液压传动的基本概念
- 格式:doc
- 大小:39.50 KB
- 文档页数:5
第一讲液压传动基础知识一、什么是液压传动?定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。
液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。
二、液压传动系统由哪几部分组成?液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。
三、液压传动最基本的技术参数:1、压力:也叫压强,沿用物理学静压力的定义。
静压力:静止液体中单位承压面积上所受作用力的大小。
单位:工程单位kgf/cm 2法定单位:1MPa (兆帕)=106Pa (帕)1MPa (兆帕)~10kgf/ce2、流量:单位时间内流过管道某一截面的液体的体积。
单位:工程单位:L/min (升/分钟)法定单位:m 3/s四、职能符号:定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。
作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。
如图:过滤器 /VNX五、常用密封件:1.O 形圈:常用标记方法:公称外径(mm )截面直径(mm )2•挡圈(0形圈用):3. 常用标记方法:挡圈ADXdXa千斤顶双向锁 截止阀安全阀A 型(切口式);D 外径(mm );d 内径(mm );a 厚度(mm )第二讲控制阀;液控单向阀;单向锁一、控制阀:1. 定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。
2. 分类:根据阀在液压系统中的作用不同分为三类:压力控制阀:如安全阀、溢流阀流量控制阀:如节流阀方向控制阀:如操纵阀液控单向阀双向锁3. 对阀的基本要求:(1)工作压力和流量应与系统相适应;(2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象;(3)密封性能好,泄漏量小;(4)结构简单,制作方便,通用性大。
二、液控单向阀结构与原理:1. 定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。
-液压系统————————————————————————————————作者:————————————————————————————————日期:ﻩ6液压系统6.1 液压传动概述液压传动主要是利用液体的压力能来传递能量和进行控制的一种液体传动。
本节将简述液压传动系统的基本原理和组成。
6.1.1 液压传动基本概念液压传动的理论基础是帕斯卡原理。
根据帕斯卡原理,这种传动借助于处在密封容积内的液体可以将压力由一处传递到另一处,实现能量或动力的传递。
液压传动具有两个主要工作特征。
●力(或者力矩)的传递靠“液体压力”来实现,而液体压力的大小取决于负载;●运动速度(或者转速)的传递靠液体“容积变化相等”的原则进行。
6.1.2 液压系统基本组成一个完整的液压系统一般包括五个组成部分:●动力元件:即液压泵,其作用是将原动机输出的机械能转换成液压能,并向液压系统供给压力油;●控制元件:包括压力控制阀、流量控制阀和方向控制阀等,其作用是控制液压系统的压力、流量和液流方向,以保证执行元件能够得到所要求的力(或扭矩)、速度(或转速)和运动方向(或旋转方向);●执行元件:包括液压缸和液压马达,前者实现往复运动,后者实现旋转运动,其作用是将液压能转换为机械能,输出到工作机构上去;●辅助元件:包括油箱、油管、管接头、滤油器以及各种仪表等。
这些元件也是液压系统所必不可少的;●工作介质:油液或水基液压液,用以传递能量。
液压油应具有适当的粘度,良好的粘温特性和润滑性能,抗氧化,无锈蚀性,不易乳化,不破坏密封材料和有一定的消除泡沫的能力。
6.2 液压系统介绍6.2.1液压原理图H车的液压系统分为液压泵站、大臂起升部分、小臂起升部分、回转锁定部分、马达驱动部分、上车阀组以及手动泵组。
它们之间由液压管路连接为一体。
图4.18为H车的液压原理图。
图4.18:液压原理图6.2.1.1液压泵站液压泵站包括电机、齿轮泵、溢流阀、二位二通换向阀、单向阀、截止阀、压力继电器、吸油过滤器、空气滤清器、回油过滤器、压力表、电解点温度计、液位计、电加热器(另配)、油箱及连接管路等部件。
第一章液压传动概述第一节液压传动发展概况一、液压传动的定义一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。
原动机包括电动机、内燃机等。
工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。
由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。
一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。
(举例说明机器的组成及传动机构在机器中的作用及能量在机器工作过程中输入、输出的转换形式。
)传动机构通常分为机械传动、电气传动和流体传动机构。
机械传动是通过齿轮、齿条、蜗轮、蜗杆等机件直接把动力传送到执行机构的传递方式。
电气传动是利用电力设备,通过调节电参数来传递或控制动力的传动方式。
流体传动是以流体为工作介质进行能量转换、传递和控制的传动。
它包括液压传动、液力传动和气压传动。
液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。
液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。
(举例说明液压传动和液力传动的区别)由于液压传动有许多突出的优点,因此被广泛用于机械制造、工程建筑、石油化工等各个工程技术领域。
液压传动——利用液体静压力传递动力液体传动液力传动——利用液体静流动动能传递动力流体传动气压传动气体传动气力传动二、液压传动的发展概况自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。
直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。
在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。
第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。
本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。
液压传动一、液压传动基本概念:液压传动是在流体力学、工程力学和机械制造技术基础上发展起来的一门较新的应用技术,它是现代基础技术之一,被广泛地应用于各工业部门。
液压传动和液力传动都是利用液体为工作介质传递能量的,总称液体传动。
但二者的根本区别在于:液压传动是以液体的压力能进行工作的;而液力传动是以液体的动能传递能量的,如液力联轴器。
二者的传动原理完全不同。
二、液压传动工作原理:液压传动是利用液体的压力能传递能量的传动方式。
其工作原理是:液压泵将输入的机械能变为液压能,经密封的管道传给液压缸(或液压马达),再转变为机械能输出.带动工作机构做功,通过对液体的方向、压力和流量的控制,可使工作机构获得所需的运动形式。
由于能量的转换是通过密封工作容积的变化实现的,故又称容积式液压传动。
图示的液压千斤顶为例说明液压传动的工作原理液压千斤顶是一个简单而又较完整的液压传动装置。
手柄1带动柱塞2做往复运动。
当柱塞上行时,液压泵3内的工作容积扩大,形成负压,油箱5中的液体在大气压作用下推开吸液阀4进入泵内,排液阀关闭;当柱塞下行时,吸液阀关闭,液体被挤压产生压力,当压力升高到足以克服重物10时,泵内工作容积缩小,排液阀6被推开,压力液体经管路进入液压缸.推动活塞8举起重物做功。
反复上下摇动手柄,则液体不断从油箱经液压泵输入液压缸,使重物逐渐上升。
当手柄不动时,排液阀关闭,重物稳定在上升位置。
工作时截止阀7应关闭,工作完毕打开截止阀,液压缸的液体便流回油箱。
三、液压传动系统的组成:液压传动系统简称液压系统。
它是由若干液压元件组合起来并能完成一定动作的整体。
液压元件是由若干零件构成的专门单元,一般是可以通用的、标准化的.如泵、马达、阀等。
不论是简单的液压千斤顶装置,还是复杂的液压系统,都可归纳为五个组成部分。
(一) 液压泵它将原动机供给的机械能转变为液压能输出,是系统的动力部分。
图示为液压泵原理图(二) 液动机(液压缸或液压马达)液动机又称液压执行机构。
1.1液压传动的基本概念①液压传动是以液体为工作性质并依靠液体的压力能来实现能量的转换、传递和控制的一种传动形式。
②密封容积中的液体既可以传递力、又可以传递运动。
因此液压传动又称为容积式液压传动。
③两活塞间力比、速比及功率关系A A F G 12=(力比) (A 1、A 2分别为小活塞和大活塞的作用面积,F 为杠杆手柄作用在小活塞上的力,G 为作用在大活塞上的负载) A A 1221=υυ(速比)(υ1、υ2为小活塞和大活塞的运动速度)使负载G 上升的功率为 q p q p G P A A •=•=•=222υ p 为液体压力,是指液体在单位面积上所受的作用力(压力强度),q 为流量④液压传动是以流体的压力能来传递动力的A 、压力取决于负载B 、速度取决于流量(即活塞的运动速度取决于进入活塞缸的流量,而与流体压力大小无关)1.2液压传动的组成及分类①按液压元件的功能划分⑴动力元件。
指液压泵,作用是将电动机或发动机产生的机械能转换为液体的压力能⑵执行元件。
功能是将液体的压力能转换为机械能,执行元件包括液压作动筒和液压马达⑶控制调节元件。
即各种阀,用以调节各部分液体的压力、流量和方向⑷辅助元件。
除上述三种组成元件的其他元件都称为辅助元件,包括油箱、油滤、散热器、蓄压器及导管、接头和密封件等1.3液压传动的特点1、优点⑴功率相同的情况下,体积小、重量轻、结构紧凑、惯性小,可快速启动和频繁换向,能传递较大的力和转矩⑵能方便地实现无级调速,且调速范围大,可达到100:1至2000:1⑶传递运动均匀平衡、方便可靠;负载变化时速度较稳定⑷控制调节方便、省力,易于实现自动化⑸易于实现过载保护⑹液压元件易实现标准化、通用化、系列化,便于设计制造和推广使用⑺实现直线运动一般比机械传动简单2、缺点⑴由于采用液体传递压力,系统不可避免地存在泄露,因而传递效率较低,不宜于远距离传动⑵对油温变化比较敏感,运动件的速度不易保持稳定,同时对油液的清洁程度要求高⑶为减少泄露,液压元件制造精度要求高,加工工艺复杂,成本较高⑷系统发生故障时,不易查找原因和维修⑸系统或元件的噪声较大2.1液压系统的工作介质1、航空液压油:通常使用的液压油有植物基、矿物基和磷酸酯基液压油三种⑴植物基液压油。
液压传动知识点一、液压传动:以液压油作为工作介质,利用液体的压力能实现能量传递。
二液压传动的工作特性1)力的传递按照帕斯卡原理进行。
(2)液压传动中压力取决于负载。
(3)负载的运动速度取决于流量。
(4)液压传动中的能量参数:压力P流量Q1)力的传递按照帕斯卡原理进行。
小活塞底面单位面积上的压力为:P1=F/A1大活塞底面上的压力为:P1=W/A2根据流体力学中的帕斯卡原理,平衡液体内某一点的压力等值地传递到液体各点,因此有:P=P1=P1=F/A1=W/A22)液压传动中压力取决于负载只有大活塞上有了重物W(负载),小活塞上才能施加上作用力F,并使液体受到压力,所以负载是第一性的,压力是第二性的。
即有了负载,并且作用力足够大,液体才受到压力,压力的大小取决于负载。
3)负载的运动速度取决于流量液压传动中传递运动时,速度传递按照容积变化相等的原则进行。
A1·L1=A2·L2 V1=L1/t V2=L2/t A1·V1=A2·V2=QQ 为流量,负载(重物)的运动速度取决于进入大液压缸的流量Q 。
三,液压系统组成1、动力元件—泵(机械能——压力能)把原动机的机械能转换成液体压力能的转换元件2、执行元件—缸、马达(压力能——机械能)把液体的液压能转换成机械能的转换元件3、控制元件—阀(控制方向、压力及流量)对液压系统中油液的压力、流量或流动方向进行控制或调节的元件4、辅助元件—油箱、油管、滤油器、压力表在系统中起储存油液、连接、滤油、测量等作用四,液压传动的优缺点优点:1.在同等输出功率下,液压传动装置的体积小,重量轻,结构紧凑。
2.液压装置工作比较平稳。
3.液压装置能在大范围内实现无级调速(调速范围可达1:2000),且调速性能好。
4.液压传动容易实现自动化。
5.液压装置易于实现过载保护。
液压元件能自行润滑,寿命较长。
6.液压元件已实现标准化、系列化和通用化,所以液压系统的设计、制造和使用都比较方便。
液压传动的基本概念
一、概述
液压传动是以液体(通常是油液)作为工作介质,利用液体压力来传递动力和进行控制的一种传动方式。
它通过液压泵,将电动的机械能转换为液体的压力能,又通过管路、控制阀等原件,经液压缸(或液压马达)将液体的压力能转换成机械能,驱动负载和实现执行机构的运动。
液压传动与机械传动、电气传动相比较,具有以下优点:
(1)易于在较大的速度范围内实现无级变速。
(2)易于获得很大的力或力矩,因此承载能力大。
(3)在功率相同的情况下,液压传动的体积小、质量轻,因而动作灵敏,惯性小。
(4)传动平稳,吸振能力强,便于实现频繁换向和过载保护。
(5)操纵简单,易于采用电气、液压联合控制以实现制动化。
(6)由于采用油液为工作介质,液压传动系统的一些部件之间能自行润滑,使用寿命长。
(7)液压元件易于实现系列化、标准化、通用化,便于设计、制造,有利于推广应用。
液压传动亦存在如下缺点:
(1)液压元件的制造精度和密封性能要求高,加工和安装都比较困难。
(2)泄漏难以避免,并且油液有一定的可压缩性,因此,传动比不能恒定,不适用于传动要求严格的场合。
(3)泄漏引起的能量损失(容积损失),是液压传动中主要的能量损失,此外油液在管道中受到的阻力以及机械摩擦等也会引起一定的能量损失,致使液压传动的效率较低。
(4)油液的黏度随温度变化而变化,当油温变化时,会直接影响传动机构的工作性能。
此外,在低温条件或高温条件下采用液压传动有较大的困难。
(5)油液中渗入空气时,会产生噪声,容易引起振动和爬行(运动速度不均匀)影响传动平稳。
(6)维修保养较困难,工作量大。
当液压系统产生故障时,故障原因不以查找,排除较困难。
二、液压传动原理
图9—1为液压千斤顶的工作原理。
液压千斤顶主要由手动柱塞液压泵(杠杆1、泵体2、活塞3)和液压缸(活塞11、缸体12)两大部分构成。
大、小活塞与缸体、泵体的接触面之间,具有良好的配合,既能活塞移动顺利,又能形成可靠的密封。
液压千斤顶的工作过程如下:
a液压千斤顶工作原理(9-1)
(b)泵的吸油过程
(c)泵的压油过程
a 工作原理图
b 泵的吸油过程
c 泵的压油过程
1—杠杆2—泵体3,11—活塞4,10—油腔5,7—单向阀6—油箱8—放油阀9—油管12—缸体
工作时,关闭放油阀8,向上提起杠杆,活塞3被带动上升,如图9-1b所示,泵体油腔4的工作容积增大,由于单向阀7受油腔10中油液的作用力而关闭,油腔4形成真空,油箱6中的油液在大气压力的作用下,推开单向阀5的钢球,进入并充满油腔4。
压下杠杆,活塞3被带动下移,如图9—1c所示,泵体油腔4的工作容积减小,其内的油液在外力的挤压作用下压力增大,迫使单向阀5关闭,而单向阀7的钢球被推开,油液经油管9进入缸体油腔10,缸体油腔的工作容积增大,推动活塞11连同重物G一起上升。
反复提、压杠杆,就能不断从油箱吸入油液并压入缸体油腔10,使活塞11和重物不断上升,从而达到起重的目的。
提、压杠杆的速度越快,单位时间内压入缸体油腔10的油液越多,重物上升速度越快;重物越重,下压杠杆的力就越大。
停止提、压杠杆,单向阀7被关闭,油缸油腔中的油
被封闭,此时,重物保持在某一位置不动。
将放油阀旋转90°,缸体油腔直接连通油箱,油腔10中的油液在重物的作用下流回油箱,活塞11下降并恢复到原位。
液压千斤顶是一个简单的液压传动装置,从其工作过程可以看出,液压传动的工作原理是:以油液作为工作介质,通过密封容积的变化来传递运动,通过油液内部的压力来传递动力。