偏微分方程数值解-双曲线方程的有限差分法11页word
- 格式:doc
- 大小:551.50 KB
- 文档页数:11
偏微分方程的数值方法偏微分方程(Partial Differential Equations,简称PDEs)是数学中研究的重要分支,广泛应用于物理学、工程学等领域中。
由于一些复杂的PDEs难以找到解析解,因此需要借助数值方法进行求解。
本文将介绍偏微分方程的数值解法,包括有限差分法、有限元法和谱方法等。
一、有限差分法(Finite Difference Method)有限差分法是解偏微分方程最常用的数值方法之一。
它将偏微分方程中的导数用差商来近似,将空间离散成若干个小区间和时间离散成若干个小时间步长。
通过求解离散化后的代数方程,可以得到原偏微分方程的数值解。
以二维的泊松方程为例,偏微分方程可以表示为:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u(x, y)为未知函数,f(x, y)为已知函数。
我们可以将空间离散成Nx × Ny个小区间,时间离散成Nt个小时间步长。
利用中心差分法可以近似表示导数,我们可以得到离散化的代数方程组。
二、有限元法(Finite Element Method)有限元法是一种重要的数值解PDEs的方法。
它将求解区域离散化成一系列的单元,再通过插值函数将每个单元上的未知函数近似表达。
然后,利用加权残差方法,将PDEs转化成代数方程组。
在有限元法中,采用形函数来近似未知函数。
将偏微分方程转化为弱形式,通过选取适当的形函数和权函数,可以得到离散化后的代数方程组。
有限元法适用于求解各种各样的偏微分方程,包括静态和动态、线性和非线性、自由边界和固定边界等问题。
三、谱方法(Spectral Method)谱方法是一种基于特殊函数(如正交多项式)的数值方法,用于解PDEs。
谱方法在求解偏微分方程时,利用高阶连续函数拟合初始条件和边界条件,通过调整特殊函数的系数来近似求解解析解。
谱方法具有高精度和快速收敛的特点,适用于各种偏微分方程求解。
偏微分方程组数值解法
偏微分方程组是描述自然、科学和工程问题的重要数学工具。
由于解析解通常难以获得,因此需要使用数值方法来解决这些方程组。
本文将介绍偏微分方程组的一些数值解法,包括有限差分法、有限元法、谱方法和边界元法等。
有限差分法是一种基本的数值方法,将偏微分方程转化为差分方程,然后使用迭代算法求解。
该方法易于理解和实现,但对网格的选择和精度的控制要求较高。
有限元法是目前广泛使用的数值方法之一,它将偏微分方程转化为变分问题,并通过对函数空间的逼近来求解。
该方法对复杂几何形状和非线性问题有很好的适应性,但需要对网格进行精细的划分,计算量较大。
谱方法是一种高精度的数值方法,它将偏微分方程转化为特征值问题,并使用级数逼近来求解。
该方法在高精度求解、解析性质研究和数值计算效率方面具有优势,但需要对函数的光滑性和周期性有较高的要求。
边界元法是一种基于边界积分方程的数值方法,它将偏微分方程转化为边界积分方程,并使用离散化方法求解。
该方法适用于求解边界问题和无穷域问题,但对边界的光滑性和边界积分算子的性质有较高的要求。
总之,在实际问题中选择合适的数值方法需要综合考虑问题的性质、计算资源、精度要求等因素。
通过数值计算,偏微分方程近似在计算机上求解。
科学和工程学中的大多数实际问题都归因于偏微分方程的定解。
因为很难获得这些定解的解析解(即使在经典意义上也没有解),所以人们转向求解其数值近似解。
通过数值计算,偏微分方程近似在计算机上求解。
科学和工程学中的大多数实际问题都归因于偏微分方程的定解。
因为很难获得这些定解的解析解(即使在经典意义上也没有解),所以人们转向求解其数值近似解。
通常,首先将问题的求解区域划分为网格,然后根据有限元法,有限差分法和有限体积法等数值方法离散化原始求解问题或其等效形式,然后将其简化为线性代数系统方程,最后在计算机上获得离散网格点上精确解的近似值。
解决涉及一系列问题,例如数值方法及其理论分析(稳定性,收敛性,误差估计)以及计算机实现。
一方面,求解的效率取决于计算机的运行速度,另一方面也取决于数值方法或算法,这一点更为重要。
自从1946年第一台电子计算机问世(每秒运行500次)以来,自当前的千万亿次超级计算机以来,计算速度得到了飞速发展。
但是,对于N阶线性代数方程组,如果使用Cramer规则求解(计算量为(n-1)(n + 1)!),则当n = 50时,至少需要几秒钟来计算用每秒1万亿次的计算机,超过了宇宙的年龄(秒);如果通过消除高斯来解决,则可以在不到1秒的时间内完成。
因此,研究高性能的数值理论方法和算法(例如并行算法)是非常重要的,这是发展趋势。
而且,如何更快,更准确地解决问题并适应更复杂,更大规模的问题,始终是一个值得研究的课题。
数值近似解的研究历史悠久,但直到20世纪后期电子计算机出现后才得到广泛的发展和应用(例如,有限元理论始于1960年代)。
目前,数值解的规模越来越大。
例如,在诸如航天器设计,湍流模拟,气候预测,油田开发等各种实际问题中,经常遇到大规模问题(网格数至少为一百万以上)。
偏微分方程的数值解已经渗透到现代科学和工程的各个领域,例如物理,化学和生物学,并在科学技术和国民经济的发展中发挥了重要作用。
偏微分方程数值求解方法偏微分方程数值求解方法是使用计算机算法来近似求解偏微分方程的过程。
偏微分方程是描述物理现象和自然现象的主要工具,但大多数偏微分方程不能通过解析方式求解,因此需要使用数值方法进行近似求解。
常用的偏微分方程数值求解方法包括有限差分法、有限元法、谱方法、边界元法和逆时空方法等。
1. 有限差分法有限差分法是一种最简单的数值求解方法,它将偏微分方程中的导数离散化为差分的形式,然后通过有限差分公式求解。
在有限差分法中,将求解区域离散化为网格,然后在每个节点上求解方程,通过节点之间的连通关系建立系数矩阵,最终利用线性代数方法求解线性方程组。
2. 有限元法有限元法是一种广泛运用的数值求解方法,它将求解区域离散化为有限个子域,然后在每个子域内近似求解方程。
有限元法是一种基于变分原理的方法,通过将偏微分方程转化为变分问题,然后在有限维的函数空间中建立逼近函数,最终利用变分方法求解方程。
3. 谱方法谱方法是一种基于傅里叶变换的数值求解方法,它将求解域上的函数表示为傅里叶级数的形式,然后通过求解系数来近似求解方程。
谱方法具有高精度、高效率的优点,但对于非周期边界和奇异性问题可能不适用。
4. 边界元法边界元法是一种基于积分方程的数值求解方法,它将偏微分方程转化为边界积分方程,然后在求解区域表面上求解方程。
边界元法不需要离散化求解区域,仅需在求解区域表面上采集节点,并通过节点之间的关系建立系数矩阵。
5. 逆时空方法逆时空方法是一种利用观测数据反演偏微分方程的数值求解方法,它通过最优化算法将观测数据反演为偏微分方程的参数。
逆时空方法对模型假设和观测数据的噪声较为敏感,但可以应用于各种偏微分方程的求解。
双曲型方程的有限差分法线性双曲型方程定解问题: (a )一阶线性双曲型方程(b )一阶常系数线性双曲型方程组其中A ,s 阶常数方程方阵,u 为未知向量函数。
(c )二阶线性双曲型方程(波动方程)()x a 为非负函数(d )二维,三维空间变量的波动方程 §1 波动方程的差分逼近 1.1 波动方程及其特征线性双曲型偏微方程的最简单模型是一维波动方程:(1.1) 22222xu a t u ∂∂=∂∂ 其中0>a 是常数。
(1.1)可表示为:022222=∂∂-∂∂x u a t u ,进一步有 由于x a t ∂∂±∂∂当a dt dx ±=时为()t x u ,的全导数(=dt du dt dx x u t u ⋅∂∂+∂∂xuat u ∂∂±∂∂=),故由此定出两个方向(1.3)adx dt 1±= 解常微分方程(1.3)得到两族直线(1.4) 1C t a x =⋅+ 和 2C t a x =⋅- 称其为特征。
特征在研究波动方程的各种定解问题时,起着非常重要的作用。
比如,我们可通过特征给出(1.1)的通解。
(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。
由复合函数的微分法则 同理可得将22x u ∂∂和22tu∂∂代入(1.1)可得:即有求其对2C 的积分得:()11C f C u=∂∂ 其中()1C f 是1C 的任意可微函数。
再求其对1C 的积分得:(1.5) ()()11,dC C f t x u ⎰= ()()()()at x f at x f C f C f ++-=+=212211 其中()∙1f 和()∙2f 均为任意的二次连续可微函数。
(1.5)为(1.1)的通解,即包含两个任意函数的解。
为了确定函数()at x f -1和()at x f -2的具体形式,给定u 在x 轴的初值(1.5) ()()+∞<<∞-⎪⎩⎪⎨⎧=∂∂===x x tu x u t t 1000ϕϕ将(1.5)式代入上式,则有注意()=t x u t ,()()()a at x f a at x f ⋅+'+--'21;()=0,x u t ()()()()x a x f x f 112ϕ='-',有 并对x 积分一次,得 与(ⅰ)式联立求解,得将其回代到通解中,即得(1.1)在(1.5)条件下的解:(1.6) ()t x u , ()()[]at x at x ++-=0021ϕϕ()ξξϕd a atx atx 121⎰+-即为法国数学家Jean Le Rond d ’Alembert (1717-1783)提出的著名的D ’Alembert 公式。
偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。
然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。
本文将介绍几种常见的偏微分方程数值解法。
一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。
其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。
对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。
然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。
最后,通过迭代计算所有时间步,可以得到整个时间域上的解。
对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。
二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。
其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。
在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。
然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。
最后,通过求解这些代数方程,可以得到整个求解区域上的解。
有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。
三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。
与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。
在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。
偏微分方程的数值解法偏微分方程(Partial Differential Equation,PDE)是描述物理、化学、工程学等许多科学领域中变化的方程。
由于PDE的求解通常是困难的,因此需要使用数值方法。
本文将介绍偏微分方程的数值解法。
一般来说,求解PDE需要求得其解析解。
然而,对于复杂的PDE,往往不存在解析解,因此需要使用数值解法求解。
数值解法可以分为两类:有限差分法和有限元法。
有限差分法是将计算区域分成网格,利用差分公式将PDE转化为离散方程组,然后使用解线性方程组的方法求解。
有限元法则是将计算区域分成有限数量的单元,每个单元内使用多项式函数逼近PDE的解,在单元之间匹配边界条件,得到整个区域上的逼近解。
首先讨论有限差分法。
常见的差分公式包括前向差分、后向差分、中心差分等。
以一维热传导方程为例,其偏微分方程形式为:$$ \frac{\partial u}{\partial t}=\frac{\partial^2 u}{\partial x^2} $$其中,$u(x,t)$表示物理量在时刻$t$和位置$x$处的值。
将其离散化,可得到:$$ \frac{u(x_i,t_{j+1})-u(x_i,t_j)}{\Delta t}=\frac{u(x_{i+1},t_j)-2u(x_i,t_j)+u(x_{i-1},t_j)}{\Delta x^2} $$其中,$x_i=i\Delta x$,$t_j=j\Delta t$,$\Delta x$和$\Delta t$分别表示$x$和$t$上的网格大小。
该差分方程可以通过简单的代数操作化为:$$ u_{i,j+1}=u_{i,j}+\frac{\Delta t}{\Delta x^2}(u_{i+1,j}-2u_{i,j}+u_{i-1,j}) $$其中,$u_{i,j}$表示在网格点$(x_i,t_j)$处的数值解。
由于差分方程中一阶导数的差分公式只具有一阶精度,因此需要使用两个网格点来逼近一阶导数。
偏微分方程数值求解方法引言偏微分方程是数学中研究复杂现象的重要工具之一,它在许多领域都有广泛的应用,例如物理学、工程学和生物学等。
通过求解偏微分方程,我们可以获得系统的解析解或数值解,从而揭示底层的物理规律或实现工程设计。
在本文中,我们将介绍偏微分方程数值求解的常见方法,包括有限差分法、有限元法和谱方法等。
我们将详细介绍这些方法的基本原理、数值算法和实际应用。
有限差分法基本原理有限差分法是偏微分方程数值求解中最常用的方法之一。
它将连续的偏微分方程离散化为差分方程,通过计算差分方程的解来近似原方程的解。
有限差分法的基本思想是将求解域划分为离散的网格,然后在网格点上近似表示原方程。
数值算法有限差分法的数值算法主要包括离散化、边界条件处理和迭代求解三个步骤。
首先,我们将连续的偏微分方程在空间和时间上进行离散化,将其转化为差分方程。
然后,我们需要确定边界条件,即在边界上如何近似表示原方程。
最后,通过迭代计算差分方程的解,直到满足收敛条件。
实际应用有限差分法在许多领域都有广泛的应用。
例如,在流体力学中,它可以用来模拟气体或液体的流动。
在热传导方程中,它可以用来求解物体的温度分布。
此外,有限差分法还可以用来模拟结构力学中的弹性变形和振动问题等。
有限元法基本原理有限元法是一种基于分片线性函数空间的数值方法,用于求解偏微分方程。
它将求解域划分为离散的小单元,然后在每个单元上构造局部基函数,通过组合这些基函数来近似表示原方程的解。
数值算法有限元法的数值算法主要包括离散化、单元刚度矩阵的计算和全局方程的组装三个步骤。
首先,我们将连续的偏微分方程在空间上进行离散化,将其转化为离散的代数方程。
然后,针对每个单元,我们需要计算其对应的刚度矩阵和载荷向量。
最后,通过组装所有单元的刚度矩阵和载荷向量,得到全局方程,并通过求解全局方程来计算原方程的近似解。
实际应用有限元法在结构力学、固体力学和流体力学等领域有广泛的应用。
例如,在结构力学中,它可以用来计算材料的应力和变形分布。
数学专业的偏微分方程数值解数学作为一门基础学科,为多个学科领域的发展提供了理论支持和工具方法。
在数学的各个分支中,偏微分方程是一门研究重点。
偏微分方程广泛应用于物理、工程、经济等领域,而数值解是解决偏微分方程的一种重要方法。
本文将介绍数学专业的偏微分方程数值解的概念、方法和应用。
一、偏微分方程数值解的定义偏微分方程数值解是指通过数值计算方法来近似求解偏微分方程的解。
而偏微分方程是描述自变量的函数与自变量的偏导数之间关系的方程。
通常,偏微分方程数值解问题可以转化为网格、差分、插值等数值计算问题,通过计算机进行近似求解。
二、偏微分方程数值解的方法1. 有限差分法有限差分法是求解偏微分方程数值解最常用的方法之一。
该方法将偏微分方程所在范围划分为若干个网格点,通过有限差分近似偏导数,得到离散形式的方程组。
再通过数值计算方法求解离散方程组,得到偏微分方程的数值解。
2. 有限元法有限元法也是常用的偏微分方程数值解方法。
该方法将偏微分方程的求解区域划分为若干个有限元,通过近似变分原理和试验函数,得到离散化的代数方程组。
再通过数值计算方法求解代数方程组,得到偏微分方程的数值解。
3. 谱方法谱方法是一种基于函数空间的偏微分方程数值解方法。
该方法利用了函数在特定函数空间的展开形式,通过将偏微分方程化为代数方程组,再通过数值计算方法求解代数方程组,得到偏微分方程的数值解。
三、偏微分方程数值解的应用领域1. 物理学领域在物理学中,很多现象可以通过偏微分方程进行描述。
例如,热传导方程、波动方程和斯托克斯方程等都可以通过数值解法求解,用于模拟物理现象和预测实验结果。
2. 工程学领域工程学中的许多问题也可以转化为偏微分方程的数值解问题。
例如,热传导问题、流体力学问题以及结构力学问题等,通过数值解法可以得到工程实际运行中的响应和性能。
3. 经济学领域在经济学中,偏微分方程的数值解也有重要应用。
例如,布莱克-斯科尔斯期权定价模型就是基于偏微分方程的数值解方法,可以用于金融衍生品的定价和评估。
偏微分方程数值解法初步分析偏微分方程(Partial Differential Equation, PDE)是数学中的一类重要方程,广泛应用于物理学、工程学、经济学等众多领域。
然而,由于其复杂性,解析解往往难以求得,因此需要借助数值方法进行求解。
本文将初步分析偏微分方程的数值解法。
一、有限差分法有限差分法(Finite Difference Method, FDM)是一种常用的数值解法,通过将偏微分方程中的导数用差商代替,将偏微分方程转化为代数方程组进行求解。
这种方法的基本思想是将求解区域进行网格化,将偏微分方程中的导数用网格点上的函数值表示,然后利用差商逼近导数,将偏微分方程离散为代数方程组。
二、有限元法有限元法(Finite Element Method, FEM)是一种广泛应用的数值解法,尤其适用于复杂几何形状的求解。
该方法将求解区域划分为有限个小区域,称为单元,然后在每个单元上建立近似函数,通过将偏微分方程转化为变分问题,并将变分问题进行离散化处理,得到一个代数方程组进行求解。
三、特征线方法特征线方法(Method of Characteristics)是一种适用于一阶偏微分方程的数值解法。
该方法通过求解偏微分方程的特征线方程,将偏微分方程转化为常微分方程,在每条特征线上求解,然后将各个特征线上的解进行拼接得到整个解。
四、谱方法谱方法(Spectral Method)是一种数值解法,它利用特定的基函数,如傅里叶级数、切比雪夫级数等,对偏微分方程进行展开,通过系数的求解来得到数值解。
谱方法具有高精度和高收敛速度的优点,尤其适用于解析解存在的情况。
五、数值实验与误差分析在选择适用于某个具体偏微分方程的数值解法时,通常需要进行数值实验和误差分析。
数值实验是指通过计算机模拟的方式,求解偏微分方程并验证数值解的准确性;误差分析是指对数值解与解析解的差异进行分析,从而评估数值解的精度和收敛性。
总结:本文初步分析了偏微分方程数值解法的几种常见方法,包括有限差分法、有限元法、特征线方法和谱方法。
双曲型方程的有限差分法线性双曲型方程定解问题: (a )一阶线性双曲型方程(b )一阶常系数线性双曲型方程组其中A ,s 阶常数方程方阵,u 为未知向量函数。
(c )二阶线性双曲型方程(波动方程)()x a 为非负函数(d )二维,三维空间变量的波动方程 §1 波动方程的差分逼近 1.1 波动方程及其特征线性双曲型偏微方程的最简单模型是一维波动方程:(1.1) 22222xu a t u ∂∂=∂∂ 其中0>a 是常数。
(1.1)可表示为:022222=∂∂-∂∂x u a t u ,进一步有 由于x a t ∂∂±∂∂当a dt dx ±=时为()t x u ,的全导数(=dt du dt dx x u t u ⋅∂∂+∂∂xua t u ∂∂±∂∂=),故由此定出两个方向(1.3)adx dt 1±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =⋅+ 和 2C t a x =⋅- 称其为特征。
特征在研究波动方程的各种定解问题时,起着非常重要的作用。
比如,我们可通过特征给出(1.1)的通解。
(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。
由复合函数的微分法则 同理可得将22x u ∂∂和22tu∂∂代入(1.1)可得: 即有求其对2C 的积分得:()11C f C u=∂∂ 其中()1C f 是1C 的任意可微函数。
再求其对1C 的积分得:(1.5) ()()11,dC C f t x u ⎰= ()()()()at x f at x f C f C f ++-=+=212211 其中()•1f 和()•2f 均为任意的二次连续可微函数。
(1.5)为(1.1)的通解,即包含两个任意函数的解。
为了确定函数()at x f -1和()at x f -2的具体形式,给定u 在x 轴的初值(1.5) ()()+∞<<∞-⎪⎩⎪⎨⎧=∂∂===x x tu x u t t 1000ϕϕ将(1.5)式代入上式,则有注意()=t x u t ,()()()a at x f a at x f ⋅+'+--'21;()=0,x u t ()()()()x a x f x f 112ϕ='-',有 并对x 积分一次,得 与(ⅰ)式联立求解,得将其回代到通解中,即得(1.1)在(1.5)条件下的解: (1.6) ()t x u , ()()[]at x at x ++-=0021ϕϕ()ξξϕd aat x at x 121⎰+- 即为法国数学家Jean Le Rond d ’Alembert (1717-1783)提出的著名的D ’Alembert 公式。
由D ’Alembert 公式还可以导出解的稳定性,即当初始条件(1.5)仅有微小的误差时,其解也只有微小的改变。
如有两组初始条件:满足 δϕϕ<-00~,δϕϕ<-11~,则 即显然,当t 有限时,解是稳定的。
此外,由D ’Alembert 公式可以看出,解在()00,t x 点,()00>t 的值仅依赖于x 轴上区间[]0000,at x at x +-内的初始值()x 0ϕ,()x 1ϕ,与其他点上的初始条件无关。
故称区间[]0000,at x at x +-为点()00,t x 的依存域。
它是过点()00,t x 的两条斜率分别为a1±的直线在x 轴上截得的区间。
对于初始轴0=t 上的区间[]21,x x ,过1x 点作斜率为a1的直线at x x +=1;过1x 点作斜率为a1-的直线at x x -=2。
它们和区间[]21,x x 一起构成一个三角区域。
此三角区域中任意点()t x ,的依存区间都落在[]21,x x 内部。
所以解在此三角形区域中的数值完全由区间[]21,x x 上的初始条件确定,而与区间外的初始条件无关。
这个三角形区域称为区间[]21,x x 的决定域。
在[]21,x x 上给定初始条件,就可以在其决定域中确定初值问题的解。
1.2显格式现在构造(1.1)的差分逼近。
取空间步长h 和时间步长τ,用两族平行直线作矩形网络。
于网点()n j t x ,处Taylor 展开成 代入(1.1),并略去截断误差,则得差分格式: (1.7)=+--+2112τn jn j n j u u u 21122hu u u anj n j n j -++-这里n j u 表示u 于网点()n j t x ,处的近似值。
初值条件(1.5)用下列差分方程近似:(1.8) ()j j x u 00ϕ= (1.9)()j jj x u u 101ϕτ=-注意:(1.7)的截断误差阶是()22h O +τ,而(1.9)的截断误差阶仅是()τO 。
为此需要提高(1.9)的精度,可用中心差商代替t u ,即 (1.10)()j jj x u u 1112ϕτ=--为了处理1-j u ,在(1.7)中令0=n ,得进一步, 其中ha r τ=。
并用(1.10)式的()j j j x u u 1112τϕ-=-代入上式得 即(1.11) =1ju ()()()()()()j j j j x x r x x r 1021010212τϕϕϕϕ+-+--+这样,利用(1.8) (1.11),可以由初始层()0=n 的已知值,算出第一层()1=n 各网格节点上的值。
然后利用(1.7)或显式三层格式(1.12) =+1n j u ()()1211212--+--++n jn j n j n j u u r u u r 可以逐层求出任意网点值。
以上显式三层格式也可用于求解混合问题:(1.13)()()()()()()()()⎪⎪⎩⎪⎪⎨⎧====∂∂=∂∂t t l u t t u x x u x x u x u a t u t βαϕϕ,,00,0,1022222取J L h =,NT=τ。
除(1.7)~(1.9)外。
再补充边值条件 (1.14) ()παn u N =0,()πβn u N J =1.3稳定性分析下面我们要讨论(1.7)的稳定性。
为引用Fourier 方法,我们把波动方程(1.1)化成一阶偏微分方程组,相应地把显式三层格式(1.7)化成二层格式。
一种简单的做法是引进变量tuv ∂∂=,于是(1.1)化为 这样会使得初值()0,x u 与()0,x v 不适定(不唯一),更合理的方法是再引进一个变量xua∂∂=ω,将(1.1)化为 (1.15) t u v ∂∂=,x a t v ∂∂=∂∂ω,xva t ∂∂=∂∂ω注意到:若令⎪⎪⎭⎫ ⎝⎛=ωv U ,⎪⎪⎭⎫⎝⎛=00a a A ,则(1.5)可写成(1.16)0=∂∂-∂∂xt UA U 相应地,将(1.7)写成等价的双层格式:(1.17) ⎪⎪⎩⎪⎪⎨⎧-=--=-+-+-+--++h v v a h a v v n j n j n j n j n j n j n j n j 1111121212121τωωωωτ 即 其中τ1--=n jn j nju u v ,nj 21-ωhu u an j n j 111+-+-=。
可直接验证之。
记ha r τ=为网比。
用Fourier 方法可以证明,差分方程(1.17)稳定的必要条件是网比(1.19) ha r τ=1≤。
充分条件是网比(1.19) ha r τ=1<。
Courant 等证明,1=r 时,差分解仍稳定,收敛。
但是要求有更光滑的初值。
习惯上也称1≤r 为Courant 条件或C-F-L (Courant-Fridrichs-Lewy )条件。
稳定性条件(1.19)有直观的几何解释。
从方程(1.12)可看出,n j u 依赖于前两层的值:11--n j u ,11-+n j u ,1-n j u ,2-n ju ,而这四个值由依赖于,2-n j u 依赖于:31--n j u ,31-+n j u ,3-n j u ,4-n ju 1-n j u 依赖于:21--n j u ,21-+n j u ,3-n j u ,2-n j u 11-+n j u 依赖于:22-+n j u ,2-n j u ,21-+n j u ,31-+n j u 11--n j u 依赖于:22--n j u 2-n j u ,21-+n j u ,31-+n j u以此类推,可知,n j u 最终依赖于初始层0=n 上的下列值:因此,称x 轴上含于区间[]n j n j x x +-,的网点为差分解n j u 的依存域,它是x 轴上被过()n j t x ,和()0,n j x -以及()n j t x ,和()0,n j x +的两条直线所切割下来的区间所覆盖的网域。
而过()n j t x ,的两条特征线为:()n j t t a x x -±=-。
差分格式稳定的必要条件为:h a r τ=1≤或a h 1≤τ,并且进而ah 1-≥-τ。
可见差分格式稳定的必要条件是:差分解的依存域必须包含微分方程解的依存域,否则差分格式不稳定。
用依存域的概念容易证明:当1>r 时,差分解不收敛。
1.4 隐式为了得到绝对稳定的差分格式,用第1-n 层、n 层、1+n 层的中心差商的加权平均去逼近xx u 得到下列差分格式:或 ()[]122122222211-++-+=n jx n j x n j x n jtu u u ha u θδδθθδδτ 其中10≤≤θ是参数。
可以证明,对于41≥θ时,差分格式绝对稳定;410<≤θ时,差分格式的充要条件是:θτ411-<=h a r 。
当0=θ就是显格式(1.7),一个常用的隐式格式是取41=θ此时,差分格式为:或 ()1122222241-+++=n jn j n j x n jtu u u ha u δδτ 高维波动方程!§3 一阶双曲方程双曲方程与椭圆方程和抛物方程的一个重要区别是,双曲方程具有特征和特征关系,其解对初值有局部依赖性质。
初值的函数性质(如间断、弱间断等)也沿着特征传播,因而其解一般没有光滑性质。
我们在构造双曲方程的差分逼近时,应充分注意这些特性。
下面对于一阶双曲方程,介绍几种常见的差分格式 3.1 迎风格式首先考虑一阶线性常系数双曲方程 (3.1)0=∂∂+∂∂xu a t u 此方程虽简单,但是对我们构造差分格式很有启发。
我们的主要的目的是构造差分格式,因此只限于考虑纯初值问题。
设0a ≠, 定义特征线:,dt a dx =- 或 dx a dt= 则在每一条这样的特征线上, 因此,在特征线上,u 等于常数.对于(3.1)按照用差商代替微商的方法,自然有如下三种格式:()12.3 011=-+--+hu u au u nj n j n jn j τ(左偏心格式)()22.3 011=-+-++hu u au u n jn j n jn j τ(右偏心格式)()32.302111=-+--++hu u au u nj n j n jn j τ(中心格式)其中()12.3和()22.3的截断误差的阶为()h O +τ,()32.3的截断误差的阶为()2h O +τ。