硅碳棒三相加热控制原理图
- 格式:doc
- 大小:33.00 KB
- 文档页数:1
可控硅是可控硅整流器的简称。
它是由三个PN 结四层结构硅芯片和三个电极组成的半导体器件。
图3-29是它的结构、外形和图形符号。
可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。
当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN 结处于反向,具有类似二极管的反向特性。
当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。
但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。
加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。
此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。
可控硅一旦导通,控制极便失去其控制作用。
就是说,导通后撤去栅极电压可控硅仍导通,惟独使器件中的电流减到低于某个数值或者阴极与阳极之间电压减小到零或者负值时,器件才可恢复到关闭状态。
图3-30 是可控硅的伏安特性曲线。
);当有控制极信号时,正图中曲线I 为正向阻断特性。
无控制极信号时,可控硅正向导通电压为正向转折电压(UB0向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。
当控制极电流大到一定程度时,就再也不浮现正向阻断状态了。
曲线Ⅱ为导通工作特性。
可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。
若阳极电压减小(或者负载电阻增加),导致阳极电流小于时,可控硅从导通状态即将转为正向阻断状态,回到曲线I 状态。
维持电流IH曲线Ⅲ为反向阻断特性。
当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(惟独很小的漏电流)。
只有反向电压达到击穿电压时,电流才蓦地增大,若不加限制器件就会烧毁。
正常工作时,外加电压要小于反向击穿电压才干保证器件安全可靠地工作。
可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。
三相全桥碳化硅三相全桥碳化硅是一种常见的电力变换设备,广泛应用于工业和民用领域。
它是一种将交流电转换为直流电的电子装置,具有高效率、可靠性和稳定性的特点。
本文旨在介绍三相全桥碳化硅的工作原理、应用领域和发展趋势,以期为读者提供有用的指导意义。
首先,让我们了解一下三相全桥碳化硅的工作原理。
该设备由四个碳化硅开关管组成,分别连接在一个桥式电路中。
当交流电输入到设备时,开关管会通过不同的工作状态来控制电流的流动方向和大小。
通过交替导通和断开,三相全桥碳化硅能够将交流电转换为直流电,并输出到需要的电路中。
这种电力变换方式有助于满足不同领域对电能质量和稳定性的要求。
三相全桥碳化硅的应用领域非常广泛。
首先,它常被用于工业领域的电力变换和变频控制,如电机驱动、照明系统等。
其高效率和稳定性使得工业生产能够更加可靠和高效。
此外,三相全桥碳化硅还可以应用于家庭用途,如家电产品和光伏发电系统。
它能够将太阳能转化为可用电能,并向家庭供电,提供可持续的、环保的能源解决方案。
随着科技的不断进步,三相全桥碳化硅也在不断发展。
近年来,随着碳化硅材料的研究和制造工艺的改进,设备的功率密度和温度稳定性得到了大幅提高。
这意味着设备可以更小、更轻便,同时在高温环境下也有更好的工作性能。
此外,随着物联网和智能家居的兴起,三相全桥碳化硅正逐渐与智能控制系统相结合,实现更高级别的能源管理和控制。
这将为用户提供更高效、便捷的能源使用体验。
综上所述,三相全桥碳化硅作为一种重要的电力变换设备,在工业和民用领域具有广泛的应用前景。
通过了解其工作原理、应用领域和发展趋势,我们可以更好地理解和应用这一技术,为工业生产和家庭生活提供更高质量的电力供应。
相信随着科技的不断发展,三相全桥碳化硅将在未来发挥更大的作用,为能源领域的可持续发展做出更大贡献。
目录一、硅碳棒高温炉使用说明书1、概述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12、主要技术指标┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13、结构┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14、安装┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15、使用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26、维修┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2二、温度控制器使用说明书1、概述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄42、主要参数┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43、使用方法┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄44、常见故障及产生原因┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5附一、装箱单及附件┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6XL-2型硅碳棒高温炉使用说明一、概述XL-2型硅碳棒高温炉是试验室的通用设备,比普通箱形高温炉(马弗炉)能提供更高的使用温度,可供煤炭、化工、建材、电力、冶金、地质勘探和科研单位作烧结、加热和热处理等用。
二、主要技术指标三、结构高温炉外壳由钢板制成,炉膛采用耐火材料。
在炉膛与炉体外壳之间砌筑轻质保温砖,充填保温纤维。
发热组件硅碳棒分布于炉膛两侧。
为了操作安全,在炉壳上装有限位开关。
当炉门打开时,高温炉自动断电;炉门关闭时,高温炉通电加热。
四、安装1、检查高温炉、控制器外表是否完好,开关应在断开位置。
2、将高温炉与控制器分别放在稳固的平台上,使之处于水平状态。
控制器与高温炉应保持适当距离,不宜太近,以免高温炉散发的热量影响控制器内电子组件的正常工作。
3、将热电偶从高温炉后盖孔内插入炉膛中部,孔与热电偶之间的间隙用石棉绳填塞。
热电偶与控制器之间用补偿导线连接,接线时注意极性,切勿接反。
4、高温炉负载端与控制器负载端之间,以及控制器电源端与外接供电电源之间均应采用4~6mm2多股绝缘铜线可靠连接,供电电源应能提供足够的功率。
5、高温炉“行程开关”的两个接线柱与控制器的“外接开关”插座之间用带有航空插头的专用连接线可靠连接。
硅碳棒热端冷端结合长度解释说明以及概述1. 引言1.1 概述硅碳棒是一种在许多行业中广泛使用的关键组件,具有重要的作用。
热端和冷端是硅碳棒中两个关键部分,它们在保持合适温度和控制热量传导方面起到至关重要的作用。
本文将对硅碳棒、热端、冷端以及结合长度进行详细解释说明。
1.2 文章结构文章将按照以下结构展开:引言、硅碳棒、热端与冷端、结合长度解释说明以及结论。
首先我们将介绍硅碳棒的定义、特性以及制造工艺等方面内容;接着,将探讨热端与冷端在硅碳棒中的定位、作用原理以及温度控制方法;紧接着,我们会解释什么是结合长度,并分析影响因素以及调节方法;最后,我们将总结整篇文章的主要内容和发现,并对未来发展趋势进行展望。
1.3 目的本文旨在深入了解和解释硅碳棒的基本知识,并重点阐述热端与冷端在其中所扮演角色的重要性。
此外,我们还将研究结合长度的定义和意义,并分析影响因素和调节方法。
通过本文的阅读,读者将能够全面了解硅碳棒、热端、冷端以及结合长度在实际应用中的重要性,并为相关行业提供参考和指导。
以上为“1. 引言”部分内容的详细清晰回答,请注意使用普通文本格式,不要包含markdown或网址。
2. 硅碳棒2.1 定义与特性硅碳棒是一种由硅和碳组成的合金材料,其在高温环境下具有优异的性能。
硅碳棒通常使用优质的石墨材料和高纯度硅进行制造,以保证其较高的热导率和抗腐蚀性能。
硅碳棒具有以下主要特性:1) 高温稳定性:硬质碳化物基体使得硅碳棒具有出色的热稳定性,在高温环境下不易发生脆化或退化。
2) 低热膨胀系数:硅碳棒的热膨胀系数相对较低,这使得其在快速升降温过程中不容易产生应力集聚现象。
3) 优异的导热性能:由于硅碳棒中含有大量的石墨结构,它具备良好的导热性能,在高温环境下能够有效地传递、分散和释放热量。
4) 良好的耐腐蚀性:硅碳棒能够抵御大部分酸、碱等腐蚀物质的侵蚀,从而延长其使用寿命。
2.2 制造工艺硅碳棒的制造一般包括以下几个主要工艺步骤:1) 原料准备:选择具有高纯度和优质石墨的石墨块和硅材料作为硅碳棒的主要原料。
红外光源硅碳棒红外光源硅碳棒是一种具有特殊功能的电热材料,其主要特点是在高温下能够发射出红外线辐射能,因而被广泛应用于红外光源、光谱仪等电热设备中。
相比于常规的红外灯泡和加热元件,红外光源硅碳棒具有更高的能量传输效率、更强的光照亮度、更高的辐射功率、更长的使用寿命等优点。
1.硅碳棒的结构及性质硅碳棒由硅和碳两种原材料经高温还原反应制得,其主要成分为六方晶系结构的硅碳化合物,硅和碳的比例以及掺杂元素的不同会影响到硅碳棒的发射光谱和发射功率等性能。
硅碳棒的外形一般为直径为3mm-15mm的棒状,也有些产品采用了扁平形状,以适应不同的设备要求。
硅碳棒的主要性质包括抗氧化性好、化学性质稳定、耐磨性和高耐久性等。
在高温环境下,硅碳棒可以持续运作长达数千小时,不会因长期高温作业而出现严重的热失效现象。
此外,硅碳棒还具有高效的转化能力,可以将电能转化为高温的辐射能,从而提高了设备的整体能效。
2. 硅碳棒的应用领域硅碳棒的广泛应用领域主要包括光源、光谱仪、分光计、光学检测等领域,是现代光学、光电技术中不可或缺的关键零部件之一。
以下是具体的应用领域介绍:(1)红外光源:硅碳棒是目前最常用的红外光源材料,广泛应用于红外热像仪、夜视仪、工业热成像、无损检测、化学光谱等领域。
由于硅碳棒的红外辐射效率高,光照亮度强,因此可以提高设备的检测精度和可靠性,减少误差和漏检现象。
(2)光谱仪和分光计:硅碳棒是一种理想的光源,可以为分光计和光谱仪提供稳定、高质量的光源。
硅碳棒发射出的光谱范围广泛、稳定,可以有效避免因光谱失真造成的测试误差,提高测试精度。
(3)光学检测:硅碳棒还可以作为光学检测和测量领域中的一个生产组件,用于测量物体表面的温度、光谱和化学成分等特性参数。
通过硅碳棒的辐射光谱,可以对被测物体的质量、形态、成分等特性进行快速、准确的诊断和分析。
3. 硅碳棒的优点相对于常规的红外灯泡和加热元件,硅碳棒具有以下几个优点:(1)高效能的能量传递:硅碳棒可以将电能转化为红外光辐射消耗的能量更少,与常规的红外灯泡相比,其篇射功率更大,能耗更低。
目录一、硅碳棒高温炉使用说明书1、概述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12、主要技术指标┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13、结构┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14、安装┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15、使用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26、维修┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2二、温度控制器使用说明书1、概述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄42、主要参数┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43、使用方法┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄44、常见故障及产生原因┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5附一、装箱单及附件┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6XL-2型硅碳棒高温炉使用说明一、概述XL-2型硅碳棒高温炉是试验室的通用设备,比普通箱形高温炉(马弗炉)能提供更高的使用温度,可供煤炭、化工、建材、电力、冶金、地质勘探和科研单位作烧结、加热和热处理等用。
二、主要技术指标三、结构高温炉外壳由钢板制成,炉膛采用耐火材料。
在炉膛与炉体外壳之间砌筑轻质保温砖,充填保温纤维。
发热组件硅碳棒分布于炉膛两侧。
为了操作安全,在炉壳上装有限位开关。
当炉门打开时,高温炉自动断电;炉门关闭时,高温炉通电加热。
四、安装1、检查高温炉、控制器外表是否完好,开关应在断开位置。
2、将高温炉与控制器分别放在稳固的平台上,使之处于水平状态。
控制器与高温炉应保持适当距离,不宜太近,以免高温炉散发的热量影响控制器内电子组件的正常工作。
3、将热电偶从高温炉后盖孔内插入炉膛中部,孔与热电偶之间的间隙用石棉绳填塞。
热电偶与控制器之间用补偿导线连接,接线时注意极性,切勿接反。
4、高温炉负载端与控制器负载端之间,以及控制器电源端与外接供电电源之间均应采用4~6mm2多股绝缘铜线可靠连接,供电电源应能提供足够的功率。
5、高温炉“行程开关”的两个接线柱与控制器的“外接开关”插座之间用带有航空插头的专用连接线可靠连接。
硅碳棒加热注意事项硅碳棒是一种常用的加热元件,广泛应用于各个行业中的加热设备中。
在使用硅碳棒进行加热时,需要注意以下几个方面,以确保安全和提高加热效果。
1. 确保电源稳定:使用硅碳棒进行加热时,需要保证电源供应稳定。
过高或过低的电压都会影响加热效果,甚至损坏硅碳棒。
因此,在使用之前,应检查电源电压是否符合要求,并采取相应的措施来稳定电源。
2. 避免湿气和腐蚀性气体:硅碳棒在高温下工作,容易受到湿气和腐蚀性气体的影响。
这些气体会导致硅碳棒表面氧化,降低导热性能,甚至损坏硅碳棒。
因此,在使用硅碳棒加热时,要尽量避免湿气和腐蚀性气体的接触,保持加热环境的干燥和清洁。
3. 合理选择加热温度:硅碳棒的使用温度范围一般在500℃到1800℃之间。
在选择加热温度时,要根据具体的工艺要求和硅碳棒的耐温范围进行合理的选择。
过高的温度会使硅碳棒过热,缩短使用寿命,甚至烧坏;而过低的温度则会影响加热效果。
4. 避免机械碰撞:硅碳棒是一种脆性材料,在使用过程中要避免机械碰撞和摩擦,以免破裂或损坏。
在安装和使用硅碳棒时,要轻拿轻放,避免与其他硬物接触。
5. 均匀加热:为了保证加热效果和延长硅碳棒的使用寿命,应尽量使硅碳棒的表面均匀加热。
不要让加热区域过度集中,以免造成局部过热和烧坏。
可以采用合适的加热方式,如将硅碳棒分成若干段进行加热,或者采用多个硅碳棒同时加热的方式。
6. 定期检查和清洁:为了确保硅碳棒的正常工作和延长使用寿命,应定期对硅碳棒进行检查和清洁。
检查时要注意是否有损坏或破裂的情况,并及时更换;清洁时要使用适当的方法,避免使用腐蚀性溶剂,以免损坏硅碳棒表面。
7. 防止过热和过载:在使用硅碳棒进行加热时,要避免过热和过载。
过热会导致硅碳棒温度过高,甚至烧坏;过载会导致电流过大,损坏电源和硅碳棒。
因此,在使用过程中要根据硅碳棒的额定功率和工作条件,合理控制加热功率和工作时间,避免过热和过载的情况发生。
硅碳棒是一种常用的加热元件,正确使用和维护硅碳棒可以提高加热效果,延长使用寿命。
本科毕业设计题目:硅碳棒电加热温度控制器的设计学院:信息科学技术学院专业:电子信息工程(微电子)学号:学生姓名:指导老师:职称:二零一二年五月摘要温度是工业生产以及科学实验中的重要参数之一。
温度的控制在许多领域中都有着积极的意义。
在很多行业中都有大量的用电加热设备,如硅碳棒等。
采用单片机对其进行控制不仅具有控制方便,简单,灵活性大等特点,而且还可以较大幅度的提高被控温度的技术指标,从而能够大大的提高产品的质量。
所以,智能化的温度控制技术正在被广泛地采用。
本次课题即是针对高温控制系统-硅碳棒电加热温度控制器的设计进行的分析与设计,我们采用了以STC12C5A60S2单片机为主体,铂铑10-铂热电偶温度采集模块,温度设置模块,LCD液晶显示模块以及温度控制模块相搭配的控制系统。
本系统中单片机将采集到的温度与设定的温度进行比较,由此来判定硅碳棒上是否继续加热。
此外还加入了显示模块,将采集到的温度以及设定的温度进行实时显示,使得整个设计更加完整,更加灵活。
关键词:硅碳棒单片机温度控制1AbstractTemperature is one of the important parameters in industrial production and scientific experiment.In many areas t emperature control have a positive significance.There are a large number of electric heating equipment in many industries, such as silicon carbide, using the micro controller to control the temperature not only has a convenient, simple, flexible features, but also can greatly improve the technical indexes of the accused temperature was charged, which can greatly improve the quality of the product.Therefore,intelligent temperature control technology is being widely adopted.This issue is for the analysis and design of high-temperature control system-silicon carbide electric heating temperature controller design, we have adopted STC12C5A60S2micro controller as the main,platinum and rhodium- platinum thermocouple temperature acquisition module, the temperature setting module , LCD module and temperature control module with the control system.In the system, micro controller will compare the collected t emperature and setting temperature,and thus to determine whether to continue heating the silicon carbide.In addition,the system joined the display module will be collected temperature and set temperature in real-time display,making the whole design is more complete and more flexibleKey words:S ilicon Carbide MCU Temperature Control2目录摘要............................................................................................................................................... 1第一章前言................................................................................................................................. 51.1 本文研究的目的和意义................................................................................................ 51.2 系统实现的功能............................................................................................................ 51.3 设计的要求与方案........................................................................................................ 6第二章总体设计分析................................................................................................................. 72.1 组成框图........................................................................................................................ 72.2 主要功能模块的简介.................................................................................................... 72.2.1 传感器温度采集................................................................................................. 72.2.2 温度设置............................................................................................................. 82.2.3 LCD液晶显示..................................................................................................... 82.2.4 温度控制............................................................................................................. 8第三章硬件设计......................................................................................................................... 93.1 主控系统.................................................................................................................... 103.1.1 STC12C5A60S2单片机简介.......................................................................... 103.1.2 最小应用系统模块......................................................................................... 123.2 传感器温度采集模块................................................................................................ 143.2.1 器件选型与简介............................................................................................. 143.2.2 整个模块设计与分析..................................................................................... 173.3温度设置模块............................................................................................................. 183.4 LCD液晶显示模块................................................................................................. 193.4.1 器件选型与简介............................................................................................. 193.4.2 整个模块设计与分析..................................................................................... 253.5 温度控制模块............................................................................................................ 263.5.1 光耦器件选型与简介..................................................................................... 263.5.2 可控硅器件选型及简介................................................................................. 263.5.3 整个模块设计与分析..................................................................................... 27第四章软件设计..................................................................................................................... 284.1 主程序设计................................................................................................................ 2834.2 子程序部分................................................................................................................ 314.2.1 A/D转换程序 ............................................................................................... 314.2.2 温度设置程序............................................................................................... 394.2.3 LCD显示程序.............................................................................................. 414.2.4 PID温度控制程序 ....................................................................................... 45结束语....................................................................................................................................... 491 设计历程....................................................................................................................... 492 设计特点....................................................................................................................... 493 存在的问题和改进....................................................................................................... 504 展望和体会................................................................................................................... 50致谢........................................................................................................................................... 51参考文献................................................................................................................................... 52附录1(电路原理图及PCB图) .......................................................................................... 53附录2(部分程序)................................................................................................................ 554第一章前言1.1 本文研究的目的和意义温度是日常生活中的重要参数。