液压传动基本概念和常用参数
- 格式:pdf
- 大小:566.12 KB
- 文档页数:21
液压传动的基本概念一、概述液压传动是以液体(通常是油液)作为工作介质,利用液体压力来传递动力和进行控制的一种传动方式。
它通过液压泵,将电动的机械能转换为液体的压力能,又通过管路、控制阀等原件,经液压缸(或液压马达)将液体的压力能转换成机械能,驱动负载和实现执行机构的运动。
液压传动与机械传动、电气传动相比较,具有以下优点:(1)易于在较大的速度范围内实现无级变速。
(2)易于获得很大的力或力矩,因此承载能力大。
(3)在功率相同的情况下,液压传动的体积小、质量轻,因而动作灵敏,惯性小。
(4)传动平稳,吸振能力强,便于实现频繁换向和过载保护。
(5)操纵简单,易于采用电气、液压联合控制以实现制动化。
(6)由于采用油液为工作介质,液压传动系统的一些部件之间能自行润滑,使用寿命长。
(7)液压元件易于实现系列化、标准化、通用化,便于设计、制造,有利于推广应用。
液压传动亦存在如下缺点:(1)液压元件的制造精度和密封性能要求高,加工和安装都比较困难。
(2)泄漏难以避免,并且油液有一定的可压缩性,因此,传动比不能恒定,不适用于传动要求严格的场合。
(3)泄漏引起的能量损失(容积损失),是液压传动中主要的能量损失,此外油液在管道中受到的阻力以及机械摩擦等也会引起一定的能量损失,致使液压传动的效率较低。
(4)油液的黏度随温度变化而变化,当油温变化时,会直接影响传动机构的工作性能。
此外,在低温条件或高温条件下采用液压传动有较大的困难。
(5)油液中渗入空气时,会产生噪声,容易引起振动和爬行(运动速度不均匀)影响传动平稳。
(6)维修保养较困难,工作量大。
当液压系统产生故障时,故障原因不以查找,排除较困难。
二、液压传动原理图9—1为液压千斤顶的工作原理。
液压千斤顶主要由手动柱塞液压泵(杠杆1、泵体2、活塞3)和液压缸(活塞11、缸体12)两大部分构成。
大、小活塞与缸体、泵体的接触面之间,具有良好的配合,既能活塞移动顺利,又能形成可靠的密封。
第一讲液压传动基础知识一、什么是液压传动?定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。
液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。
二、液压传动系统由哪几部分组成?液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。
三、液压传动最基本的技术参数:1、压力:也叫压强,沿用物理学静压力的定义。
静压力:静止液体中单位承压面积上所受作用力的大小。
单位:工程单位kgf/cm 2法定单位:1MPa (兆帕)=106Pa (帕)1MPa (兆帕)~10kgf/ce2、流量:单位时间内流过管道某一截面的液体的体积。
单位:工程单位:L/min (升/分钟)法定单位:m 3/s四、职能符号:定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。
作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。
如图:过滤器 /VNX五、常用密封件:1.O 形圈:常用标记方法:公称外径(mm )截面直径(mm )2•挡圈(0形圈用):3. 常用标记方法:挡圈ADXdXa千斤顶双向锁 截止阀安全阀A 型(切口式);D 外径(mm );d 内径(mm );a 厚度(mm )第二讲控制阀;液控单向阀;单向锁一、控制阀:1. 定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。
2. 分类:根据阀在液压系统中的作用不同分为三类:压力控制阀:如安全阀、溢流阀流量控制阀:如节流阀方向控制阀:如操纵阀液控单向阀双向锁3. 对阀的基本要求:(1)工作压力和流量应与系统相适应;(2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象;(3)密封性能好,泄漏量小;(4)结构简单,制作方便,通用性大。
二、液控单向阀结构与原理:1. 定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。
液压传动一、液压传动基本概念:液压传动是在流体力学、工程力学和机械制造技术基础上发展起来的一门较新的应用技术,它是现代基础技术之一,被广泛地应用于各工业部门。
液压传动和液力传动都是利用液体为工作介质传递能量的,总称液体传动。
但二者的根本区别在于:液压传动是以液体的压力能进行工作的;而液力传动是以液体的动能传递能量的,如液力联轴器。
二者的传动原理完全不同。
二、液压传动工作原理:液压传动是利用液体的压力能传递能量的传动方式。
其工作原理是:液压泵将输入的机械能变为液压能,经密封的管道传给液压缸(或液压马达),再转变为机械能输出.带动工作机构做功,通过对液体的方向、压力和流量的控制,可使工作机构获得所需的运动形式。
由于能量的转换是通过密封工作容积的变化实现的,故又称容积式液压传动。
图示的液压千斤顶为例说明液压传动的工作原理液压千斤顶是一个简单而又较完整的液压传动装置。
手柄1带动柱塞2做往复运动。
当柱塞上行时,液压泵3内的工作容积扩大,形成负压,油箱5中的液体在大气压作用下推开吸液阀4进入泵内,排液阀关闭;当柱塞下行时,吸液阀关闭,液体被挤压产生压力,当压力升高到足以克服重物10时,泵内工作容积缩小,排液阀6被推开,压力液体经管路进入液压缸.推动活塞8举起重物做功。
反复上下摇动手柄,则液体不断从油箱经液压泵输入液压缸,使重物逐渐上升。
当手柄不动时,排液阀关闭,重物稳定在上升位置。
工作时截止阀7应关闭,工作完毕打开截止阀,液压缸的液体便流回油箱。
三、液压传动系统的组成:液压传动系统简称液压系统。
它是由若干液压元件组合起来并能完成一定动作的整体。
液压元件是由若干零件构成的专门单元,一般是可以通用的、标准化的.如泵、马达、阀等。
不论是简单的液压千斤顶装置,还是复杂的液压系统,都可归纳为五个组成部分。
(一) 液压泵它将原动机供给的机械能转变为液压能输出,是系统的动力部分。
图示为液压泵原理图(二) 液动机(液压缸或液压马达)液动机又称液压执行机构。
液压传动1、何谓液压传动?其基本工作原理是怎样的?答:(1)液压传动是以液体为工作介质,利用液体的压力能来实现运动和力的传递的一种传动方式。
(2)液压传动的基本原理为帕斯卡原理,在密闭的容器内液体依靠密封容积的变化传递运动,依靠液体的静压力传递动力。
2、什么是压力?压力有哪几种表示方法?液压系统的工作压力与外界负载有什么关系?答:(1)液体单位面积上所受的法向力称为压力。
(2)压力有两种表示方法:绝对压力和相对压力。
以绝对真空作为基准进行度量的压力,称为绝对压力;以当地大气压力为基准进行度量的压力,称为相对压力。
(3)液压系统的工作压力由负载决定。
3、什么叫真空度?答:如果液体中某点处的绝对压力小于大气压力,这时该点的绝对压力比大气压小的那部分压力值,称为真空度。
真空度=大气压力-绝对压力4、理想液体伯努力方程的物理意义是什么?答:理想液体伯努力方程的物理意义是:管道中作恒定流动的理想液体具有压力能、位能和动能,他们之间可以相互转换,但在任意截面处其总和不变,即能量守恒。
5、液压系统中产生沿程压力损失的局部压力损失的原因是什么?答:沿程压力损失是液体在等径直管中流动时因黏性摩擦而产生的压力损失;局部压力损失由于管道截面突然变化、液流方向改变或其他形式的液流阻力而引起的压力损失。
6、流体有哪两种状态?如何判别这两种状态?不同流态的物理本质是什么?答:(1)流体有层流和紊流两种状态。
(2)判别流体是层流还是紊流须用雷诺数来判断。
雷诺数Re=(v*d)/ν,当内诺数小于临界雷诺数时,液流为层流;当内诺数大于临界雷诺数时,液流为紊流。
(3)层流时,黏性力起主导作用,惯性力与黏性力相比不大,液体流速较低,液体质点主要受黏性力制约,不能随意运动;紊流时。
惯性力起主导作用,液体流速较高,黏性力的制约作用减弱。
7、液压油黏性的物理意义是什么?答:液压油黏性的物理意义是:液体在流动时抵抗变形能力的一种度量。
8、液压传动系统主要有那几部分组成?答:动力元件、执行元件、控制调节元件、辅助元件、传动介质——液压油。
液压传动两个基本参数
液压传动技术是工程机械、航空航天、船舶、冶金、石化等领域中广泛应用的一种传动方式,其基本特点是具有大功率、高效率、可靠性高等优点。
在液压传动技术中,液压油是传动介质,通过流体的压力能够传递动力和控制信号,从而实现机械设备的运动和控制。
液压传动系统中,两个基本参数是压力和流量,下面详细介绍一下这两个参数的意义和重要性。
1. 压力:液压传动系统中的压力是指液压油在管路和液压元件
中产生的压力。
压力是液压系统中最基本的参数之一,它的大小是影响系统工作性能的重要因素。
在液压传动系统中,需要根据工作要求合理设置压力大小,以保证设备的正常工作和安全性。
在液压系统中,常用的压力单位有帕斯卡(Pa)、巴(Bar)和兆帕(MPa)等。
2. 流量:液压传动系统中的流量是指液压油在管路内单位时间
内通过的体积,通常用升/分钟(L/min)或立方米/小时(m/h)来表示。
流量是液压传动系统中另一个重要的参数,它的大小决定了液压油在管路中的速度和数量,直接影响到设备的输出功率和工作效率。
在液压传动系统中,需要根据工作要求合理设置流量大小,以保证设备的正常工作和稳定性。
总之,液压传动系统中的压力和流量是两个不可或缺的基本参数,它们的合理设置和控制对设备的性能和安全具有重要的意义。
在液压传动系统的设计和应用中,需要充分考虑这两个参数的影响和相互作用,以确保系统的正常运行和稳定性。
液压传动的基本概念一、液压传动的优缺点液压传动在很多场合得到广泛应用,主要是因为它与电气及机械传动相比具有许多优点:①能进行无极调速,而且调速范围很大,最大可达2000:1;②在传递相同功率情况下,液压传动装置体积小、质量轻、结构紧凑;③传动平稳,反应灵敏,操作省力;④布局方便,便于集中控制;⑤易于实现自动化和过载保护;⑥不需另外增加润滑装置;⑦液压元件易于实现标准化、系列化和通用化。
液压传动也有以下缺点:①易于泄漏;②总效率很难超过(80~90)%;③液压元件制造精度要求较高;④工作时受温度影响较大。
温度升高,油液粘度下降,泄漏增加;温度下降,油液粘度加大,流量发生变化,工作稳定性下降。
二、液压传动的基本工作原理液压传动一般有两种类型:一种是压力式的液压传动,它是利用液体高速流动的动能来驱动机械装置,将压力能转换为机械能进行做功;另一种是静力式液压传动,这种传动液体的流速不高,动能不大,主要是利用液体在密闭系统中受压所产生的静压力来驱动机械装置进行做功,一般所说的液压传动指的就是静力式的液压传动。
液压系统一般由五个部分组成:(1)动力元件——液压泵,它的主要作用是将机械能转换为液体的压力能,为系统提供动力。
(2)执行元件——液压缸或液压马达,它的作用是将液体压力能转换为我们所需要的机械能,满足使用者所需动力、速度和运动方向的要求。
(3)控制元件——各种控制阀,主要有压力控制阀、方向控制阀、流量控制阀,它们的作用主要是控制或调节执行元件的液压力、运动方向和速度。
(4)辅助装置——如油管、压力表、油箱、滤油器、管接头、过滤器、蓄能器等。
(5)工作介质——液压油。
下图所示为一简单的液压传动系统的工作原理图。
当电机带动油泵工作时,油液经过过滤器进入油泵再输送到系统。
溢流阀用来调整系统所需的油液工作压力并保证系统工作时多余的油液由此溢流回油箱。
油液的压力可由压力表显示。
节流阀用来调整系统所需油液的流量,保证工作台得到所需要的移动速度。
液压传动知识点一、液压传动:以液压油作为工作介质,利用液体的压力能实现能量传递。
二液压传动的工作特性1)力的传递按照帕斯卡原理进行。
(2)液压传动中压力取决于负载。
(3)负载的运动速度取决于流量。
(4)液压传动中的能量参数:压力P流量Q1)力的传递按照帕斯卡原理进行。
小活塞底面单位面积上的压力为:P1=F/A1大活塞底面上的压力为:P1=W/A2根据流体力学中的帕斯卡原理,平衡液体内某一点的压力等值地传递到液体各点,因此有:P=P1=P1=F/A1=W/A22)液压传动中压力取决于负载只有大活塞上有了重物W(负载),小活塞上才能施加上作用力F,并使液体受到压力,所以负载是第一性的,压力是第二性的。
即有了负载,并且作用力足够大,液体才受到压力,压力的大小取决于负载。
3)负载的运动速度取决于流量液压传动中传递运动时,速度传递按照容积变化相等的原则进行。
A1·L1=A2·L2 V1=L1/t V2=L2/t A1·V1=A2·V2=QQ 为流量,负载(重物)的运动速度取决于进入大液压缸的流量Q 。
三,液压系统组成1、动力元件—泵(机械能——压力能)把原动机的机械能转换成液体压力能的转换元件2、执行元件—缸、马达(压力能——机械能)把液体的液压能转换成机械能的转换元件3、控制元件—阀(控制方向、压力及流量)对液压系统中油液的压力、流量或流动方向进行控制或调节的元件4、辅助元件—油箱、油管、滤油器、压力表在系统中起储存油液、连接、滤油、测量等作用四,液压传动的优缺点优点:1.在同等输出功率下,液压传动装置的体积小,重量轻,结构紧凑。
2.液压装置工作比较平稳。
3.液压装置能在大范围内实现无级调速(调速范围可达1:2000),且调速性能好。
4.液压传动容易实现自动化。
5.液压装置易于实现过载保护。
液压元件能自行润滑,寿命较长。
6.液压元件已实现标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。
第二章液压传动的基本概念和常用参数2.1 液压油的性质1、密度ρ= m/V [kg/ m3]一般矿物油的密度为850~950kg/m32、可压缩性和膨胀性可压缩性-液体受压力的作用而使体积发生变化的性质称为液体的可压缩性。
膨胀性-液体受温度的影响而使体积发生变化的性质称为液体的膨胀性。
3、粘性及其表示方法3、粘性及其表示方法实验表明,液体流动时相邻液层间的内摩擦力Ff与液层接触面积A和液层间的速度梯度du/dy成正比,即:μ称为粘性系数或动力粘度。
液体粘性的大小用粘度来表示。
常用的液体粘度表示方法有三种:动力粘度运动粘度相对粘度牌号举例:。
粘温特性:温度升高,粘度显著下降,液压油液的这种性质称为液压油液的粘温特性。
粘温特性通常用粘度指数表示。
液压油的粘度指数(VI)表明试油的粘度随温度变化的程度与标准油的粘度变化程度比值的相对值。
粘度指数高,即表示粘-温曲线平缓,粘温特性好。
一般液压油的粘度指数要求在90以上,优异的在100以上。
流量:在单位时间内流过某一通流截面的液体体积,以q 来表示,单位为或L/minq=V/t ,其中V 是液体的体积,t 是时间。
s m /32.2液压传动中的流量通流截面A 的平均流速:v = q / A当通流截面上的通流面积一定时,平均流速由流量确定。
2.3液压传动中的压力在单位面积上所受的内法向力简称为压力。
压力的表示方法(绝对压力、相对压力)绝对压力:以绝对真空为基准相对压力:以大气压为基准真空度:比大气压小的那部分数值Ø绝对压力=大气压力+表压力Ø表压力=绝对压力-大气压力Ø真空度=大气压力-绝对压力PDF 文件使用 "pdfFactory" 试用版本创建。
液压传动知识点【篇一:液压传动知识点】一,基本慨念1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质(液压油)组成2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是液压系统的两个重要参数其功率n=pq3, 液体静压力的两个基本特性是:静压力沿作用面内法线方向且垂直于受压面;液体中任一点压力大小与方位无关.4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数(re=2000 ~2200 )判别,雷诺数(re)其公式为re=vd/?? ,(其中 d 为水力直径),圆管的水力直径为圆管的内经。
5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变大, 而受压力影响小;运动粘度与动力粘度的关系式为?????? ,??6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度dv2????v2的平方成正比.??p????, ??p????. 层流时的损失可通过理论求得l22??=re64;湍流时沿程损失其?? 与re 及管壁的粗糙度有关;局部阻力系数?? 由试验确定。
7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为p??????22????h=c( 常数),即液流任意截面的压力水头,速度水头和位置水头的总和为定值,但可以相互转化。
它是能量守恒定律在流体中的应用;小孔流量公式q=cdat2??p????d4, 其与粘度基本无关;细长孔流量q=??p 。
平板128??lbh3缝隙流量q=??p, 其与间隙的三次方成正比,与压力的一次与方成正比. 12??l8,流体在管道流动时符合连续性原理,即a1v1??a1v2, 其速度与管道过流面积成反比.流体连续性原理是质量守衡定律在流体中的应用.1【篇二:液压传动知识点】一. 填空题: 1. 液压油的主要物理性质有(密度)、(闪火点)、(粘度)、(可压缩性),液压油选择时,最主要考虑的是油液的(粘度)。
第二章
液压传动的基本概念和常用参数
2.1 液压油的性质
1、密度
ρ= m/V [kg/ m3]
一般矿物油的密度为850~950kg/m3
2、可压缩性和膨胀性
可压缩性-液体受压力的作用而使体积发生变化的性质称为液体的可压缩性。
膨胀性-液体受温度的影响而使体积发生变化的性质称为液体的膨胀性。
3、粘性及其表示方法
3、粘性及其表示方法
实验表明,液体流动时相邻液层间的内摩擦力Ff与液层接触面积A和液层间的速度梯度du/dy成正比,即:
μ称为粘性系数或动力粘度。
液体粘性的大小用粘度来表示。
常用的液体粘度表示方法有三种:动力粘度
运动粘度
相对粘度
牌号举例:。
粘温特性:温度升高,粘度显著下降,液压油液的这种性质称为液压油液的粘温特性。
粘温特性通常用粘度指数表示。
液压油的粘度指数(VI)表明试油的粘度随温度变化的程度与标准油的粘度变化程度比值的相对值。
粘度指数高,
即表示粘-温曲线平
缓,粘温特性好。
一般液压油的粘度
指数要求在90以上,
优异的在100以上。
流量:在单位时间内流过某一通流截面的液体体积,以q 来表示,单位为或L/min
q=V/t ,其中V 是液体的体积,t 是时
间。
s m /32.2液压传动中的流量
通流截面A 的平均流速:
v = q / A
当通流截面上的通流面积一定时,平均流速由流量确定。
2.3液压传动中的压力
在单位面积上所受的内法向力简称为压力。
压力的表示方法(绝对压力、相对压力)绝对压力:以绝对真空为基准
相对压力:以大气压为基准
真空度:比大气压小的那部分数值
Ø绝对压力=大气压力+表压力
Ø表压力=绝对压力-大气压力
Ø真空度=大气压力-绝对压力
PDF 文件使用 "pdfFactory" 试用版本创建。