3.2第一课时_代数式的值
- 格式:ppt
- 大小:876.50 KB
- 文档页数:22
3.2 代数式的值学习目标:1、明确代数式的值的含义,学会求代数式的值;2、感受用字母表示数的好处;课标目标:会求代数式的值学习重点:代数式的值的含义及求代数式的值;学习难点:代入时的运算顺序及整体处理;教学过程:一、学前准备:(试一试)有四个同学在做一个传数游戏.第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案.若第一个同学报给第二个同学的数是5,而第四个同学报出的答案是35.你说结果对吗?你能用字母表示出他的运算程序吗?二、自学指导(阅读教科书94~95页,完成下列问题)一般地,用______________________,按照_______________________得出的结果,叫做代数式的值(value of algebraic expression).例1 当a =2,b =-1,c =-3时,求下列各代数式的值:(1)ac b 42-;(2)ac bc ab c b a 222222+++++;(3)()2c b a ++.解 (1)(2)(3)观察(2)、(3)两题的结果,你有何想法?讨论一下吧!※(1)注意书写格式(2)代数式的值由代数式中的字母所取的值来决定的。
字母取值不同,一般所求代数式的值也不同。
例2 某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值将能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为___________亿元,于是明年的年产值为若去年的年产值为2亿元,则明年的年产值为答:四、课堂练习1.填表:2. 按右边图示的程序计算,若开始输入的n 值为2,则最后输出的结果是_________.3. 根据下列各组x 、y 的值,分别求出代数式222y xy x ++与222y xy x +-的值:(1)x =2,y =3; (2)x =-2,y =-4.4. 若梯形的上底为a ,下底为b ,高为h ,则梯形面积为____________;当a =2cm ,b =4cm ,h =3cm 时,梯形的面积为__________. 5、已知a+b=3,求3a+3b-1的值(提示:一般代数式的值是要先确定字母的值 ,但有时特殊情形下不一定要确定每个字母的值)四、学习体会:1.理解代数式值的概念及会求代数式的值;2.求代数式的值时注意整体思想的运用;(第2题)五、堂清:当a =21,b =2时,求下列代数式的值:(1)()()22b a b a --+; (2)222b ab a ++六、课后作业:1. 华氏温度(°F )与摄氏温度(℃)之间的转换关系为: 华氏温度=摄氏温度×59+32.即:当摄氏温度为x ℃时,华氏温度为___________°F .若摄氏温度为20℃,则华氏温度为___________°F .2. A 、B 两地相距s 千米,甲、乙两人分别以a 千米/时、b 千米/时(a >b )的速度从A 到B .如果甲先走1小时,试用代数式表示甲比乙早到的时间.再求:当s =120,a =15,b =12时,这一代数式的值,并说明这个值表示的实际意义。
《代数式的值》作业设计方案(第一课时)一、作业目标本作业设计的目标是使学生通过《代数式的值》的第一课时学习,掌握代数式的基本概念,理解代数式的值的计算方法,能够根据已知条件求出代数式的值,为后续学习奠定坚实的基础。
二、作业内容1. 概念理解:要求学生熟练掌握代数式、单项式、多项式等基本概念,并能正确区分。
2. 计算训练:通过大量例题和习题,让学生掌握代数式值的计算方法,包括合并同类项、去括号等基本运算。
3. 实际问题应用:设计一些与实际生活相关的代数式值计算问题,如购物找零问题、速度与距离的关系等,让学生能够运用所学知识解决实际问题。
4. 作业练习:布置适量的练习题,包括填空题、选择题和计算题等,让学生在练习中巩固所学知识。
三、作业要求1. 独立完成:要求学生独立完成作业,不得抄袭他人作业或寻求他人帮助。
2. 规范书写:要求学生按照规范格式书写答案,如等号对齐、书写工整等。
3. 审题清晰:要求学生仔细审题,明确题目要求,避免因理解错误导致答案错误。
4. 反思总结:学生需在完成作业后进行反思总结,找出自己的不足和错误,以便在后续学习中加以改进。
四、作业评价1. 教师评价:教师需对学生的作业进行认真批改,给出详细的评价和指导意见。
2. 同学互评:鼓励学生之间进行互评,互相学习、互相进步。
3. 自评:学生需对自己的作业进行自评,找出自己的优点和不足。
五、作业反馈1. 及时反馈:教师需及时将作业反馈给学生,让学生了解自己的学习情况。
2. 个性化指导:针对学生的错误和不足,教师需进行个性化指导,帮助学生改正错误、提高学习能力。
3. 家长参与:鼓励家长参与孩子的作业辅导,加强家校联系,共同促进孩子的学习进步。
4. 总结提升:教师需定期总结学生的学习情况,针对学生的学习难点和易错点进行重点讲解和练习,帮助学生巩固所学知识。
通过以上内容是本次初中数学课程《代数式的值》作业设计方案的一部分,旨在帮助学生掌握代数式的基本概念和计算方法,同时加强学生应用所学知识解决实际问题的能力。
3.2代数式的值第1课时一、课题§3.2代数式的值二、教学目标1.使学生掌握代数式的值的概念,会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.三、教学重点和难点重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)从学生原有的认识结构提出问题1.用代数式表示:(投影)(1)a与b的和的平方;(2) a,b两数的平方和;(3)a与b的和的50%.2.用语言叙述代数式2n+10的意义.3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.(二)师生共同研究代数式的值的意义1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.2.结合上述例题,提出如下几个问题(1)求代数式2n+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.注意:如果代数式中省略乘号,代入后需添上乘号.解:(1)当a=4,b=12时,注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当……时”的字样不要丢;(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.最后,请学生总结出求代数值的步骤:①代入数值②计算结果(三)课堂练习1.(1)当x=2时,求代数式x2-1的值;2.填表:(投影)(1)(a+b)2; (2)(a-b)2.(四)师生共同小结首先,请学生回答下面问题:1.本节课学习了哪些内容?2.求代数式的值应分哪几步?3.在“代入”这一步应注意什么?其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的. 七、练习设计4. 梯形上底m ,下底是上底的2倍,高比上底小1,用代数式表示其面积。
第三章整式及其加减2 代数式第1课时一、教学目标1.了解代数式的概念,能用代数式表示简单问题中的数量关系.2.能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.3.在代数式求值过程中,初步感受函数的对应思想.4.在具体情境中列代数式,发展学生的符号意识.二、教学重难点重点:了解代数式的概念,能用代数式表示简单问题中的数量关系.难点:能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:通过复习用字母表示数,引导学生思考,初步感受代数式.师:还记得吗?拼摆x个这样的正方形需要多少根火柴棒?预设答案:4+3(x-1)1+3xx+x+x+14x-(x-1)师讲解:这些都是代数式!用字母表示出下列数量关系.学生回忆上节课的知识并回答.通过复习用字母表示数或数量关系的知识,初步让学生感知代数式,为接下来学习代数式的知识奠定基础.(1) a与b的和可以表示为______.(2)苹果每千克a元,买5千克需要_____元.(3) 汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有_________名乘客.预设答案:a+b5a(a-b+c)师讲解:a+b,5a,(a-b+c)也是代数式.这节课我们一起来研究一下代数式的相关知识吧!学生思考并反馈.环节二探究新知【归纳】4+3(x-1),1+3x,x+x+x+14x-(x-1),a+b,5a,(a-b+c)它们都是用运算符号把数和字母连接而成的. 像这样的式子叫做代数式.注意:①单独一个数或一个字母也是代数式.②代数式不含“=”、“>”、“<”、“≤”、“≥”,“≠”.③代数式中可以含有括号.代数式的书写格式:①数与字母,字母与字母相乘时,可以用“·”来代替,或者省略不写,但是数与数之间不可以省略“×”;②1或-1与字母相乘时,1通常省略不写;③数字要写在字母的前面;④除法通常写成分数的形式,如1÷a通常写成.⑤代数式后面有单位时,和、差形式的代数式要在单位前把代数式括起来.认真听讲.通过归纳代数式的基本概念及其注意事项,加深学生对代数式的认识与理解,为接下来用代数式解决具体问题做铺垫.【做一做】列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人,学生y 人,那么该旅游团应付多少门票费?预设答案:解:(1)该旅游团应付的门票费是(10x+5y)元.注意:和、差形式的代数式要在单位前把代数式括起来.(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?提示:用具体数值代替代数式中的字母,就可以求出代数式的值.预设答案:解:(2)将x=37,y=15代入代数式10x+5y 中,得:10×37+5×15=445答:他们应付445元门票费.【想一想】师:代数式10x+5y还可以表示什么?预设答案:x表示小明跑步的速度,y表示小明走路的速度,10x+5y表示他跑步10s和走路5s所经过的路程;用x和y分别表示1元硬币和5角硬币的枚数,10x+5y就表示x枚1元硬币和y枚5角硬币共多少钱.提问:你还能举出其他的例子吗?【做一做】学生认真思考,列出代数式并交流反馈.代入数值进行计算.让学生结合具体情境列代数式并求值,体会求值是解决实际问题的需要.通过类比,不仅拓宽学生的思维,锻炼了学生联想、类比的能力,同时进一步帮助学生体会字母可以表示任何数,感受一个代数式在不同的情境中可以表示不同的意义.现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(kg)与人体身高(m)平方的商.对于成年人来说,身体质量指数在18.5~24之间,体重适中;身体质量指数低于18.5,体重过轻;身体质量指数高于24,体重超重.(1)设一个人的体重为w (kg ),身高为h (m),求他的身体质量指数.(2)张老师的身高是1.75m ,体重是65kg ,他的体重是否适中?(3)你的身体质量指数是多少?预设答案:解:(1)他的身体质量指数是:.(2)将w =65,h =1.75代入,得:他的体重适中.(3)根据自己的身高和体重算一下你自己的身体健康指数吧!学生认真思考并作答,然后交流反馈.让学生从比较贴近生活的例子中经历列代数式并求值的过程,使学生进一步理解列代数式和求值的意义,同时让学生感受数学与生活及其他学科之间的紧密联系.环节三应用新知【典型例题】例1 (1)一个两位数的个位数字是a ,十位数字是b (b ≠0),请用代数式表示这个两位数.(2)如何用代数式表示一个三位数?分析:个位上的数字是a ,表示a 个一,十位上的数字是b (b ≠0)表示b 个十.解:(1)这个两位数是10b +a :(2)个位上的数字用a 表示,十位上的数字通过例题,让学生进一步掌握用b表示,百位上的数字用c (c≠0)表示,这个三位数是100c+10b+a:例2 (1)代数式(1+8%)x可以表示什么?(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义.解:(1)若x表示某件物品的原价,那么(1+8%)x表示价格提高8%后的价格.(2)如果x是100元,将x=100代入代数式(1+8%)x,得:(1+8%)×100=108(元)表示原价为100元的衣服,价格提高8%的价格为108元.追问:这个代数式还可以表示什么?学生认真思考并作答.列代数式并求值的知识,让学生进一步熟悉具体情境中各代数式所表示的意义,加强学生的应用意识.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.用代数式表示:(1) f 的11倍再加上2可以表示为__________;(2)一个数a的与这个数的和可以表示为________;(3)一个教室有2扇门和4扇窗户,n个这样的教室有______扇门和_______扇窗户;(4)产量由m kg增长15%后,达到________kg.答案:(1)11f+2(2)自主完成练习,再集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养学生独立完成练习的习惯.(3)2n,4n(4)(1+15%)m2.代数式6a可以表示什么?答案:答案不唯一,合理即可.①如果a表示正六边形的边长,那么代数式6a可以表示正六边形的周长;②如果a表示一本书的价格,那么6a可以表示买6本这种书的价格;③如果1条长凳可以坐6个小朋友,那么6a可以表示a条长凳可以坐6a个小朋友.3.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度;(2)当蟋蟀1min叫的次数分别是80,100和120时,该地当时的温度约是多少?答案:(1)用x表示蟋蜂1min叫的次数,则该地当时的温度为℃;(2)将x=80,100,120分别代入,求得当地当时的温度大约分别是14℃,17℃和20℃.环节五课堂小结思维导图的形式呈现本节课的主要内容:回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第83页习题3.2第2、3题课后完成练习通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
3.2 代数式的值第1课时 求代数式的值教学目标课题 3.2 第1课时 求代数式的值授课人素养目标 1.了解代数式的值的概念,会把具体数代入代数式进行计算.2.感受代数式求值是一个转换过程或某种算法,锻炼学生的计算能力和解题能力. 教学重点 求代数式的值.教学难点较复杂的代数式求值,理解代数式的值与字母的取值间的对应关系.教学活动教学步骤 师生活动活动一:创设情境,新课导入 设计意图 设计实例引出代数求值的需求,为进入新课做铺垫.【情境引入】谁说数学学不好?这不,先前数学成绩很差的刘伟,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是刘伟设计的一个程序.当输入x 的值为3时,你能求出输出的y 的值吗?y 的值为-3.像上面这样,我们在列出代数式的情况后,往往还需要求出所需的数值.怎么求呢?这就是本课时需要解决的问题.【教学建议】 学生独立完成说出答案,让其在按照程序探索求值的过程中感受代数式求值的必要性.活动二:交流合作,探究新知 设计意图 通过实际问题引入代数式的值的概念,并通过例题引导学生学会求代数式的值,并归纳求代数式的值的步骤.探究点 求代数式的值问题 为了开展体育活动,学校要购置一批排球,每班配5个,学校另外留20个.学校总共需要购置多少个排球?记全校的班级数是n ,则需要购置的排球总数是5n+20.提问 (1)如果班级数是15,怎么根据上面求得的代数式得到具体结果呢?如果班级数是15,用15代替字母n ,那么需要购置的排球总数是5n+20=5×15+20=95.(2)如果班级数是20呢?同上,如果班级数是20,用20代替字母n ,那么需要购置的排球总数是5n+20=5×20+20=120.概念引入:【教学建议】求代数式的值的注意事项:(1)代数式中的运算符号和具体数字都不能改变,代入数值以后原来省略的乘号一定要还原,如例1;(2)字母在代数式中所处的位置必须搞清楚;(3)若字母取值是分数,做乘方运算时必须加上括号,若字母取值是负数也必须加上括号;(4)代数式若有现实背景,也不可取归纳总结:求代数式的值的步骤:(1)代入,即用具体数值代替代数式中的字母;(2)计算,即按照代数式指明的运算顺序计算得出结果.【对应训练】教材P80练习第1,2题.不符合实际意义的值,如李明买了n个足球,这里的n就不能取正整数以外的值.活动三:实际应用,巩固新知设计意图通过解决实际问题提高学生对代数式求值的掌握程度.例3科技改变生活.刘伟是一名摄影爱好者,他最近新入手了一台如图所示的无人机进行航拍,刘伟将这台无人机放在距离地面1.5m的台子上,以ɑm/s的速度匀速上升40s后进行拍照,然后以(b-2)m/s的速度匀速下降25s后进行第二次拍照.(1)用代数式表示无人机两次拍照时距地面的高度;(2)当ɑ=12,b=10时,求无人机第二次拍照时距地面的高度.解:(1)第一次拍照时距地面的高度是(1.5+40ɑ)m,第二次拍照时距地面的高度是[(1.5+40ɑ)-25(b-2)]m.(2)当ɑ=12,b=10时,(1.5+40ɑ)-25(b-2)=(1.5+40×12)-25×(10-2)=281.5.因此,无人机第二次拍照时距地面的高度为281.5m.【对应训练】教材P80练习第3题.【教学建议】教师鼓励学生独立完成,潜移默化地提高学生观察、分析、解决问题的能力,并在这一过程中将列代数式与求代数式的值融会贯通,提高应用能力,体验克服困难的过程,树立学习数学的信心.解题大招 求代数式的值求代数式的值时,将相应的字母换成已知的数值,原式中的数字和运算符号都不能改变.有时候字母的值没有直接给出,就需要先求字母的值再代入计算;当无法得知具体字母的值时,通常会用到“整体思想”,先对已知式子进行变形,或对要求值的代数式进行变形,使其满足“整体代入”的条件,再整体代入求值.培优点 实际问题中的代数式求值活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是代数式的值?你会把具体数代入某个代数式进行求值吗?2.代数式求值时要注意运算符号和运算顺序,你能举例说明吗?3.字母的取值和代数式的值之间有何联系?你能对特定问题下某个字母的值和对应代数式的值的实际意义进行解释吗? 【知识结构】【作业布置】1.教材P82习题3.2第1,2,3,4,7,8题.板书设计教学反思“代数式的值”是初中阶段代数研究的重要问题之一,它是学生在学习了代数式后的内容,且贯穿于初中阶段代数学习的始终.通过这部分内容的学习,既能强化学生的计算能力,也能使其感知字母的取值的变化与代数式的值之间的联系,为将来学习函数的知识做铺垫.。