. 30°B. 40°C. 50°D. 60°4.实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是( )A. c(b−a)<0B. b(c−a)<0C. a(b−c)>0D. a(c+b)>05.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( )A.B.C.D.6.一元二次方程x2+3x−1=0的两根为x1,x2,则1x1+1x2的值为( )A. 32B. −3 C. 3 D. −327.△ABC的三边长a,b,c满足(a−b)2+√ 2a−b−3+|c−3√ 2|=0,则△ABC是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1,3),B(−2,−6),C(0,0)等都是“三倍点”.在−3<x<1的范围内,若二次函数y=−x2−x+c的图象上至少存在一个“三倍点”,则c的取值范围是( )A. −14≤c<1 B. −4≤c<−3 C. −14≤x<6 D. −4≤c<5第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。
山东省菏泽市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•菏泽)2021年5月11日,国家统计局、国务院第七次全国人口普查领导小组办公室对外发布:截至2020年11月1日零时,全国人口共约1410000000人.数据1410000000用科学记数法表示为 .二.实数的运算(共1小题)2.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230= .三.因式分解-运用公式法(共1小题)3.(2022•菏泽)分解因式:x2﹣9y2= .四.提公因式法与公式法的综合运用(共2小题)4.(2023•菏泽)因式分解:m3﹣4m= .5.(2022•巴中)因式分解:﹣a3+2a2﹣a= .五.分式的化简求值(共1小题)6.(2022•菏泽)若a2﹣2a﹣15=0,则代数式(a﹣)•的值是 .六.二次根式有意义的条件(共1小题)7.(2022•菏泽)若在实数范围内有意义,则实数x的取值范围是 .七.一次函数图象上点的坐标特征(共1小题)8.(2022•菏泽)如图,在第一象限内的直线l:y=x上取点A1,使OA1=1,以OA1为边作等边△OA1B1,交x轴于点B1;过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2;过点B2作x轴的垂线交直线l于点A3,以OA3为边作等边△OA3B3,交x轴于点B3;……,依次类推,则点A2022的横坐标为 .八.反比例函数与一次函数的交点问题(共1小题)9.(2021•菏泽)如图,一次函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数图象于点A1;过点A1作A1B1⊥A1B交x轴于点B1;再作B1A2∥BA1,交反比例函数图象于点A2,依次进行下去,…,则点A2021的横坐标为 .九.二次函数的性质(共1小题)10.(2021•菏泽)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y 轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>时,y随x的增大而减小.其中所有正确结论的序号是 .一十.勾股定理(共1小题)11.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为 .一十一.三角形中位线定理(共1小题)12.(2021•菏泽)如图,在Rt△ABC中,∠C=30°,D、E分别为AC、BC的中点,DE=2,过点B作BF∥AC,交DE的延长线于点F,则四边形ABFD的面积为 .一十二.多边形内角与外角(共1小题)13.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n= .一十三.正多边形和圆(共1小题)14.(2023•菏泽)如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为 (结果保留π).一十四.扇形面积的计算(共1小题)15.(2022•菏泽)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作;以BC为直径作.则图中阴影部分的面积是 .(结果保留π)一十五.旋转的性质(共1小题)16.(2023•菏泽)如图,点E是正方形ABCD内的一点,将△ABE绕点B按顺时针方向旋转90°,得到△CBF.若∠ABE=55°,则∠EGC= 度.一十六.相似三角形的判定与性质(共1小题)17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH 和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为 .一十七.列表法与树状图法(共1小题)18.(2023•菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .山东省菏泽市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•菏泽)2021年5月11日,国家统计局、国务院第七次全国人口普查领导小组办公室对外发布:截至2020年11月1日零时,全国人口共约1410000000人.数据1410000000用科学记数法表示为 1.41×109 .【答案】1.41×109.【解答】解:1410000000=1.41×109,故答案为:1.41×109.二.实数的运算(共1小题)2.(2023•菏泽)计算:|﹣2|+2sin60°﹣20230= 1 .【答案】1.【解答】解:|﹣2|+2sin60°﹣20230=2﹣+2×﹣1=2﹣+﹣1=1.故答案为:1.三.因式分解-运用公式法(共1小题)3.(2022•菏泽)分解因式:x2﹣9y2= (x﹣3y)(x+3y) .【答案】(x﹣3y)(x+3y).【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).四.提公因式法与公式法的综合运用(共2小题)4.(2023•菏泽)因式分解:m3﹣4m= m(m+2)(m﹣2) .【答案】m(m+2)(m﹣2)【解答】解:原式=m(m2﹣4)=m(m+2)(m﹣2),故答案为:m(m+2)(m﹣2)5.(2022•巴中)因式分解:﹣a3+2a2﹣a= ﹣a(a﹣1)2 .【答案】﹣a(a﹣1)2.【解答】解:原式=﹣a(a2﹣2a+1)=﹣a(a﹣1)2.故答案为:﹣a(a﹣1)2.五.分式的化简求值(共1小题)6.(2022•菏泽)若a2﹣2a﹣15=0,则代数式(a﹣)•的值是 15 .【答案】15.【解答】解:(a﹣)•===a2﹣2a,∵a2﹣2a﹣15=0,∴a2﹣2a=15,∴原式=15.故答案为:15.六.二次根式有意义的条件(共1小题)7.(2022•菏泽)若在实数范围内有意义,则实数x的取值范围是 x>3 .【答案】x>3.【解答】解:由题意得,x﹣3>0,解得x>3.故答案为:x>3.七.一次函数图象上点的坐标特征(共1小题)8.(2022•菏泽)如图,在第一象限内的直线l:y=x上取点A1,使OA1=1,以OA1为边作等边△OA1B1,交x轴于点B1;过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2;过点B2作x轴的垂线交直线l于点A3,以OA3为边作等边△OA3B3,交x轴于点B3;……,依次类推,则点A2022的横坐标为 22020 .【答案】22020.【解答】解:∵OA1=1,△OA1B1是等边三角形,∴OB1=OA1=1,∴A1的横坐标为,∵OB1=1,∴A2的横坐标为1,∵过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2,过点B2作x轴的垂线交直线l于点A3,∴OB2=2OB1=2,∴A3的横坐标为2,∴依此类推:A n的坐标为:(2n﹣2,2n﹣2),∴A2022的横坐标为22020,故答案为:22020.八.反比例函数与一次函数的交点问题(共1小题)9.(2021•菏泽)如图,一次函数y=x与反比例函数y=(x>0)的图象交于点A,过点A 作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数图象于点A1;过点A1作A1B1⊥A1B交x轴于点B1;再作B1A2∥BA1,交反比例函数图象于点A2,依次进行下去,…,则点A2021的横坐标为 + .【答案】+.【解答】解:如图,分别过点A,A1,A2,作x轴的垂线,垂足分别为C,D,E,∵一次函数y=x与反比例函数y=(x>0)的图象交于点A,∴联立,解得A(1,1),∴AC=OC=1,∠AOC=45°,∵AB⊥OA,∴△OAB是等腰直角三角形,∴OB=2OC=2,∵A1B∥OA,∴∠A1BD=45°,设BD=m,则A1D=m,∴A1(m+2,m),∵点A1在反比例函数y=上,∴m(m+2)=1,解得m=﹣1+,(m=﹣1﹣,负值舍去),∴A1(+1,﹣1),∵A1B1⊥A1B,∴BB1=2BD=2﹣2,∴OB1=2.∵B1A2∥BA1,∴∠A2B1E=45°,设B1E=t,则A2E=t,∴A2(t+2,t),∵点A2在反比例函数y=上,∴t(t+2)=1,解得t=﹣+,(t=﹣﹣,负值舍去),∴A2(,﹣),同理可求得A3(2+,2﹣),以此类推,可得点A2021的横坐标为+.故答案为:+.九.二次函数的性质(共1小题)10.(2021•菏泽)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y 轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>时,y随x的增大而减小.其中所有正确结论的序号是 ①②③ .【答案】①②③.【解答】解:由特征数的定义可得:特征数为[m,1﹣m,2﹣m]的二次函数的表达式为y =mx2+(1﹣m)x+2﹣m.∵此抛物线的对称轴为直线x===,∴当m=1时,对称轴为直线x=0,即y轴.故①正确;∵当m=2时,此二次函数表达式为y=2x2﹣x,令x=0,则y=0,∴函数图象过原点,故②正确;∵当m>0时,二次函数图象开口向上,函数有最小值,故③正确;∵m<0,∴对称轴x==,抛物线开口向下,∴在对称轴的右侧,y随x的增大而减小.即x>时,y随x的增大而减小.而<,故④错误.故答案为:①②③.一十.勾股定理(共1小题)11.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为 ﹣2 .【答案】﹣2.【解答】解:设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF 有最小值,∵AD=4,∴,∴,∴线段BF的最小值为﹣2,故答案为:﹣2.一十一.三角形中位线定理(共1小题)12.(2021•菏泽)如图,在Rt△ABC中,∠C=30°,D、E分别为AC、BC的中点,DE=2,过点B作BF∥AC,交DE的延长线于点F,则四边形ABFD的面积为 8 .【答案】见试题解答内容【解答】解:∵D、E分别为AC、BC的中点,即DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.一十二.多边形内角与外角(共1小题)13.(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n= 5 .【答案】5.【解答】解:设外角为2x,则其内角为3x,则2x+3x=180°,解得:x=36°,∴外角为2x=72°,∵正n边形外角和为360°,∴n=360°÷72°=5,故答案为:5.一十三.正多边形和圆(共1小题)14.(2023•菏泽)如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为 6π (结果保留π).【答案】6π.【解答】解:由题意得,∠HAB==135°,AH=AB=4,∴S阴影部分==6π,故答案为:6π.一十四.扇形面积的计算(共1小题)15.(2022•菏泽)如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作;以BC为直径作.则图中阴影部分的面积是 π﹣2 .(结果保留π)【答案】π﹣2.【解答】解:如图,取BC的中点O,连接OA.∵∠CAB=90°,AC=AB=,∴BC=AB=2,∴OA=OB=OC=1,∴S阴=S半圆﹣S△ABC+S扇形ACB﹣S△ACB=•π×12﹣××+﹣××=π﹣2.故答案为:π﹣2.一十五.旋转的性质(共1小题)16.(2023•菏泽)如图,点E是正方形ABCD内的一点,将△ABE绕点B按顺时针方向旋转90°,得到△CBF.若∠ABE=55°,则∠EGC= 80 度.【答案】80.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=55°,∴∠EBC=∠ABC﹣∠ABE=35°,由旋转得:BE=BF,∠EBF=90°,∴∠BEF=∠BFE=45°,∵∠EGC是△BEG的一个外角,∴∠EGC=∠BEF+∠EBC=80°,故答案为:80.一十六.相似三角形的判定与性质(共1小题)17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH 和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM 与四边形BCME的面积比为 1:3 .【答案】见试题解答内容【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.一十七.列表法与树状图法(共1小题)18.(2023•菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .【答案】见试题解答内容【解答】解:画树状图如下:共有9种等可能的结果,其中是偶数的结果有5种,∴是偶数的概率为,故答案为:.。
绝密★启用前 试卷类型:A
山东省菏泽市二〇一五年初中学业水平考试及解析
数 学 试 题
注意事项:
1. 本试题分为选择题和非选择题两部分,其中选择题24分,非选择题96分,满分120分,考
试时间120分钟.
2. 请把答案作答在答题卡上,选择题用2B 铅笔填涂,非选择题用0.5毫米的黑色墨水签字笔书
写在答题卡的指定区域内, 答在其他位置上不得分.
一、 选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、
D 中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置.)
1. 现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和
淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学计数法表示为
9111091057.D 1057.0.C 107.5.B 107.5.A ⨯⨯⨯⨯
2. 将一副直角三角尺如图放置,若∠AOD=20°,则:
∠BOC 的大小为
A .140° B.160° C.170° D.150°
3. 将多项式a 4ax 4ax 2
+-分解因式,下列结果中正确的是 )2x )(2x (a .D )4x (a .C )2x (a .B )
2x (a .A 2
22
-+-+-
4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2
S :
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A. 甲 B.乙 C.丙 D.丁
5.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得 几何体
A.主视图改变,左视图改变
B.俯视图不变,左视图不变
C.俯视图改变,左视图改变
D.主视图改变,左视图不变
6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N 表示
的有理数互为相反数,则图中表示绝对值最小的数的点是 A.点M B.点N C.点P D.点Q
7.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程S 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是
8.如图,在平面直角坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO 绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为
)
2,3.(D )
1,3.(C )3,2.(B )3,1.(A ----
二.填空题(本大题共有6个小题,每小题3分,共18分,只要求把结果填写在答题卡的相应 区域内)
9.直线y= -3x+5不经过的象限为_______________.
10.已知一组数据6,2,4,2,3,5,2,4,这组数据的中位数为____________. 11.已知A(-1, m) 与B(2, m-3)是反比例函数y=
x
k
图象上的两个点,则m 的值为________. 12.若)n x )(3x (m x x 2
+-=++对x 恒成立,则n=_________.
13.不等式组⎪⎩
⎪
⎨⎧+<
-≤-41x 3x )1x (3)2x (2的解集是___________. 14.二次函数y=2
x 3的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=2
x 3的图象上,四边形OBAC 为菱形,且∠OBA= 120°,则菱形OBAC 的面积为___________.
三.解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内) 15.(本题12分,每小题6分) (1)计算: 102015
)2
1
()14.3(30sin )1(-+-π-︒+-
(2)解分式方程:
12
x x
4x 22=-+-
16.(本题12分,每小题6分)
(1)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞, 工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米,BC=45米,AC=30米,求M 、N 两点之间的直线距离.
(2)列方程(组)或不等式(组)解应用题:
2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内),若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份 快餐最多含有多少克的蛋白质?
17.(本题14分,每小题7分) (1)已知
m 是方程01x x 2
=--的一个根,求
4)3m (m )1m (m 22++-+的值.
(2)一次函数y=2x+2与反比例函数y=
x
k
(k ≠0)的图象都过点A(1,m), y=2x+2的图象与x 轴交于点B. ①求点B 的坐标及反比例函数的表达式;
②点C(0,-2),若四边形ABCD 是平行四边形,请在直角坐标系内画出口ABCD,直接写出点.....D .的坐标...,并判断D 点是否在此反比例函数的图象上,并说明理由.
18.(本题10分)
如图,在⊿ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、
E,BC的延长线与⊙O的切线AF交于点F。
(1)求证:∠ABC=2∠CAF;
(2)若AC=210,CE:EB=1:4,求CE的长.
19.(本题10分)
根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它五类,根据调查的部分相关数据,绘制的统计图表如下:
根据所给信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)
(3)若菏泽市约有880万人口,请你估计最关注环保问题的人数经为多少万人?
(4)
(5)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取
两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率。
20.(本题10分)
如图,已知∠ABC=90°,D 是直线AB 上的点,AD=BC.
(1) 如左图,过点A 作AF ⊥AB,并截取AF=BD,连接DC 、DF 、CF ,判断⊿CDF 的形状并证明; (2)
(3) (2)如右图,E 是直线BC 上的一点,且CE=BD,直线AE 、CD 相交于点P ,∠APD 的度数是一个
固定的值吗?若是,请求出它的度数,若不是,请说明理由.
21.(本题10分)
已知关于x 的一元二次方程02
1
k x 2x 2
=-++有两个不相等的实数根,k 为正整数. (1) 求k 的值;
(2) 当此方程有一根为零时,直线y=x+2与关于x 的二次函数y=2
1
k x 2x 2
-+
+的图象交于A 、B 两点,若M 是线段AB 上的一个动点,过点M 作MN ⊥x 轴,交二次函数的图象于点N,求线段MN 的最大值及此时点M 的坐标;
(3) 将(2)中的二次函数图象x 轴下方的部分沿.......x .轴翻折到....x .轴上方...,.图象的其余部分保持不变...........
,翻折后的图象与原图象x 轴上方的部分组成一个“W ”形状的新图象,若直线y=2
1
x+b 与该新图象恰好有三个公共点,求b 的值.
学习-----好资料
更多精品文档。