四川省成都市2019中考数学试卷(版、解析版)-中考
- 格式:docx
- 大小:224.13 KB
- 文档页数:24
2019年九年级第一次联合质质量抽测试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.25-的绝对值是() A .25- B .25 C .52- D .522.“十三五”期间,河南将安排40.27亿元资金支持郑州大学.河南大学“双一流”建设.数据“40.27亿”用科学记数法表示为()A .104.02710⨯B .100.402710⨯C .94.02710⨯D .90.402710⨯3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .4.下表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是() A .13,11B .13,13C .13,14D .14,13.55.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大.小和尚各100人6.将分别标有“学”“习”“强”“国”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸的球上的汉字组成“强国”的概率是() A .18 B .16 C .14 D .127.下列不等式组的解集,在数轴上表示为如图所示的是()A .1020x x ->⎧⎨+≤⎩ B .1020x x -≤⎧⎨+<⎩C .1020x x +≤⎧⎨->⎩D .1020x x +>⎧⎨-≤⎩8.已知函数y kx b =+的图象如图所示,则一元二次方程210x x k ++-=的根的情况是()A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定9.如图,已知矩形AOBC 的三个顶点的坐标分别为(0,0)O ,(0,3)A ,(4,0)B ,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交,OC OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在BOC ∠内交于点F ;③作射线OF ,交边BC 于点G ,则点G 的坐标为()A .44,3⎛⎫ ⎪⎝⎭ B .4,43⎛⎫ ⎪⎝⎭C .5,43⎛⎫ ⎪⎝⎭ D .54,3⎛⎫ ⎪⎝⎭10.如图1,在菱形ABCD 中,120A ∠=︒,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a b +的值为()A .B .4CD 二、填空(每小题3分,共15分)11.计算:112-⎛⎫--= ⎪⎝⎭______.12.已知:如图,12355∠=∠=∠=︒,则4∠的度数是______.13.已知反比例函数2y x=,当1x <-时,y 的取值范围为_____. 14.如图,在菱形ABCD ,60B ∠=︒,2AB =,把菱形ABCD 绕BC 的中点E 顺时针旋转60︒得到菱形A B C D '''',其中点D 的运动路径为¼DD ',则图中阴影部分的面积为______.15.如图,ABC △中,90ACB ∠=︒,30A ∠=︒,1BC =,CD 是ABC △的中线,E 是AC 上一动点,将AED △沿ED 折叠,点A 落在点F 处,EF 与线段CD 交于点G ,若CEG △是直角三角形,则CE =_____.三、解答题(本大题共8道题,共75分)16.先化简,再求值:2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =. 17.贺岁片《流浪地球》被称为开启了中国科幻片的大门,2019也被称为中国科幻片的元年.某电影院为了全面了解观众对《流浪地球》的满意度情况,进行随机抽样调查,分为四个类别:A .非常满意;B .满意;C 基本满意;D .不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有______人;(2)扇形统计图中,扇形C 的圆心角度数是_____; (3)请补全条形统计图;(4)春节期间,该电影院来观看《流浪地球》的观众约3000人,请估计观众中对该电影满意(A B C 、、类视为满意)的人数.18.如图,AB 为O e 的直径,DB AB ⊥于B ,点C 是弧AB 上的任一点,过点C 作O e 的切线交BD 于点E .连接OE 交O e 于F .(1)求证:CE ED =;(2)填空:①当D ∠=_____时,四边形OCEB 是正方形; ②当D ∠=_____时,四边形OACF 是菱形. 19.如图,反比例函数(0)ky x x=>的图象过格点(网格线的交点)A . (1)求反比例函数的解析式;(2)若点P 是该双曲线第一象限上的一点,且45AOP ∠=︒, 填空:①直线OP 的解析式为_______;②点P 的坐标为______.20.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A 到地面的铅直高度AC 长度为15米,原坡面AB 的倾斜角ABC ∠为45︒,原坡脚B 与场馆中央的运动区边界的安全距离BD 为5米.如果按照施工方提供的设计方案施工,新座位区最高点E 到地面的铅直高度EG 长度保持15米不变,使A E 、两点间距离为2米,使改造后坡面EF 的倾斜角EFG ∠为37︒.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD 至少保持2.5米( 2.5FD …),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:3sin 375︒≈,3tan 374︒≈)21.某公司推出一款产品,成本价10元/千克,经过市场调查,该产品的日销售量y (千克)与销售单价x (元/克)之间满足一次函数关系,该产品的日销售量与销售单价之间的几组对应值如下表:(注:日销售利润=日销售量×(销售单价-成本单价)) (1)求y 关于x 的函数解析式(不要求写出x 的取值范围); (2)根据以上信息,填空: ①m =_____元;②当销售价格x =_____元时,日销售利润W 最大,最大值是______元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1025元,试确定该产品销售单价的范围.22.如图1,在ABC △中,90BAC ∠=︒,AB AC =,点,D E 分别在边,AB AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察猜想图1中,线段AP 与BE 的数量关系是______,位置关系是________; (2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出线段AP 的取值范围.23.如图,抛物线23y ax bx =-+交x 轴于(1,0)B ,(3,0)C 两点,交y 轴于A 点,连接AB ,点P 为抛物线上一动点. (1)求抛物线的解析式; (2)当点P 到直线AB 时,求点P 的横坐标; (3)当ACP △和ABC △的面积相等时,请直接写出点P 的坐标.2019年九年级第一次联合质质量抽测试卷数学参考答案及评分标准一、选择题:(每小题3分,共30分) BCDBA BDCAC二、填空题:(每小题3分,共15分)11.4- 12.125︒ 13.20y -<< 14.76π 三、解答题:(本大题共8个小题,满分75分)16.解:原式22(2)31111m m m m m ⎛⎫--=÷- ⎪---⎝⎭22(2)411m m m m --=÷--2(2)11(2)(2)m m m m m --=⋅--+-22m m -=-+当2m =-时,原式=== 17解:(1)Q 被调查的总户数为6060%100÷=,故答案为100; (2)54︒;(3)补全图形如下:(4)观众对该电影的满意(A B C 、、类视为满意)的人数为:6020153000100%2850100++⨯⨯=(人)18.(1)证明:连接BC ,AB Q 为O e 的直径,DB AB ⊥于A ,CE 为O e 切线,EB EC ∴=,90DBA ACB ∠=∠=︒,ECB EBC ∴∠=∠,90EBC D ∠+∠=︒Q ,90ECB ECD ∠+∠=︒,D ECD ∴∠=∠. CE CD ∴=(2)①45︒②30︒19.解:(1)Q 反比例函数(0)ky x x =>的图象过格点(1,3)A ,133k ∴=⨯=, ∴反比例函数的解析式为3y x=;(2)①12y x =;②⎭20.解:施工方提供的设计方案不满足安全要求,理由如下:在Rt ABC △中,15AC m =,45ABC ∠=︒,15tan 45ACBC m ==︒.在Rt EFG △中,15EG m =,37EFC ∠=︒,15203tan374EG GF m =≈=︒15EG AC m ==Q ,AC BC ⊥,EG BC ⊥,EG AC ∴P ,∴四边形EGCA 是矩形,2GC EA m ∴==,201523BF GF GC BC m ∴=--≈--=. 5BD m =Q ,532 2.5FD BD BF ∴=-≈-=<,∴施工方提供的设计方案不满足安全要求.21.解:(1)设y 与x 的函数关系式为y kx b =+,则1424018180k b k b +=⎧⎨+=⎩解得:15k =-,450b =,15450y x ∴=-+,(2)60,20,1500(3)21001560045001001025W x x -=-+--=整理得:215(20)375x --=-,解得:115x =,225x =所以,当1525x 剟时,捐赠后每天的剩余利润不低于1025元 22.(1)12AP BE =,AP BE ⊥ (2)延长PA 交BE 于N 延长AP 到M 使PM AP =,连接CM ,则ADP MCP △≌△,AD CM AE ∴==,DAP M ∠=∠,AD CM ∴P ,M DAP ∴∠=∠,180DAC ACM ∠+∠=︒,又90BAC DAE ∠︒∠==Q ,180DAC BAE ∴∠+∠=︒,ACM BAE ∴∠=∠, 又AB AC =Q ,BAE ACM ∴△≌△,M AEB DAP ∴∠=∠=∠,BE AM =,12AP AM =Q ,12AP BE ∴= 又90EAN DAP ∠︒∠+=Q ,90EAN AEB ∴∠+∠=︒,90ENA ∴∠=︒即AP BE ⊥(3)37AP 剟23.解:(1)把(1,0)B ,(3,0)C 代入23y ax bx =-+得030933a b a b =-+⎧⎨=-+⎩解得:14a b =⎧⎨=⎩所以,抛物线的解析式为:243y x x =-+(2)过点P 作PQ AB ⊥于Q ,过点P 作PD y P 轴交直线AB 于D , 则OAB PDQ ∠=∠,(0,3)A Q ,(1,0)B3OA ∴=,1OB =,∴直线AB 的解析式为:33y x =-+AB ∴===sin sinOAB PDQ ∴∠=∠=又sin PQ PDQ PD∠=PQ PD ∴=PQ ∴=设点()2,43P m m m -+,(,33)D m m -+2243(33)PD m m m m m =-+--+=-,PQ =2|m m --=解得:173m =-,2103m = 故点P 的横坐标为73-或103(3)(2,1)-或⎝⎭或⎝⎭。
2019年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2019四川省成都市,1,3)比-3大5的数是(A)-15 (B)-8 (C)2 (D)8【答案】C【解析】列式子计算:-3+5=2,故选C【知识点】有理数加法2.(2019四川省成都市,2,3)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是(A)(B)(C)(D)【答案】B【解析】从左面看,上层有1个,下层有2个,故选B.【知识点】三视图3.(2019四川省成都市,3,3)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年,将数据5500万用科学记数法表示为(A)5500×104(B)55×106(C)5.5×107(D)5.5×108【答案】C【解析】用科学记数法可以把一个数表示a×10n的形式,其中1≤a<10,n的值可由小数点移动情况来决定,若原数大于1,n为正整数;若原数小于1,则n为负整数;小数点移动几位,n的绝对值就是几.【知识点】科学记数法4.(2019四川省成都市,4,3)在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为(A)(2,3)(B)(-6,3)(C)(-2,7)(D)(-2,-1)【答案】A【解析】点的坐标向右(左)平移a个单位,则点的横坐标加(减)a,本题中点向右平移了4个单位,故横坐标加4,纵坐标不变,选A.【知识点】点平移的坐标变化规律5.(2019四川省成都市,5,3)将等腰直角三角形纸片和矩形纸片按如图方式叠放在一起,若∠1=30°,则∠2的度数为(A)10°(B)15°(C)20°(D)30°【答案】B【解析】由平行线的性质可得∠1的内错角也为30°,再用45°减去30°即得∠2度数,故选B . 【知识点】平行线的性质;等腰直角三角形的性质6.(2019四川省成都市,6,3)下列计算正确的是 (A )5ab-3a=2b (B )(-3a 2b )2=6a 4b 2 (C )(a-1)2=a 2-1 (D )2a 2b ÷b=2a 2 【答案】D【解析】选项A 不是同类项,不能合并;选项B 中-3的平方不能是6;选项C 中完全平方公式用错;D 选项符合单项式除法法则,故选D.【知识点】幂的乘方;积的乘方;合并同类项;单项式除法法则7.(2019四川省成都市,7,3)分式方程1215=+--xx x 的解为 (A )x=-1 (B )x=1 (C )x=2 (D )x=-2【答案】A【解析】通过去分母在方程两边同时乘以x (x-1),将分式方程转化为一元一次方程,通过解一元一次方程求得分式方程的解,通过检验验证是否有解. 【知识点】解分式方程8.(2019四川省成都市,8,3)某校开展了主题为“青春·梦想”的艺术作品征集活动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是 (A )42件 (B )45件 (C )46件 (D )50件 【答案】C【思路分析】将所有数据按照从小到大(或从大到小)排列,位于最中间的数或者位于最中间的两个数的平均数即为所求中位数.【解题过程】将5个数据按照从小到大排列:42,45,46,50,50.位于最中间的数是46,故选C. 【知识点】中位数9.(2019四川省成都市,9,3)如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则∠CPD 的度数为(A )30° (B )36° (C )60° (D )72°【答案】B【思路分析】求圆周角的度数,可以考虑求所对弧对的圆心角的度数,利用一条弧所对的圆周角等于它所对的圆心角的一半求解.【解题过程】连接OC 、OD ,∵五边形ABCDE 是正五边形,∴∠COD=72°,∴∠CPD=36°,故选B. 【知识点】正多边形与圆;圆周角定理E DCBOAP10.(2019四川省成都市,10,3)如图,二函数y=ax 2+bx+c 的图象经过点A (1,0),B (5,0),下列说法正确的是(A )c <0 (B )b 2-4ac <0 (C )a-b+c <0 (D )图象的对称轴是直线x=3【答案】D【思路分析】根据二次函数图象的性质及特征点的坐标判断选项的正确性.【解题过程】根据图象,显然c >0,故A 错;抛物线与x 轴有两个交点,则Δ>0,故B 错;当x=-1时,函数值y >0,所以a-b+c >0,故C 错;A 、B 两点的纵坐标相同,其中点横坐标为3,故D 正确. 【知识点】二次函数图象的性质二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2019四川省成都市,11,3)若m-1与-2互为相反数,则m 的值为_______. 【答案】1【解析】由两数互为相反数,其和为零列出方程:m+1-2=0,解m=1. 【知识点】相反数;一元一次方程应用 12.(2019四川省成都市,12,3)如图,在△ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 点长为_________.B【答案】9【解析】∵AB=AC ,∴∠B=∠C ,∵∠BAD=∠CAE ,∴△ABD ≌△AEC ,∴CE=BD=9. 【知识点】等腰三角形的性质;全等三角形的判定和性质 13.(2019四川省成都市,13,3)已知一次函数y=(k-3)x+1的图象经过一、二、四象限,则k 的取值范围是_______. 【答案】k <3【解析】一次函数同时经过了二、四象限,所以k-3<0,解得k <3. 【知识点】一次函数图象的性质14.(2019四川省成都市,14,3)如图,ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ′;③以点M ′为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ′;④过点N ′作射线ON ′交BC 于点E.若AB=8,则线段OE 的长为________.A【答案】4【解析】根据尺规作图可以判定∠COE=∠CAB ,所以OE ∥AB ,可得OE 为△CAB 的中位线,从而得到OE 等于AB 的一半.【知识点】尺规作图;三角形中位线三、解答题(本大题共6小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 15.(2019四川省成都市,15,12)(本小题满分12分,每题6分)(1)计算:(π-2)0-2cos30°-16+3-1. (2)解不等式组:⎪⎩⎪⎨⎧+--≤-②①(x x x x 21142554)23【思路分析】(1)利用零指数幂、特殊角三角函数值、二次根式化简、去绝对值等知识逐项求得各项结果,相加即可;(2)通过解不等式①和不等式②得到两个解集,求公共解集即可. 【解题过程】(1)原式=1-2×23-4+3-1=-4 (2)解不等式①得x ≥-1,解不等式②得x <2,故不等式组的解集为-1≤x <2. 【知识点】零指数幂;特殊角三角函数值;二次根式化简;绝对值;解不等式组16.(2019四川省成都市,16,6)(本小题满分6分)先化简,再求值:621234-12++-÷⎪⎭⎫ ⎝⎛+x x x x ,其中x=2+1.【思路分析】先利用分式的加减乘除运算法则将分式化简,再将x 值代入求解. 【解题过程】()()1213231)3(2)1(3433621234-1222-=-+⨯+-=+-÷⎪⎭⎫ ⎝⎛+-++=++-÷⎪⎭⎫ ⎝⎛+x x x x x x x x x x x x x x 当x=2+1时,原式=22=2【知识点】分式的加减;分式的乘除;二次根式化简 17.(2019四川省成都市,17,8)(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择,某校计划为学生提供以下四类在线学习方式:在线阅读,在线听课,在线答题和在线讨论,为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图. 根据图中信息解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.3642483024181260在线答题在线讨论在线阅读在线听课人数【思路分析】(1)由在线答题的人数占总人数的百分比及人数求出总人数,再求出在线听课的人数,补充完整条形统计图;(2)用在线讨论的人数除以总人数求出百分比,用这个百分比乘以360°得到圆心角度数;(3)求出在线阅读人数的百分比,乘以该校总人数即可. 【解题过程】(1)18÷20%=90;90-24-18-12=36,补全图如下:361218243642483024181260在线答题在线讨论在线阅读在线听课人数方式(2)360×9012=48° (3)2100×9024=560答:估计该校对“在线阅读”最感兴趣的学生人数大约有560人. 【知识点】条形统计图;扇形统计图;用样本估计总体18.(2019四川省成都市,18,8)(本小题满分8分)2019年成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米:参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【思路分析】过点C 作CE ⊥AB 于点E ,在Rt △ADB 中求出BD ,在Rt △ACE 中求AE ,用AB 减去AE 即可. 【解题过程】过点C 作CE ⊥AB 于点E ,在RtABD 中,BD=45tan AB=20,∴CE=20,在Rt △ACE 中,AE=CE · tan35°=20×0.70=14,∴CD=BE=20-14=6.答:拱门高6米.【知识点】解直角三角形的应用19.(2019四川省成都市,19,10)(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数y=21x+5和Ey=-2x 的图象相交于点A ,反比例函数y=xk的图象经过点A. (1)求反比例函数的表达式; (2)设一次函数y=21x+5点图象与反比例函数y=xk的图象的另一个交点为B ,连接OB ,求△ABO 的面积.x【思路分析】(1)先通过一次函数y=21x+5和y=-2x 的图象求出交点A 的坐标,将点A 坐标代入y=xk求出k 值;(2) 通过一次函数y=21x+5与反比例函数组成的方程组求出B 点坐标,进而求△OAB 的面积. 【解题过程】解:(1)解方程组⎪⎩⎪⎨⎧-=+=x y x y 2521得⎩⎨⎧=-=42y x ,∴点A (-2,4),将点A 坐标代入y=x k 得k=-8,故反比例函数解析式为y=x8-(2)解方程组⎪⎪⎩⎪⎪⎨⎧-=+=x y x y 8521得⎩⎨⎧==1y 8-x ,∴点B (-8,1),设直线AB 与x 轴交于点F ,与y 轴交于点G ,当x=0时,y=5,当y=0时,x=-10,故F (-10,0),G (0,5),∴S △FOG =21×5×10=25,S △FBO =21×1×10=5,S △AOG =21×2×5=5,∴S △AOB =25-5-5=15.x【知识点】一次函数;反比例函数20.(2019四川省成都市,20,10)(本小题满分10分)如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E. (1)求证:=AC CD(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.BA【思路分析】(1)连接OD ,利用证明两条弧所对的圆心角相等证明弧等;(2)通过已知证明△CBA ∽△CAE 得比例式求CA ,再进一步利用勾股定理求解;(3)根据已知证明PC ∥AE ,得比例式求PA ,进而求PO ,再证△OHP ∽△ACB 列比例式求OH 、PH ,进而利用勾股定理求HQ ,得PQ.【解题过程】解:(1)连接OD ∵OC ∥BD , ∴∠OCB=∠DBC ∵OB=OC,∴∠OCB=∠OBC ∴∠OBC=∠DBC ∴∠AOC=∠COD ∴=AC CD(2)连接AC ,∵=AC CD ∴∠CBA=∠CAD ∵∠BCA=∠ACE ∴△CBA ∽△CAE ∴CA CBCE CA=∴CA 2=CE ·CB=CE ·(CE+EB )=1×(1+3)=4 ∴CA=2∵AB 为⊙O 的直径 ∴∠ACB=90°在Rt △ACB 中,由勾股定理,得2222=2+4=25CA CB +∴⊙O 5(3)如图,设AD 与CO 相交于点N. ∵AB 为⊙O 的直径, ∴∠ADB=90° ∵OC ∥BD ,∴∠ANO=∠ADB=90° ∵PC 为⊙O 的切线 ∴∠PCO=90° ∴∠ANO=∠PCO ∴PC ∥AE ∴1==3PA CE AB EB ∴PA=13AB=13×525∴25555 过点O 作OH ⊥PQ 于点H ,则∠OHP=90°=∠ACB∵PQ ∥CB∴∠BPQ=∠ABC ∴△OHP ∽△ACB ∴OP OH PHAB AC BC==∴OH=55253==325AC OP AB ⨯,PH 554103==325BC OP AB ⨯连接OQ在Rt △OHQ 中,由勾股定理,得HQ=()2222525-=5-=33OQ OH ⎛⎫ ⎪⎝⎭∴PQ=PH+HQ=10+253【知识点】圆中三组量关系;圆周角定理;切线的性质;相似三角形的判定和性质;勾股定理B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(2019四川省成都市,21,4) 估算:7.37≈________(结果精确到1).【答案】6【解析】从被开方数看,值在6~7之间,而6.5的平方为42.25,故其值在6~6.5之间,四舍五入,故精确后为6.【知识点】算术平方根 22.(2019四川省成都市,22,4)已知x 1、x 2是关于x 的一元二次方程x 2+2x+k-1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为________.【答案】-2【解题过程】利用根与系数关系可得x 1+x 2=-2,x 1·x 2=k-1,∴x 12+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=13,即(-2)2-3(k-1)=13,解得k=-2.【知识点】根与系数关系;解一元一次方程;配方 23.(2019四川省成都市,23,4)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为75,则盒子中原有的白球的个数为_______.【答案】20【解题过程】设原来有白球x 个,根据题意列方程5+51057x x =++,解x=20 【知识点】概率的求法24.(2019四川省成都市,24,4)如图,在边长为1的菱形ABCD 中,∠ABC=60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C 的最小值为________.D′A'D AB C B′【答案】3【解题过程】解:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,∠A ′B ′D =30°,当B ′C ⊥A ′B ′时,A 'C +B 'C 的值最小,∵AB ∥A ′B ′,AB =A ′B ′,AB =CD ,AB ∥CD ,∴A ′B ′=CD ,A ′B ′∥CD ,∴四边形A ′B ′CD 是矩形,∠B ′A ′C =30°,∴B ′C =,A ′C =,∴A 'C +B 'C 的最小值为,故答案为:.D′A'D AB C B′F【知识点】菱形的性质;解直角三角形;矩形的性质25.(2019四川省成都市,25,4) 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为215,则△OAB 的内部(不含边界)的整点的个数为____________.【答案】4或5或6【解题过程】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA =5,∵△OAB 的面积=5•n =, ∴n =3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m =3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;【知识点】点的坐标二、解答题(本大题共三个小题,共30分,解答过程写在答题卡上)26.(2019四川省成都市,26,8)(本小题满分8分)随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x (x 为整数)个销售周期每台的销售价格为x 元,y 与x 之间的满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p=21x+21来描述,根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【思路分析】(1)利用待定系数法求解即可;(2)设销售收入为w ,列出w 关于x 的函数关系式,利用二次函数顶点坐标公式求出最大销售收入时x 的值,再代入(1)中函数关系式求y 值即可.【解题过程】(1)设函数解析式为y=kx+b则700055000k b k b +=⎧⎨+=⎩解得5007500k b =-⎧⎨=⎩,∴函数关系式为y=-500x+7500 (2)设第x 个销售周期的销售收入为w ,则w=(-500x+7500)(21x+21)=-250x 2+3500x+3750 当x=7时,w 有最大值为4000答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元【知识点】一次函数;待定系数法;二次函数顶点坐标27.(2019四川省成都市,27,10)(本小题满分10分)如图1,在△ABC 中,AB=AC=20,tanB=43,点D 为BC 边上的动点(点D 不与点B 、C 重合),以D 为顶点作∠ADE=∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD 交射线DE 于点F ,连接CF.(1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF=CF ?若存在,求出此时BD 的长;若不存在,请说明理由.【思路分析】(1)利用一线三等角证明出∠BAD=∠CDE,再利用等腰三角形得到角等证明相似;(2)作AM⊥BC 于点M,解直角三角形求出BM,进而求得BC,易证∠BAD=∠ADE=∠EDC=∠B=∠ACB,从而得∴△ABD∽△CBA,通过比例式求BD,再利用平行线得比例式求AE长;(3)过点F作FH⊥BC于点H,过点A作AM⊥BC 于点M,AN⊥FH于点N,易得△AFN∽△ADM,从而利用AM、BM的值求得tanB的值,进而求得AN、CH,利用DF=CF条件求出CD,进而求BD长.【解题过程】解:(1)∵AB=AC∴∠B=∠ACB∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B∴∠BAD=∠CDE∴△ABD∽△DCE.(2)过点A作AM⊥BC于点M.在Rt△ABM中,设BM=4k,则AM=BM·tanB=4k·34=3k由勾股定理,得AB2=AM2+BM2∴202=(3k)2+(4k)2∴k=4∵AB=AC,AM⊥BC∴BC=2BM=2·4k=32∵DE∥AB∴∠BAD=∠ADE又∵∠ADE=∠B,∠B=∠ACB ∴∠BAD=∠ACB∵∠ABD=∠CBA∴△ABD∽△CBA∴AB DB CB AB=∴DB=222025322 ABCB==∵DE∥AB∴AE BD AC BC=∴AE=25202=32AC BDBC⨯=12516(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF.过点F 作FH ⊥BC 于点H ,过点A 作AM ⊥BC 于点M ,AN ⊥FH 于点N ,则∠NHM=∠AMH=∠ANH=90°.∴四边形AMHN 为矩形,∴∠MAN=90°,MH=AN ,∵AB=AC ,AM ⊥BC ,∴BM=CM=12BC=12×32=16 在Rt △ABM 中,由勾股定理,得AM=2222201612AB BM -=-= ∵AN ⊥FH ,AM ⊥BC∴∠ANF=90°=∠AMD∵∠DAF=90°=∠MAN∴∠NAF=∠MAD∴△AFN ∽△ADM∴3==tan =tan =4AN AF ADF B AM AD ∠∴AN=34AM=34×12=9 ∴CH=CM-MH=CM-AN=16-9=7当DF=CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形又∵FH ⊥DC∴CD=2CH=14∴BD=BC-CD=32-14=18所以,点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF ,此时BD=18【知识点】相似三角形的判定和性质;解直角三角形;矩形的性质和判定;等腰三角形的性质28.(2019四川省成都市,28,12)(本小题满分12分)如图,抛物线y=ax 2+bx+c 经过点A (-2,5),与x 轴相交于B (-1,0),C (3,0)两点.(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC ′D ,若点C ′恰好落在抛物线的对称轴上,求点C ′和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.【思路分析】(1)直接利用待定系数法求解;(2)设抛物线的轴对称性与x 轴交于点H ,可得BH=12BC=12BC ′,则利用三角函数易得∠ABC=60°,从而通过直角三角形和等腰三角形易得C ′和D 点坐标;(3)分类讨论:①当点P 在x 轴上方时,点Q 在x 轴上方,连接BQ ,C ′P ,利用(2)条件构造△BCQ ≌△C ′CP ,进而得到C ′P=CQ=CP ,从而得到BP 是CC ′垂直平分线,可得D 点在BP 上,利用B 、D 坐标求直线解析式;②当点P 在x 轴下方时,点Q 在x 轴下方同理可求.【解题过程】解:(1)由题意,得4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的函数表达式为y=x 2-2x-3(2)∵抛物线与x 轴的交点为B (-1,0)、C (3,0)∴BC=4,抛物线的对称轴为直线x=1设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH=2由翻折得C ′B=CB=4在Rt △BHC ′中,由勾股定理,得C ′2222-=4-2=23C B BH ′∴点C ′的坐标为(3),tan ∠C ′BH=23=3C H BH ′∴∠C ′BH=60°由翻折得∠DBH=12∠C ′BH=30° 在Rt △BHD 中,DH=BH ·tan ∠DBH=2·tan30°=233∴点D的坐标为(1,233)(3)取(2)中的点C′,D,连接CC′∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形分类讨论如下:①当点P在x轴上方时,点Q在x轴上方连接BQ,C′P,∵△PCQ,△C′CB为等边三角形∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°∴∠BCQ=∠C′CP∴△BCQ≌△C′CP∴BQ=C′P∵点Q在抛物线的对称轴上,∴BQ=CQ∴C′P=CQ=CP又∵BC′=BC∴BP垂直平分CC′由翻折可知BD垂直平分CC′∴点D在直线BP上设直线BP的函数表达式为y=kx+b则0=-k+b23⎧解得3333kb⎧=⎪⎪⎨⎪=⎪⎩∴直线BP的函数表达式为33②当点P在x轴下方时,点Q在x轴下方∵△QCP,△C′CB为等边三角形∴CP = CQ,BC=C′C,∠C′CB=∠QCP=60°∴∠BCP=∠C′CQ∴△BCP≌△C′CQ∴∠CBP=∠CC′Q∵BC′=CC′,C′H⊥BC∴∠CC′Q=12∠CC′B=30°∴∠CBP=30°设BP与y轴相交于点E在Rt△BOE中,OE=OB·tan∠CBP=OB·tan30°=1×33=33∴点E的坐标为(0,-33)设直线BP的函数表达式为y=k′x+b′则0-+3-=3k bb=⎧⎪⎨⎪⎩′′解得3=-33=-3kb⎧⎪⎪⎨⎪⎪⎩′′∴直线BP的函数表达式为y=-33x-33综上所述,直线BP的函数表达式为y=33x+33或y=-33x-33【知识点】待定系数法;轴对称性;等边三角形的性质;全等三角形的判定和性质;解直角三角形。
2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
2019-2020学年都江堰市九年级零诊数学试卷(解析版)一、选择题(每小题3分,本题满分30分)1.在下列实数中,有理数是()A.﹣3 B.C. 1 D.π2.自2018年起,我国将每年秋分日设立为“中国农民丰收节”.据预测,2018年我国粮食生产将稳定在12000亿斤以上.将数据“12000亿”用科学记数法可表示为()A.12×1011B.12×1012C.1.2×1011D.1.2×10123.使分式有意义的x的取值范围是()A.x≠3B.x=3 C.x≠0D.x=04.如图,由六个完全相同的小正方体搭成一个几何体,在这个几何体的“三视图”中是轴对称图形的是A.主视图B.左视图C.俯视图D.主视图和俯视图5.在下列各式中,运算结果正确的是()A.x2+x2=x4 B.x﹣2x=﹣x C.x2•x3=x6D.(x﹣1)2=x2﹣16.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个7.下列方程中,没有实数根的是()A.2x+3=0 B.x2﹣1=0 C.D.x2+x+1=08.两个全等的直角三角形不能拼成的图形是()A.平行四边形B.矩形C.菱形D.等腰三角形9.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米10.下列两个图形,一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个等边三角形D.两个矩形二、填空题:(每小题4分,本题满分16分)11.不等式3x﹣1>﹣4的最小整数解是.12.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P 的坐标为.13.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是.14.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是.15.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为.16.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=.17.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.18.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为.19.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.三、解答题:(本大题共6个小题,共54分)20.解答下列各题:(1)计算:30﹣﹣|﹣2|×2﹣1.(2)用配方法解方程:x2﹣4x﹣2=0.21.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.22.先化简,再求值:(x﹣)•()﹣y,其中x=,y=.23.下列表格是某学校女子排球队队员年龄统计表:年龄(岁)13 14 15 16人数(人) 1 2 4 5 (1)该排球队队员年龄的众数是岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率为;(3)教练決定从年龄为13岁和14岁的A、B、C三名队员中,随机选取两名队员进行“接发球”训练,求队员A、B同时被选中的概率.(树状图或列表法)24.如图,直线:y=﹣+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.25.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D在BC边上(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)若BD=n(0<n<2),求线段AE的长;(用含n的代数式表示)(3)当△ADE是等腰三角形时,请直接写出AE的长.26.小敏的爸爸是一家水果店的经理.一天,他去水果批发市场,用100元购进甲种水果,用100元购进乙种水果,已知乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元.(1)求甲、乙两种水果各购进了多少千克?(2)如果当天甲、乙两种水果都按2.80元出售,乙种水果很快售完,而甲种水果先售出,剩余的按售价打5折售完.请你通过计算,说明这一天的水果买卖是否赚钱?如果赚钱,赚了多少元?如果不赚钱,那么赔了多少元?27.如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF、BF、EF,过点F作GF⊥AF交AD于点G,设AD:AE=n.(1)线段AE和线段EG的数量关系是:;(2)如图②,当点F落在AC上时,用含n的代数式表示AD:AB的值;(3)若AD=4AB,且△FCG为直角三角形,求n的值.(直接写出结果).28.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx ﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.参考答案与试题解析一.选择题(共10小题)1.在下列实数中,有理数是()A.﹣3 B.C. 1 D.π【分析】依据有理数和无理数的概念进行判断即可.【解答】解:﹣3是有理数,,﹣1,π是无理数.故选:A.2.自2018年起,我国将每年秋分日设立为“中国农民丰收节”.据预测,2018年我国粮食生产将稳定在12000亿斤以上.将数据“12000亿”用科学记数法可表示为()A.12×1011B.12×1012C.1.2×1011D.1.2×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据“12000亿”用科学记数法可表示为12000×108=1.2×1012.故选:D.3.使分式有意义的x的取值范围是()A.x≠3B.x=3 C.x≠0D.x=0【分析】直接利用分式有意义的条件进而得出答案.【解答】解:分式有意义,则3﹣x≠0,解得:x≠3.故选:A.4.如图,由六个完全相同的小正方体搭成一个几何体,在这个几何体的“三视图”中是轴对称图形的是()A.主视图B.左视图C.俯视图D.主视图和俯视图【分析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】解:如图所示:在这个几何体的“三视图”中是轴对称图形的是左视图.故选:B.5.在下列各式中,运算结果正确的是()A.x2+x2=x4B.x﹣2x=﹣xC.x2•x3=x6D.(x﹣1)2=x2﹣1【分析】根据合并同类项、完全平方公式及同底数幂的乘法法则进行各选项的判断即可.【解答】解:A、x2+x2=2x2,故本选项错误;B、x﹣2x=﹣x,故本选项正确;C、x2•x3=x5,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选:B.6.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.7.下列方程中,没有实数根的是()A.2x+3=0 B.x2﹣1=0 C.D.x2+x+1=0【分析】A、解一元一次方程可得出一个解,从而得知A中方程有一个实数根;B、根据根的判别式△=4>0,可得出B中方程有两个不等实数根;C、解分式方程得出x的值,通过验证得知该解成立,由此得出C中方程有一个实数根;D、根据根的判别式△=﹣3<0,可得出D中方程没有实数根.由此即可得出结论.【解答】解:A、2x+3=0,解得:x=﹣,∴A中方程有一个实数根;B、在x2﹣1=0中,△=02﹣4×1×(﹣1)=4>0,∴B中方程有两个不相等的实数根;C、=1,即x+1=2,解得:x=1,经检验x=1是分式方程=1的解,∴C中方程有一个实数根;D、在x2+x+1=0中,△=12﹣4×1×1=﹣3<0,∴D中方程没有实数根.故选:D.8.两个全等的直角三角形不能拼成的图形是()A.平行四边形B.矩形C.菱形D.等腰三角形【分析】根据直角三角形的性质,拼成的图形可能是等腰三角形、平行四边形、矩形;因为拼成的四边形的两组对边分别是两条直角边或一条直角边和斜边,不能得出四边相等,所以不可能拼成菱形.【解答】解:如果让直角三角形的直角边重合,可能拼成等腰三角形或平行四边形;如果让直角三角形的斜边重合,可能拼成矩形.∵拼成的四边形的两组对边分别是两条直角边或一条直角边和斜边,∴不可能拼成菱形.故选:C.9.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米【分析】由成比例关系,列出关系式,代入数据即可求出结果.【解答】解:设旗杆的高为x,有,可得x=4.8米.故选:B.10.下列两个图形,一定相似的是()A.两个等腰三角形B.两个直角三角形C.两个等边三角形D.两个矩形【分析】根据相似三角形的判定方法一一判断即可;【解答】解:∵两个等边三角形的内角都是60°,∴两个等边三角形一定相似,故选:C.二.填空题(共9小题)11.不等式3x﹣1>﹣4的最小整数解是0.【分析】先求出不等式的解集,再求出不等式的最小整数解即可.【解答】解:3x﹣1>﹣4,3x>﹣3,x>﹣1,所以不等式3x﹣1>﹣3的最小整数解是0,故答案为:0.12.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P 的坐标为(﹣4,3).【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限,且到x轴的距离为3,到y轴的距离为4,∴点P的横坐标为﹣4,纵坐标为3,∴点P的坐标为(﹣4,3).故答案为:(﹣4,3).13.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是4.【分析】根据数据3,4,x,6,8的平均数是5,求出x的值,再将该组数据从小到大依次排列即可找到该组数据的中位数.【解答】解:∵3,4,x,6,8的平均数是5,∴3+4+x+6+8=5×5,解得x=4,则该组数据为3,4,4,6,8.中位数为4.故答案为:4.14.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是x=﹣3.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故答案为:x=﹣3.15.若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.16.把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式叠合在一起,连结AD,则∠DAG=18°.【分析】如图连接BD.根据正五边形.正方形的性质求出∠DAB,∠GAB,由∠GAD=∠GAB﹣∠DAB计算即可.【解答】解:如图连接BD.∵ABCDE是正五边形,∵∠E=∠EAB=108°,ED=EA,∴∠EAD=∠EDA=36°,∴∠DAB=108°﹣36°=72°,∵四边形ABFG是正方形,∴∠GAB=90°,∴∠GAD=∠GAB﹣∠DAB=90°﹣72°=18°.故答案为18°.17.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.18.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(﹣,).【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故答案为:(﹣,).19.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC 相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是3≤AP<4.【分析】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.三.解答题(共9小题)20.解答下列各题:(1)计算:30﹣﹣|﹣2|×2﹣1.(2)用配方法解方程:x2﹣4x﹣2=0.【分析】(1)根据零指数幂的意义以及负整数指数幂的意义即可求出答案;(2)根据配方法即可求出答案.【解答】解:(1)原式=1﹣2﹣2×=﹣2;(2)∵x2﹣4x﹣2=0,∴x2﹣4x+4=6,∴(x﹣2)2=6,∴x=2±21.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.22.先化简,再求值:(x﹣)•()﹣y,其中x=,y=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:原式=•﹣y=﹣=﹣,当x=,y=时,原式=﹣=﹣.23.下列表格是某学校女子排球队队员年龄统计表:年龄(岁)13 14 15 16人数(人) 1 2 4 5 (1)该排球队队员年龄的众数是16岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率为;(3)教练決定从年龄为13岁和14岁的A、B、C三名队员中,随机选取两名队员进行“接发球”训练,求队员A、B同时被选中的概率.(树状图或列表法)【分析】(1)根据众数的定义求解;(2)根据概率公式求解;(3)画树状图展示所有6种等可能的结果数,找出队员A、B同时被选中的结果数,然后根据概率公式求解.【解答】解:(1)该排球队队员年龄的众数是16岁;(2)事件“从该排球队随机选择一名队员,其年龄为13岁”发生的概率==;故答案为16,;(3)画树状图为:共有6种等可能的结果数,其中队员A、B同时被选中的结果数为2,所以队员A、B同时被选中的概率==.24.如图,直线:y=﹣+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为(,4).(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.【分析】(1)当点B1与原点O重合时,过点A1作A1D⊥x轴于点D,则A1D=3,则B1D=A1D tan30°=3×=,当x=时,y=﹣+4=3=A1D,故点A1在直线上,点A1(,4);(2)将点C1(2,0)、A1的坐标代入一次函数表达式:y=kx+b,即可求解;(3)分A1C1是平行四边形的边、A1C1是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)直线:y=﹣+4与x轴、y轴分别別交于点M、点N,则点M(4,0),当点B1与原点O重合时,过点A1作A1D⊥x轴于点D,则A1D=3,则B1D=A1D tan30°=3×=,当x=时,y=﹣+4=3=A1D,故点A1在直线上,点A1(,4),故答案为:(,4);(2)将点C1(2,0)、A1的坐标代入一次函数表达式:y=kx+b并解得:直线A1C1的表达式为:y=﹣x+6;(3)设点P(m,n)①当A1C1是平行四边形的边时,则4=m,0﹣3=n或4=m,0+3=n,解得:m=3或5,n=3或﹣3,故点P的坐标为:(3,3)或(5,﹣3);②当A1C1是平行四边形的对角线时,由中点公式得:2=m+4,3=n,解得:m=﹣,n=3,故点P(﹣,3);综上点P的坐标为:(3,3)或(5,﹣3)或(﹣,3).25.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D在BC边上(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)若BD=n(0<n<2),求线段AE的长;(用含n的代数式表示)(3)当△ADE是等腰三角形时,请直接写出AE的长.【分析】(1)根据相似三角形的判定定理即可得到结论;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣n,EC=2﹣AE,∵△ABD∽△DCE,∴=,∴=,解得:AE=n2﹣n+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD≌△DCE,则AB=CD,即2=2﹣n,n=2﹣2,代入AE=n2﹣n+2,解得:AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即AE=(2﹣AE),解得:AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.26.小敏的爸爸是一家水果店的经理.一天,他去水果批发市场,用100元购进甲种水果,用100元购进乙种水果,已知乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元.(1)求甲、乙两种水果各购进了多少千克?(2)如果当天甲、乙两种水果都按2.80元出售,乙种水果很快售完,而甲种水果先售出,剩余的按售价打5折售完.请你通过计算,说明这一天的水果买卖是否赚钱?如果赚钱,赚了多少元?如果不赚钱,那么赔了多少元?【分析】(1)先设出甲种水果的批发价为x元,购进了y千克,则乙种水果的批发价为(x﹣0.5)元,购进了(y+10)千克.根据100=水果批发价×购进数量,列方程组求解;(2)根据利润=总销售额﹣购买水果的本钱求解.【解答】解:(1)设甲种水果的批发价为x元,购进了y千克,则乙种水果的批发价为(x﹣0.5)元,购进了(y+10)千克.则有,解得:x=2.5,x﹣0.5=2;y=40,y+10=50.故甲、乙两种水果各购进了40千克和50千克.(2)这一天的利润=50×(2.8﹣2)+40×(2.8﹣2.5)+40×(1.4﹣2.5)=40+7.2﹣17.6=29.6>0,这一天的水果买卖赚钱,赚了29.6元.27.如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF、BF、EF,过点F作GF⊥AF交AD于点G,设AD:AE=n.(1)线段AE和线段EG的数量关系是:AE=EG;(2)如图②,当点F落在AC上时,用含n的代数式表示AD:AB的值;(3)若AD=4AB,且△FCG为直角三角形,求n的值.(直接写出结果).【分析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.【解答】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EF A,∵GF⊥AF,∴∠EAF+∠FGA=∠EF A+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG,故答案为:AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴=,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=a,∴==;(3)若AD=4AB,则AB=a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵∠CGF=90°,如图3,∴∠CGD+∠AGF=90°,∵∠F AG+∠AGF=90°,∴∠CGD=∠F AG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴=,∴AB•DC=DG•AE,∵DG=AD﹣AE﹣EG=na﹣2a=(n﹣2)a,∴(a)2=(n﹣2)a•a,∴n=8+4或n=8﹣4(由于n>4,所以舍),即:n=8+428.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y 轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;【解答】解:(1)∵x2﹣2x=0,∴x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∴2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x轴y轴恰好围城一个正方形,所以2m=﹣1,解得.(3)存在.直线y=kx﹣2(k﹣2)=k(x﹣2)+4,过定点M(2,4),∴x2+bx+c=0两个根为x1=2,x2=4,∴2+4=﹣b,2×4=c,∴b=﹣6,c=8.。
2019年成都中考数学试题A卷(共100分)第I卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.比3-大5的数是()A. 15- B. 8- C. 2 D. 8【答案】C【解析】【分析】根据有理数的加减即可求解.【详解】由有理数的加减,-3+5=2,故选C【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的性质.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.【答案】B【解析】【分析】根据简单几何体的三视图即可求解.【详解】三视图的左视图,应从左面看,故选B【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.M的中心,距离地球3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系875500万光年.将数据5500万用科学计数法表示为( )A. 4550010⨯B. 65510⨯C. 75.510⨯D. 85.510⨯【答案】C【解析】【分析】根据科学计数法的表示方法即可求解.【详解】5500万=5.5×107,故选C【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.4.在平面直角坐标系中,将点()2,3-向右平移4个单位长度后得到的点的坐标为( )A. ()2,3B. ()6,3-C. ()2,7-D. ()2,1--【答案】A【解析】【分析】根据直角坐标系的坐标平移即可求解.【详解】一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A【点睛】此题主要考查坐标的平移,解题的关键是熟知直角坐标系的特点.5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若130∠=︒,则2∠的度数为()A. 10︒B. 15︒C. 20︒D. 30°【答案】B【解析】【分析】根据平行的性质即可求解.【详解】根据平行线的性质得到∠3=∠1=30°,∴∠2=45°-∠3=15°.以及等腰直角三角形的性质,故选B【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.6.下列计算正确的是( )A. 532ab b b -=B. ()224236a b a b -=C. ()2211a a -=-D. 2222a b b a ÷= 【答案】D【解析】【分析】根据整式的运算法则即可求解.【详解】A 选项明显错误,B 选项正确结果为429a b ,C 选项221a a -+,故选D【点睛】此题主要考查整式的运算,解题的关键是熟知整式的运算法则.7.分式方程5211x x x -+=-的解为( ) A. 1x =-B. 1x =C. 2x =D. 2x =-【答案】A【解析】【分析】根据分式方程的解法即可求解.【详解】根据分式方程的解法去分母得x(x-5)+2(x-1)=x(x-1)化简得2x=-2,解得x=-1,故选A.【点睛】此题主要考查分式方程的求解,解题的关键是熟知分式方程的求解.8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是()A. 42件B. 45件C. 46件D. 50件【答案】C【解析】【分析】根据中位数的定义即可求解.【详解】中位数表示将这列数按从小到大排列后,最中间的一个数或者最中间的两个数的平均值,故选C. 【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义.9.如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则CPD∠的度数为()A. 30°B. 36︒C. 60︒D. 72︒【答案】B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=172362︒⨯=︒,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.10.如图,二次函数2y ax bx c =++的图象经过点()1,0A ,()5,0B ,下列说法正确的是()A. 0c <B. 240b ac -<C. 0a b c -+<D. 图象的对称轴是直线3x =【答案】D【解析】【分析】根据二次函数的图像与性质即可求解.【详解】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0. A 选项错误;函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误;观察图象可知x =-1时y=a -b +c >0,所以a -b +c >0,C 选项错误;根据图象与x 轴交点可知,对称轴是(1,0).(5,0)两点的中垂线,152x +=,x =3即为函数对称轴,D 选项正确;故选D【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像.第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若1m +与2-互为相反数,则m 的值为_______.【答案】1.【解析】【分析】根据相反数的性质即可求解.【详解】m+1+(-2)=0,所以m =1.【点睛】此题主要考查相反数的应用,解题的关键是熟知相反数的性质.12.如图,在ABC ∆中,AB AC =,点D ,E 都在边BC 上,BAD CAE ∠=∠,若9BD =,则CE 的长为_______.【答案】9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为△ABC 是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD ≅△ACE(ASA),所以BD=EC ,EC=9.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.13.已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是____________.. 【答案】【解析】【详解】解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k 0<故答案为:k 0<14.如图,ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在COB ∠内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E ,若8AB =,则线段OE 的长为_______.【答案】4.【解析】【分析】连接MN 和M N '',根据全等三角形的判定与性质及中位数定理即可求解.【详解】连接MN 和M N '',因为AM OM =',AN ON =',MN M N ='',所以()AMN OM N SSS ≅'',所以,MAN M ON∠=∠'',所以OE AB ,又因为O 是AC 中点,所以OE 是△ABC 的中位线,所以12OE AB =,所以4OE =. 【点睛】此题主要考查平行四边形的性质,解题的关键是熟知全等三角形的判定与性质及中位线的应用.三、解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:0(2)2cos30|1π--︒-.(2)解不等式组:3(2)45521142x x x x -≤-⎧⎪⎨-<+⎪⎩①② 【答案】(1)4-;(2)12x -≤<.【解析】【分析】(1)根据实数的性质即可化简求解;(2)根据不等式的性质分别求解不等式,再找到其公共解集.【详解】(1)解:原式=1-241)-+=141-=-4(2)解不等式①得: x 1≥-;解不等式②得:2x <∴12x -≤<.【点睛】此题主要考查实数的运算及不等式的性质,解题的关键是熟知实数的性质、不等式求解方法.16.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【解析】【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x ==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.17.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.【答案】(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.【解析】【分析】(1)根据在线答题的人数与占比即可求出本次调查的学生总人数,即可计算补全统计图;(2)先求出“在线讨论”的占比再乘以360°即可求解;(3)根据在线阅读的占比乘以全校人数即可求解.【详解】(1)总人数=1820%90÷=(人),如图(2)在线讨论所占圆心角123604890=⨯︒=︒ (3)本校对在线阅读最感兴趣的人24210056090=⨯=(人) 【点睛】此题主要考查统计调查的应用,解题的关键是根据统计图求出本次调查的学生总人数.18.2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35︒,底部D 的俯角为45︒,如果A 处离地面的高度20AB =米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin350.57︒≈,cos350.82︒≈,tan350.70︒≈)【答案】起点拱门CD 的高度约为6米.【解析】【分析】根据题意作出辅助线,根据解直角三角形即可求解.【详解】过A 作CD 垂线,垂足为E ,如图所示.则四边形DEAB 是矩形;∴DE=AB=20在Rt ADE 中,∠EAD=45°,AE=DE=20在Rt ACE 中,CE=AE·tan35°=14, ∴CD=DE-CE=20-14=6答:起点拱门的高度约为6米.【点睛】此题主要考查三角函数的应用,解题的关键是熟知解直角三角形的应用.19.如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数k y x=的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数152y x =+ 的图象与反比例函数k y x = 的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.【答案】(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15. 【解析】【分析】 (1)联立两一次函数解出A 点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B 点坐标,再根据反比例函数的性质求解三角形的面积.【详解】(1)由题意:联立直线方程1522y x y x⎧=+⎪⎨⎪=-⎩,可得24x y =-⎧⎨=⎩,故A 点坐标为(-2,4) 将A (-2,4)代入反比例函数表达式k y x=,有42k =-,∴8k =- 故反比例函数的表达式为8y x=- (2)联立直线152y x =+与反比例函数8y x=-, 1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯= 【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.如图,AB 为⊙O 的直径,C ,D 为圆上的两点,//OC BD ,弦AD ,BC 相交于点E ,(1)求证:AC CD =(2)若1CE =,3EB =,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作//PQ CB 交⊙O 于F , Q 两点(点F 在线段PQ 上),求PQ 的长.【答案】(1)见解析;(2)⊙O (3)103PQ +=【解析】【分析】(1)连接OD ,根据圆心角的性质即可求解;(2)根据圆的性质求得CBA CAE ∆∆,求出AC ,再根据勾股定理进行求解;(3)根据//PC AE ,分线段成比例得13PA CE AB EB ==,再求出PA,PO,过点O 作OH PQ ⊥于点H ,则90OHP ACB ∠=︒=∠,求得BPQ ABC ∠=∠根据OHP ACB ∆∆,即O P O H P H A B A C B C ==,求出OH,PH ,连接OQ ,根据 Rt OHQ ∆中,由勾股定理,求得 HQ ,由 PQ PH HQ =+进行求解.【详解】(1)连接OD ,//OC BD ,∴OCB DBC ∠=∠.OB OC =,∴OCB OBC ∠=∠.∴OBC DBC ∠=∠,∴AOC COD ∠=∠,∴AC CD =.(2)连接AC .AC CD =,∴CBA CAD ∠=∠.BCA ACE =∠∠,∴CBA CAE ∆∆. ∴CA CB CE CA=. ∴()()21134CA CE CB CE CE EB =⋅=⋅+=⨯+=.∴2CA =AB 为⊙O 的直径,∴90ACB ∠=︒.在Rt ACB ∆中,由勾股定理,得AB ===∴⊙O (3)如图,设AD 与CO 相交于点N.AB为⊙O的直径,∴90ADB∠=︒,//OC BD,∴90ANO ADB∠=∠=︒.PC为⊙O的切线,∴90PCO∠=︒.∴ANO PCO∠=∠.∴//PC AE.∴13PA CEAB EB==.∴1133PA AB==⨯=.∴33PO PA AO=+=+=.过点O作OH PQ⊥于点H,则90OHP ACB∠=︒=∠,//PQ CB,∴BPQ ABC∠=∠.∴OHP ACB∆∆,∴OP OH PHAB AC BC==.∴253AC OPOHAB⋅===,4103BC OPPHAB⋅===连接OQ.在Rt OHQ∆中,由勾股定理,得3HQ===,∴PQ PH HQ =+=. 【点睛】此题主要考查圆的综合问题,解题的关键是熟知圆心角定理、切线的性质及相似三角形的判定与性质及勾股定理的应用.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.≈____.(结果精确到1)【答案】6。
专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。
2022年四川省成都市中考数学试卷(真题)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)(2022•成都)的相反数是()A.B.C.D.2.(4分)(2022•成都)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107 3.(4分)(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣94.(4分)(2022•成都)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 5.(4分)(2022•成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56 B.60 C.63 D.726.(4分)(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3 D.27.(4分)(2022•成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.B.C.D.8.(4分)(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而增大C.点B的坐标为(4,0)D.4a+2b+c>0二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)(2022•成都)计算:(﹣a3)2=.10.(4分)(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.11.(4分)(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.12.(4分)(2022•成都)分式方程+=1的解为.13.(4分)(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B 和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.三、解答题(本大题共5个小题,共48分)14.(12分)(2022•成都)(1)计算:()﹣1﹣+3tan30°+|﹣2|.(2)解不等式组:15.(8分)(2022•成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x的值为;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.(8分)(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)17.(10分)(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.18.(10分)(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC 被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.20.(4分)(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.21.(4分)(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.22.(4分)(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w的取值范围是;当2≤t≤3时,w的取值范围是.23.(4分)(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC 于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.二、解答题(本大题共3个小题,共30分)24.(8分)(2022•成都)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?25.(10分)(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k ≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y 轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(12分)(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD 边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).2022年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)(2022•成都)的相反数是()A.B.C.D.【考点】相反数.菁优网版权所有【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:的相反数是.故选:A.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.(4分)(2022•成都)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【考点】科学记数法—表示较大的数.菁优网版权所有【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:160万=1600000=1.6×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(4分)(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣9【考点】平方差公式;合并同类项;完全平方公式.菁优网版权所有【分析】选项A根据合并同类项法则判断即可;选项B根据去括号法则判断即可;选项C根据完全平方公式判断即可;选项D根据平方差公式判断即可.【解答】解:A.m+m=2m,故本选项不合题意;B.2(m﹣n)=2m﹣2n,故本选项不合题意;C.(m+2n)2=m2+4mn+4n2,故本选项不合题意;D.(m+3)(m﹣3)=m2﹣9,故本选项符合题意;故选:D.【点评】本题考查了合并同类项,去括号法则,完全平方公式以及平方差公式,掌握相关公式与运算法则是解答本题的关键.4.(4分)(2022•成都)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D 【考点】全等三角形的判定;平行线的性质.菁优网版权所有【分析】先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,∴当添加∠C=∠F时,可根据“ASA”判定△ABC≌△DEF;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.5.(4分)(2022•成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56 B.60 C.63 D.72【考点】众数.菁优网版权所有【分析】根据众数的定义求解即可.【解答】解:由题意知,这组数据中60出现3次,次数最多,∴这组数据的众数是60,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.6.(4分)(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.B.C.3 D.2【考点】正多边形和圆.菁优网版权所有【分析】连接OB、OC,根据⊙O的周长等于6π,可得⊙O的半径OB=OC=3,而六边形ABCDEF是正六边形,即知∠BOC==60°,△BOC是等边三角形,即可得正六边形的边长为3.【解答】解:连接OB、OC,如图:∵⊙O的周长等于6π,∴⊙O的半径OB=OC==3,∵六边形ABCDEF是正六边形,∴∠BOC==60°,∴△BOC是等边三角形,∴BC=OB=OC=3,即正六边形的边长为3,故选:C.【点评】本题考查正多边形与圆的相关计算,解题的关键是掌握圆内接正六边形中心角等于60°,从而得到△BOC是等边三角形.7.(4分)(2022•成都)中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.菁优网版权所有【分析】利用总价=单价×数量,结合用九百九十九文钱共买了一千个苦果和甜果,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵共买了一千个苦果和甜果,∴x+y=1000;∵共花费九百九十九文钱,且四文钱可以买苦果七个,十一文钱可以买甜果九个,∴x+y=999.∴可列方程组为.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)(2022•成都)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而增大C.点B的坐标为(4,0)D.4a+2b+c>0【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象与系数的关系.菁优网版权所有【分析】由抛物线开口方向可判断A,根据抛物线对称轴可判断B,由抛物线的轴对称性可得点B的坐标,从而判断C,由(2,4a+2b+c)所在象限可判断D.【解答】解:A、由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;B、∵抛物线对称轴是直线x=1,开口向下,∴当x>1时y随x的增大而减小,x<1时y随x的增大而增大,故选项B错误,不符合题意;C、由A(﹣1,0),抛物线对称轴是直线x=1可知,B坐标为(3,0),故选项C错误,不符合题意;D、抛物线y=ax2+bx+c过点(2,4a+2b+c),由B(3,0)可知:抛物线上横坐标为2的点在第一象限,∴4a+2b+c>0,故选项D正确,符合题意;故选:D.【点评】本题考查二次函数图象与系数的关系,解题的关键是掌握二次函数图象的性质,数形结合解决问题.二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)(2022•成都)计算:(﹣a3)2=a6.【考点】幂的乘方与积的乘方.菁优网版权所有【分析】根据幂的乘方,底数不变指数相乘计算即可.【解答】解:(﹣a3)2=a6.【点评】本题考查幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号.10.(4分)(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是k<2 .【考点】反比例函数的性质.菁优网版权所有【分析】根据反比例函数的性质列不等式即可解得答案.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k﹣2<0,解得k<2,故答案为:k<2.【点评】本题考查反比例函数的性质,解题的关键是掌握当k<0时,y=的图象位于第二、四象限.11.(4分)(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是2:5 .【考点】位似变换.菁优网版权所有【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.【点评】本题考查了位似变换.位似变换的两个图形相似.相似比等于位似比.12.(4分)(2022•成都)分式方程+=1的解为x=3 .【考点】解分式方程.菁优网版权所有【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x﹣1=x﹣4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(4分)(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B 和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为7 .【考点】等腰直角三角形;作图—基本作图;线段垂直平分线的性质;勾股定理.菁优网版权所有【分析】设MN交BC于D,连接EC,由作图可知:MN是线段BC的垂直平分线,即得BE=CE=4,有∠ECB=∠B=45°,从而∠AEC=∠ECB+∠B=90°,由勾股定理得AE=3,故AB=AE+BE=7.【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.【点评】本题考查尺规作图中的计算问题,解题的关键是掌握用尺规作线段垂直平分线的方法,得到MN是线段BC的垂直平分线.三、解答题(本大题共5个小题,共48分)14.(12分)(2022•成都)(1)计算:()﹣1﹣+3tan30°+|﹣2|.(2)解不等式组:【考点】特殊角的三角函数值;绝对值;算术平方根;估算无理数的大小;实数的运算;负整数指数幂;解一元一次不等式组.菁优网版权所有【分析】(1)根据负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值以及实数混合运算的方法进行计算即可;(2)利用解一元一次不等式组的解法进行解答即可.【解答】解:(1)原式=2﹣3+3×+2﹣=﹣1++2﹣=1;(2)解不等式①得,x≥﹣1,解不等式②得,x<2,把两个不等式的解集在同一条数轴上表示如下:所以不等式组的解集为﹣1≤x<2.【点评】本题考查负整数指数幂,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算以及一元一次不等式组,掌握负整数指数幂的性质,算术平方根、特殊锐角三角函数值、绝对值,实数混合运算的方法以及一元一次不等式组的解法是正确解答的前提.15.(8分)(2022•成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t(单位:分钟)人数所占百分比A0≤t<2 4 xB2≤t<4 20C4≤t<6 36%D t≥6 16%根据图表信息,解答下列问题:(1)本次调查的学生总人数为50 ,表中x的值为8% ;(2)该校共有500名学生,请你估计等级为B的学生人数;(3)本次调查中,等级为A的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;条形统计图.菁优网版权所有【分析】(1)用D等级人数除以它所占的百分比得到调查的总人数,然后用4除以总人数得到x的值;(2)用500乘以B等级人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为8÷16%=50(人),所以x==8%;故答案为:50;8%;(2)500×=200(人),所以估计等级为B的学生人数为200人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.16.(8分)(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【考点】解直角三角形的应用.菁优网版权所有【分析】利用平角定义先求出∠AOC=30°,然后在Rt△ACO中,利用锐角三角函数的定义求出AO的长,从而求出A′O的长,再利用平角定义求出∠A′OD的度数,最后在Rt△A′DO中,利用锐角三角函数的定义进行计算即可解答.【解答】解:∵∠AOB=150°,∴∠AOC=180°﹣∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°﹣∠A′OB=72°,在Rt△A′DO中,A′D=A′O•sin72°≈20×0.95=19(cm),∴此时顶部边缘A'处离桌面的高度A'D的长约为19cm.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.17.(10分)(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.【考点】圆的综合题.菁优网版权所有【分析】(1)利用等角的余角相等证明即可;(2)连接CD.解直角三角形求出AB,BC,利用面积法求出CD,再利用勾股定理求出DB,证明△DEF∽△BCF,利用相似三角形的性质求出DE即可.【解答】(1)证明:∵=,∴∠BCF=∠FBC,∵∠ACB=90°,∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,∴∠A=∠ACF;(2)解:连接CD.∵∠A=∠ACF,∠FBC=∠BCF,∴AF=FC=FB,∴cos∠A=cos∠ACF==,∵AC=8,∴AB=10,BC=6,∵BC是直径,∴∠CDB=90°,∴CD⊥AB,∵S△ABC=•AC•BC=•AB•CD,∴CD==,∴BD===,∵BF=AF=5,∴DF=BF﹣BD=5﹣=,∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,∴∠DEF=∠B=∠BCF,∴DE∥CB,∴△DEF∽△BCF,∴=,∴=,∴DE=.【点评】本题属于圆综合题,考查了解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.18.(10分)(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC 被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.【考点】反比例函数综合题.菁优网版权所有【分析】(1)将点A坐标分别代入一次函数解析式和反比例函数解析式可求解;(2)分两种情况讨论,由相似三角形的性质和勾股定理可求解;(3)分别求出BP,AP,BQ的解析式,联立方程组可求解.【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,∴4=﹣2a+6,∴a=1,∴点A(1,4),∵反比例函数y=的图象过点A(1,4),∴k=1×4=4;∴反比例函数的解析式为:y=,联立方程组可得:,解得:,,∴点B(2,2);(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,∴AE∥CF,∴△AEH∽△CFH,∴,当=时,则CF=2AE=2,∴点C(﹣2,﹣2),∴BC==4,当=2时,则CF=AE=,∴点C(﹣,﹣8),∴BC==,综上所述:BC的长为4或;(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,∵直线y=﹣2x+6与y轴交于点E,∴点E(0,6),∵点B(2,2),∴BF=OF=2,∴EF=4,∵∠ABP=90°,∴∠ABF+∠FBN=90°=∠ABF+∠BEF,∴∠BEF=∠FBN,又∵∠EFB=∠ABN=90°,∴△EBF∽△BNF,∴,∴FN==1,∴点N(0,1),∴直线BN的解析式为:y=x+1,联立方程组得:,解得:,,∴点P(﹣4,﹣1),∴直线AP的解析式为:y=x+3,∵AP垂直平分BQ,∴设BQ的解析式为y=﹣x+4,∴x+3=﹣x+4,∴x=,∴点H(,),∵点H是BQ的中点,点B(2,2),∴点Q(﹣1,5).【点评】本题是反比例函数综合题,考查了一次函数的应用,反比例函数的应用,相似三角形的判定和性质,待定系数法等知识,灵活运用这些性质解决问题是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.【考点】代数式求值.菁优网版权所有【分析】先将代数式化简为a2﹣a,再由2a2﹣7=2a可得a2﹣a=,即可求解.【解答】解:原式=(﹣)×=×=a(a﹣1)=a2﹣a,∵2a2﹣7=2a,∴2a2﹣2a=7,∴a2﹣a=,∴代数式的值为,故答案为:.【点评】本题考查代数式求值,解题的关键是正确化简代数式,利用题干条件进行解答.20.(4分)(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是2.【考点】根的判别式;勾股定理.菁优网版权所有【分析】设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.【点评】本题考查一元二次方程根与系数的关系,涉及勾股定理、完全平方公式的应用,解题的关键是掌握一元二次方程根与系数的关系,得到a+b=6,ab=4.21.(4分)(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.【考点】几何概率;圆内接四边形的性质.菁优网版权所有【分析】作OD⊥CD,OB⊥AB,设⊙O的半径为r,根据⊙O是小正方形的外接圆,是大正方形的内切圆,可得OB=OC=r,△AOB、△COD是等腰直角三角形,即可得AE=2r,CF=r,从而求出答案.【解答】解:作OD⊥CD,OB⊥AB,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.【点评】本题考查几何概率,涉及正方形的外切圆与内接圆,解题的关键是用含r的代数式表示阴影部分的面积.22.(4分)(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w的取值范围是0≤w≤5 ;当2≤t≤3时,w的取值范围是5≤w≤20 .【考点】二次函数的应用.菁优网版权所有。
2019年四川省成都市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 比-3大5的数是( )A. −15B. −8C. 2D. 82. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.3. 2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )A. 5500×104B. 55×106C. 5.5×107D. 5.5×1084. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A. (2,3)B. (−6,3)C. (−2,7)D. (−2.−1)5. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘6. 下列计算正确的是( )A. 5ab −3a =2bB. (−3a 2b)2=6a 4b 2C. (a −1)2=a 2−1D. 2a 2b ÷b =2a 27. 分式方程x−5x−1+2x =1的解为( )A. x =−1B. x =1C. x =2D. x =−28. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A. 42件B. 45件C. 46件D. 50件9. 如图,正五边形ABCDE 内接于⊙O ,P 为DE⏜上的一点(点P 不与点D 重命),则∠CPD 的度数为( )A. 30∘B. 36∘C. 60∘D. 72∘10. 如图,二次函数y =ax 2+bx +c 的图象经过点A (1,0),B (5,0),下列说法正确的是( )A. c <0B. b 2−4ac <0C. a −b +c <0D. 图象的对称轴是直线x =3二、填空题(本大题共9小题,共36.0分)11. 若m +1与-2互为相反数,则m 的值为______.12. 如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为______.13. 已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是______.14. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若AB =8,则线段OE 的长为______.15. 估算:√37.7≈______(结果精确到1)16. 已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为______.17. 一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为______ 18. 如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为______.19. 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为______.三、计算题(本大题共1小题,共6.0分) 20. 先化简,再求值:(1-4x+3)÷x 2−2x+12x+6,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)21. (1)计算:(π-2)0-2cos30°-√16+|1-√3|. (2)解不等式组:{3(x −2)≤4x −5,①5x−24<1+12x .②22. 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23. 2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24. 如图,在平面直角坐标系xOy 中,一次函数y =12x +5和y =-2x 的图象相交于点A ,反比例函数y =kx 的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.25. 如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC⏜=CD ⏜; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.26. 随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27. 如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD交射线DE 于点F ,连接CF . (1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.28.如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP的函数表达式.答案和解析1.【答案】C【解析】解:-3+5=2.故选:C.比-3大5的数是-3+5,根据有理数的加法法则即可求解.本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】C【解析】解:科学记数法表示:5500万=55000000=5.5×107故选:C.根据科学记数法的表示形式即可本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.【答案】A【解析】解:点(-2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.把点(-2,3)的横坐标加4,纵坐标不变得到点(-2,3)平移后的对应点的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.【答案】B【解析】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°-30°=15°,故选:B.根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE 中,∠ADE=45°,即可得到∠1=45°-30°=15°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】D【解析】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(-3a2b)2=(-3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a-1)2=a2-2a+1,选项错误D选项,单项式除法,计算正确故选:D.注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C 选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.【答案】A【解析】解:方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选:A.先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意,解分式方程时需要验根.8.【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.将数据从小到大排列,根据中位数的定义求解即可.本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A 错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2-4ac>0,故B错误;C.当x=-1时,y<0,即a-b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】1【解析】解:根据题意得:m+1-2=0,解得:m=1,故答案为:1.根据“m+1与-2互为相反数”,得到关于m的一元一次方程,解之即可.本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.【答案】9【解析】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE 的长.本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.【答案】k<3【解析】解:y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3;故答案为k<3;根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k-3<0即可求解;本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.【答案】6【解析】解:∵,∴,∴≈6.故答案为:6根据二次根式的性质解答即可.本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.16.【答案】-2【解析】解:根据题意得:x1+x2=-2,x1x2=k-1,+-x1x2=-3x1x2=4-3(k-1)=13,k=-2,故答案为:-2.根据“x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.17.【答案】20【解析】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】√3【解析】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.19.【答案】4或5或6【解析】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA=5,∵△OAB 的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;根据面积求出B 点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.20.【答案】解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1x+3×2(x+3)(x−1)2=2x−1将x =√2+1代入原式=√2+1−1=√2【解析】可先对进行通分,可化为,再利用除法法则进行计算即可此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.【答案】解:(1)原式=1-2×√32-4+√3-1, =1-√3-4+√3-1,=-4.(2){3(x −2)≤4x −5,①5x−24<1+12x .② 由①得,x ≥-1,由②得,x <2,所以,不等式组的解集是-1≤x <2.【解析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【答案】解:(1)本次调查的学生总人数为:18÷20%=90, 在线听课的人数为:90-24-18-12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人), 答:该校对在线阅读最感兴趣的学生有560人.【解析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数. 本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:作CE ⊥AB 于E ,则四边形CDBE 为矩形,∴CE =AB =20,CD =BE ,在Rt △ADB 中,∠ADB =45°,∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =AE CE , ∴AE =CE •tan ∠ACE ≈20×0.70=14,∴CD =BE =AB -AE =6,答:起点拱门CD 的高度约为6米.【解析】作CE ⊥AB 于E ,根据矩形的性质得到CE=AB=20,CD=BE ,根据正切的定义求出AE ,结合图形计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)由{y =12x +5y =−2x得{y =4x=−2, ∴A (-2,4), ∵反比例函数y =kx 的图象经过点A ,∴k =-2×4=-8, ∴反比例函数的表达式是y =-8x ;(2)解{y =−8x y =12x +5得{y =4x=−2或{y =1x=−8, ∴B (-8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(-10,0),∴S △AOB =12×10×4-12×10×1=15. 【解析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.25.【答案】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AC⏜=CD⏜(2)连接AC,∵CE=1,EB=3,∴BC=4∵AC⏜=CD⏜∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴AC CE =CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA =∠BCO =∠CBO ,且∠CPB =∠CPA∴△APC ∽△CPB ∴PA PC =PC PB =AC BC =24=12 ∴PC =2PA ,PC 2=PA •PB∴4PA 2=PA ×(PA +2√5)∴PA =2√53∴PO =5√53 ∵PQ ∥BC∴∠CBA =∠BPQ ,且∠PHO =∠ACB =90°∴△PHO ∽△BCA∴AC OH =BC PH =AB PO即2OH =4PH =2√55√53=65 ∴PH =103,OH =53∴HQ =√OQ 2−OH 2=2√53∴PQ =PH +HQ =10+2√53 【解析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD ,即可证=;(2)通过证明△ACE ∽△BCA ,可得,可得AC=2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得,可求PA=,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出PA 的长是本题的关键.26.【答案】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {5k +b =5000k+b=7000,解得,{b =7500k=−500,∴y 与x 之间的关系式:y =-500x +7500;(2)设销售收入为w 万元,根据题意得,w =yp =(-500x +7500)(12x +12), 即w =-250(x -7)2+16000,∴当x =7时,w 有最大值为16000,此时y =-500×7+7500=4000(元) 答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【解析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w 万元,根据销售收入=销售单价×销售数量和p=x+,列出w 与x 的函数关系式,再根据函数性质求得结果.本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.【答案】(1)证明:∵AB =AC , ∴∠B =∠ACB ,∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠CDE ,∴△BAD ∽△DCE .(2)解:如图2中,作AM ⊥BC 于M .在Rt △ABM 中,设BM =4k ,则AM =BM •tan B =4k ×34=3k , 由勾股定理,得到AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2,∴k =4或-4(舍弃),∵AB =AC ,AM ⊥BC ,∴BC =2BM =2•4k =32,∵DE ∥AB ,∴∠BAD =∠ADE ,∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB ,∵∠ABD =∠CBA ,∴△ABD ∽△CBA , ∴AB CB =DB AB , ∴DB =AB 2CB =20232=252, ∵DE ∥AB ,∴AE AC =BDBC , ∴AE =AC⋅BD BC =20×25232=12516.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF .理由:作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM =∠AMH =∠ANH =90°,∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN ,∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16, 在Rt △ABM 中,由勾股定理,得AM =√AB 2−BM 2=√202−162=12,∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD , ∵∠DAF =90°=∠MAN , ∴∠NAF =∠MAD ,∴△AFN ∽△ADM ,∴AN AM =AF AD =tan ∠ADF =tan B =34,∴AN =34AM =34×12=9, ∴CH =CM -MH =CM -AN =16-9=7,当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.【解析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC ,由△ABD ∽△CBA ,推出=,可得DB===,由DE ∥AB ,推出=,求出AE 即可. (3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF .作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM=∠AMH=∠ANH=90°,由△AFN ∽△ADM ,可得==tan ∠ADF=tanB=,推出AN=AM=×12=9,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD 即可解决问题.本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.28.【答案】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2-2x -3.(2)∵抛物线与x 轴交于B (-1,0),C (3,0),∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C′的坐标为(1,2√3),tan∠C′BH=C′HBH =2√32=√3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=2√33,∴点D的坐标为(1,2√33).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,-√33).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=-√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【解析】(1)根据待定系数法,把点A(-2,5),B(-1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.。
2019年四川省成都市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 比-3大5的数是( )A. −15B. −8C. 2D. 82. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.3. 2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )A. 5500×104B. 55×106C. 5.5×107D. 5.5×1084. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A. (2,3)B. (−6,3)C. (−2,7)D. (−2.−1)5. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘6. 下列计算正确的是( )A. 5ab −3a =2bB. (−3a 2b)2=6a 4b 2C. (a −1)2=a 2−1D. 2a 2b ÷b =2a 27. 分式方程x−5x−1+2x =1的解为( )A. x =−1B. x =1C. x =2D. x =−28. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A. 42件B. 45件C. 46件D. 50件9. 如图,正五边形ABCDE 内接于⊙O ,P 为DE⏜上的一点(点P 不与点D 重命),则∠CPD 的度数为( )A. 30∘B. 36∘C. 60∘D. 72∘10. 如图,二次函数y =ax 2+bx +c 的图象经过点A (1,0),B (5,0),下列说法正确的是( )A. c <0B. b 2−4ac <0C. a −b +c <0D. 图象的对称轴是直线x =3二、填空题(本大题共9小题,共36.0分)11. 若m +1与-2互为相反数,则m 的值为______.12. 如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为______.13. 已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是______.14. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若AB =8,则线段OE 的长为______.15. 估算:√37.7≈______(结果精确到1)16. 已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为______.17. 一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为______ 18. 如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为______.19. 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为______.三、计算题(本大题共1小题,共6.0分) 20. 先化简,再求值:(1-4x+3)÷x 2−2x+12x+6,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)21. (1)计算:(π-2)0-2cos30°-√16+|1-√3|. (2)解不等式组:{3(x −2)≤4x −5,①5x−24<1+12x .②22. 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23. 2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24. 如图,在平面直角坐标系xOy 中,一次函数y =12x +5和y =-2x 的图象相交于点A ,反比例函数y =kx 的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.25. 如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC⏜=CD ⏜; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.26. 随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27. 如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD交射线DE 于点F ,连接CF . (1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.28.如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP的函数表达式.答案和解析1.【答案】C【解析】解:-3+5=2.故选:C.比-3大5的数是-3+5,根据有理数的加法法则即可求解.本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】C【解析】解:科学记数法表示:5500万=55000000=5.5×107故选:C.根据科学记数法的表示形式即可本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.【答案】A【解析】解:点(-2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.把点(-2,3)的横坐标加4,纵坐标不变得到点(-2,3)平移后的对应点的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.【答案】B【解析】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°-30°=15°,故选:B.根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE 中,∠ADE=45°,即可得到∠1=45°-30°=15°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】D【解析】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(-3a2b)2=(-3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a-1)2=a2-2a+1,选项错误D选项,单项式除法,计算正确故选:D.注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C 选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.【答案】A【解析】解:方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选:A.先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意,解分式方程时需要验根.8.【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.将数据从小到大排列,根据中位数的定义求解即可.本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A 错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2-4ac>0,故B错误;C.当x=-1时,y<0,即a-b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】1【解析】解:根据题意得:m+1-2=0,解得:m=1,故答案为:1.根据“m+1与-2互为相反数”,得到关于m的一元一次方程,解之即可.本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.【答案】9【解析】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE 的长.本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.【答案】k<3【解析】解:y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3;故答案为k<3;根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k-3<0即可求解;本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.【答案】6【解析】解:∵,∴,∴≈6.故答案为:6根据二次根式的性质解答即可.本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.16.【答案】-2【解析】解:根据题意得:x1+x2=-2,x1x2=k-1,+-x1x2=-3x1x2=4-3(k-1)=13,k=-2,故答案为:-2.根据“x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.17.【答案】20【解析】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】√3【解析】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.19.【答案】4或5或6【解析】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA=5,∵△OAB 的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;根据面积求出B 点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.20.【答案】解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1x+3×2(x+3)(x−1)2=2x−1将x =√2+1代入原式=√2+1−1=√2【解析】可先对进行通分,可化为,再利用除法法则进行计算即可此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.【答案】解:(1)原式=1-2×√32-4+√3-1, =1-√3-4+√3-1,=-4.(2){3(x −2)≤4x −5,①5x−24<1+12x .② 由①得,x ≥-1,由②得,x <2,所以,不等式组的解集是-1≤x <2.【解析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【答案】解:(1)本次调查的学生总人数为:18÷20%=90, 在线听课的人数为:90-24-18-12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人), 答:该校对在线阅读最感兴趣的学生有560人.【解析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数. 本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:作CE ⊥AB 于E ,则四边形CDBE 为矩形,∴CE =AB =20,CD =BE ,在Rt △ADB 中,∠ADB =45°,∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =AE CE , ∴AE =CE •tan ∠ACE ≈20×0.70=14,∴CD =BE =AB -AE =6,答:起点拱门CD 的高度约为6米.【解析】作CE ⊥AB 于E ,根据矩形的性质得到CE=AB=20,CD=BE ,根据正切的定义求出AE ,结合图形计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)由{y =12x +5y =−2x得{y =4x=−2, ∴A (-2,4), ∵反比例函数y =kx 的图象经过点A ,∴k =-2×4=-8, ∴反比例函数的表达式是y =-8x ;(2)解{y =−8x y =12x +5得{y =4x=−2或{y =1x=−8, ∴B (-8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(-10,0),∴S △AOB =12×10×4-12×10×1=15. 【解析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.25.【答案】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AC⏜=CD⏜(2)连接AC,∵CE=1,EB=3,∴BC=4∵AC⏜=CD⏜∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴AC CE =CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA =∠BCO =∠CBO ,且∠CPB =∠CPA∴△APC ∽△CPB ∴PA PC =PC PB =AC BC =24=12 ∴PC =2PA ,PC 2=PA •PB∴4PA 2=PA ×(PA +2√5)∴PA =2√53∴PO =5√53 ∵PQ ∥BC∴∠CBA =∠BPQ ,且∠PHO =∠ACB =90°∴△PHO ∽△BCA∴AC OH =BC PH =AB PO即2OH =4PH =2√55√53=65 ∴PH =103,OH =53∴HQ =√OQ 2−OH 2=2√53∴PQ =PH +HQ =10+2√53 【解析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD ,即可证=;(2)通过证明△ACE ∽△BCA ,可得,可得AC=2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得,可求PA=,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出PA 的长是本题的关键.26.【答案】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {5k +b =5000k+b=7000,解得,{b =7500k=−500,∴y 与x 之间的关系式:y =-500x +7500;(2)设销售收入为w 万元,根据题意得,w =yp =(-500x +7500)(12x +12), 即w =-250(x -7)2+16000,∴当x =7时,w 有最大值为16000,此时y =-500×7+7500=4000(元) 答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【解析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w 万元,根据销售收入=销售单价×销售数量和p=x+,列出w 与x 的函数关系式,再根据函数性质求得结果.本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.【答案】(1)证明:∵AB =AC , ∴∠B =∠ACB ,∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠CDE ,∴△BAD ∽△DCE .(2)解:如图2中,作AM ⊥BC 于M .在Rt △ABM 中,设BM =4k ,则AM =BM •tan B =4k ×34=3k , 由勾股定理,得到AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2,∴k =4或-4(舍弃),∵AB =AC ,AM ⊥BC ,∴BC =2BM =2•4k =32,∵DE ∥AB ,∴∠BAD =∠ADE ,∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB ,∵∠ABD =∠CBA ,∴△ABD ∽△CBA , ∴AB CB =DB AB , ∴DB =AB 2CB =20232=252, ∵DE ∥AB ,∴AE AC =BDBC , ∴AE =AC⋅BD BC =20×25232=12516.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF .理由:作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM =∠AMH =∠ANH =90°,∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN ,∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16, 在Rt △ABM 中,由勾股定理,得AM =√AB 2−BM 2=√202−162=12,∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD , ∵∠DAF =90°=∠MAN , ∴∠NAF =∠MAD ,∴△AFN ∽△ADM ,∴AN AM =AF AD =tan ∠ADF =tan B =34,∴AN =34AM =34×12=9, ∴CH =CM -MH =CM -AN =16-9=7,当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.【解析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC ,由△ABD ∽△CBA ,推出=,可得DB===,由DE ∥AB ,推出=,求出AE 即可. (3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF .作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM=∠AMH=∠ANH=90°,由△AFN ∽△ADM ,可得==tan ∠ADF=tanB=,推出AN=AM=×12=9,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD 即可解决问题.本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.28.【答案】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2-2x -3.(2)∵抛物线与x 轴交于B (-1,0),C (3,0),∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C′的坐标为(1,2√3),tan∠C′BH=C′HBH =2√32=√3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=2√33,∴点D的坐标为(1,2√33).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,-√33).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=-√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【解析】(1)根据待定系数法,把点A(-2,5),B(-1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.。
2019年四川省成都市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 比-3大5的数是( )A. −15B. −8C. 2D. 82. 如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.3. 2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为( )A. 5500×104B. 55×106C. 5.5×107D. 5.5×1084. 在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A. (2,3)B. (−6,3)C. (−2,7)D. (−2.−1)5. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘6. 下列计算正确的是( )A. 5ab −3a =2bB. (−3a 2b)2=6a 4b 2C. (a −1)2=a 2−1D. 2a 2b ÷b =2a 27. 分式方程x−5x−1+2x =1的解为( )A. x =−1B. x =1C. x =2D. x =−28. 某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是( )A. 42件B. 45件C. 46件D. 50件9. 如图,正五边形ABCDE 内接于⊙O ,P 为DE⏜上的一点(点P 不与点D 重命),则∠CPD 的度数为( )A. 30∘B. 36∘C. 60∘D. 72∘10. 如图,二次函数y =ax 2+bx +c 的图象经过点A (1,0),B (5,0),下列说法正确的是( )A. c <0B. b 2−4ac <0C. a −b +c <0D. 图象的对称轴是直线x =3二、填空题(本大题共9小题,共36.0分)11. 若m +1与-2互为相反数,则m 的值为______.12. 如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为______.13. 已知一次函数y =(k -3)x +1的图象经过第一、二、四象限,则k 的取值范围是______.14. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若AB =8,则线段OE 的长为______.15. 估算:√37.7≈______(结果精确到1)16. 已知x 1,x 2是关于x 的一元二次方程x 2+2x +k -1=0的两个实数根,且x 12+x 22-x 1x 2=13,则k 的值为______.17. 一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为______ 18. 如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为______.19. 如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点为“整点”,已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为______.三、计算题(本大题共1小题,共6.0分) 20. 先化简,再求值:(1-4x+3)÷x 2−2x+12x+6,其中x =√2+1.四、解答题(本大题共8小题,共78.0分)21. (1)计算:(π-2)0-2cos30°-√16+|1-√3|. (2)解不等式组:{3(x −2)≤4x −5,①5x−24<1+12x .②22. 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.23. 2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB =20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24. 如图,在平面直角坐标系xOy 中,一次函数y =12x +5和y =-2x 的图象相交于点A ,反比例函数y =kx 的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数y =12x +5的图象与反比例函数y =kx 的图象的另一个交点为B ,连接OB ,求△ABO 的面积.25. 如图,AB 为⊙O 的直径,C ,D 为圆上的两点,OC ∥BD ,弦AD ,BC 相交于点E .(1)求证:AC⏜=CD ⏜; (2)若CE =1,EB =3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P ,过点P 作PQ ∥CB 交⊙O 于F ,Q 两点(点F 在线段PQ 上),求PQ 的长.26. 随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系. (1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?27. 如图1,在△ABC 中,AB =AC =20,tan B =34,点D 为BC 边上的动点(点D 不与点B ,C 重合).以D 为顶点作∠ADE =∠B ,射线DE 交AC 边于点E ,过点A 作AF ⊥AD交射线DE 于点F ,连接CF . (1)求证:△ABD ∽△DCE ;(2)当DE ∥AB 时(如图2),求AE 的长;(3)点D 在BC 边上运动的过程中,是否存在某个位置,使得DF =CF ?若存在,求出此时BD 的长;若不存在,请说明理由.28.如图,抛物线y=ax2+bx+c经过点A(-2,5),与x轴相交于B(-1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP的函数表达式.答案和解析1.【答案】C【解析】解:-3+5=2.故选:C.比-3大5的数是-3+5,根据有理数的加法法则即可求解.本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.2.【答案】B【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】C【解析】解:科学记数法表示:5500万=55000000=5.5×107故选:C.根据科学记数法的表示形式即可本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.【答案】A【解析】解:点(-2,3)向右平移4个单位长度后得到的点的坐标为(2,3).故选:A.把点(-2,3)的横坐标加4,纵坐标不变得到点(-2,3)平移后的对应点的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.【答案】B【解析】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°-30°=15°,故选:B.根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE 中,∠ADE=45°,即可得到∠1=45°-30°=15°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.【答案】D【解析】解:A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(-3a2b)2=(-3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a-1)2=a2-2a+1,选项错误D选项,单项式除法,计算正确故选:D.注意到A选项中,5ab与3b不属于同类项,不能合并;B选项为积的乘方,C 选项为完全平方公式,D选项为单项式除法,运用相应的公式进行计算即可.此题主要考查整式的混合运算,熟记整式的各个公式并掌握计算的步骤是解题的关键.7.【答案】A【解析】解:方程两边同时乘以x(x-1)得,x(x-5)+2(x-1)=x(x-1),解得x=-1,把x=-1代入原方程的分母均不为0,故x=-1是原方程的解.故选:A.先把整式方程化为分式方程求出x的值,再代入最简公分母进行检验即可.此题主要考查了解分式方程,注意,解分式方程时需要验根.8.【答案】C【解析】解:将数据从小到大排列为:42,45,46,50,50,∴中位数为46,故选:C.将数据从小到大排列,根据中位数的定义求解即可.本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,9.【答案】B【解析】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A 错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2-4ac>0,故B错误;C.当x=-1时,y<0,即a-b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.二次函数y=ax2+bx+c(a≠0)①常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).②抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】1【解析】解:根据题意得:m+1-2=0,解得:m=1,故答案为:1.根据“m+1与-2互为相反数”,得到关于m的一元一次方程,解之即可.本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.12.【答案】9【解析】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE 的长.本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.13.【答案】k<3【解析】解:y=(k-3)x+1的图象经过第一、二、四象限,∴k-3<0,∴k<3;故答案为k<3;根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k-3<0即可求解;本题考查一次函数图象与系数的关系;熟练掌握一次函数y=kx+b,k与b对函数图象的影响是解题的关键.14.【答案】4【解析】解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.利用作法得到∠COE=∠OAB,则OE∥AB,利用平行四边形的性质判断OE为△ABC的中位线,从而得到OE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.【答案】6【解析】解:∵,∴,∴≈6.故答案为:6根据二次根式的性质解答即可.本题主要考查了无理数的估算,熟练掌握二次根式的性质是解答本题的关键.16.【答案】-2【解析】解:根据题意得:x1+x2=-2,x1x2=k-1,+-x1x2=-3x1x2=4-3(k-1)=13,k=-2,故答案为:-2.根据“x1,x2是关于x的一元二次方程x2+2x+k-1=0的两个实数根,且x12+x22-x1x2=13”,结合根与系数的关系,列出关于k的一元一次方程,解之即可.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.17.【答案】20【解析】解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故答案为:20;设盒子中原有的白球的个数为x个,根据题意列出分式方程,解此分式方程即可求得答案.此题考查了概率公式的应用、分式方程的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【答案】√3【解析】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.19.【答案】4或5或6【解析】解:设B (m ,n ),∵点A 的坐标为(5,0),∴OA=5,∵△OAB 的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m <3时,有6个整数点;当3<m <时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;故答案为4或5或6;根据面积求出B 点的纵坐标是3,结合平面直角坐标系,多画些图可以观察到整数点的情况;本题考查三角形的面积与平面直角坐标系中点的关系;能够结合图象,多作图是解题的关键.20.【答案】解:原式=(x+3x+3−4x+3)×2(x+3)(x−1)2=x−1x+3×2(x+3)(x−1)2=2x−1将x =√2+1代入原式=√2+1−1=√2【解析】可先对进行通分,可化为,再利用除法法则进行计算即可此题主要考查了方程解的定义和分式的运算,把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.【答案】解:(1)原式=1-2×√32-4+√3-1, =1-√3-4+√3-1,=-4.(2){3(x −2)≤4x −5,①5x−24<1+12x .② 由①得,x ≥-1,由②得,x <2,所以,不等式组的解集是-1≤x <2.【解析】(1)本题涉及零指数幂、平方根、绝对值、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.【答案】解:(1)本次调查的学生总人数为:18÷20%=90, 在线听课的人数为:90-24-18-12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×1290=48°, 即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×2490=560(人), 答:该校对在线阅读最感兴趣的学生有560人.【解析】(1)根据在线答题的人数和所占的百分比即可求得本次调查的人数,然后再求出在线听课的人数,即可将条形统计图补充完整;(2)根据统计图中的数据可以求得扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)根据统计图中的数据可以求得该校对在线阅读最感兴趣的学生人数. 本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:作CE ⊥AB 于E ,则四边形CDBE 为矩形,∴CE =AB =20,CD =BE ,在Rt △ADB 中,∠ADB =45°,∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =AE CE , ∴AE =CE •tan ∠ACE ≈20×0.70=14,∴CD =BE =AB -AE =6,答:起点拱门CD 的高度约为6米.【解析】作CE ⊥AB 于E ,根据矩形的性质得到CE=AB=20,CD=BE ,根据正切的定义求出AE ,结合图形计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)由{y =12x +5y =−2x得{y =4x=−2, ∴A (-2,4), ∵反比例函数y =kx 的图象经过点A ,∴k =-2×4=-8, ∴反比例函数的表达式是y =-8x ;(2)解{y =−8x y =12x +5得{y =4x=−2或{y =1x=−8, ∴B (-8,1),由直线AB 的解析式为y =12x +5得到直线与x 轴的交点为(-10,0),∴S △AOB =12×10×4-12×10×1=15. 【解析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B的坐标,进而求得直线与x轴的交点,然后利用三角形面积公式求得即可.本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.25.【答案】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴AC⏜=CD⏜(2)连接AC,∵CE=1,EB=3,∴BC=4∵AC⏜=CD⏜∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴AC CE =CBAC∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB=√AC2+BC2=2√5∴⊙O的半径为√5(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA =∠BCO =∠CBO ,且∠CPB =∠CPA∴△APC ∽△CPB ∴PA PC =PC PB =AC BC =24=12 ∴PC =2PA ,PC 2=PA •PB∴4PA 2=PA ×(PA +2√5)∴PA =2√53∴PO =5√53 ∵PQ ∥BC∴∠CBA =∠BPQ ,且∠PHO =∠ACB =90°∴△PHO ∽△BCA∴AC OH =BC PH =AB PO即2OH =4PH =2√55√53=65 ∴PH =103,OH =53∴HQ =√OQ 2−OH 2=2√53∴PQ =PH +HQ =10+2√53 【解析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD ,即可证=;(2)通过证明△ACE ∽△BCA ,可得,可得AC=2,由勾股定理可求AB 的长,即可求⊙O 的半径;(3)过点O 作OH ⊥FQ 于点H ,连接OQ ,通过证明△APC ∽△CPB ,可得,可求PA=,即可求PO 的长,通过证明△PHO ∽△BCA ,可求PH ,OH 的长,由勾股定理可求HQ 的长,即可求PQ 的长.本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出PA 的长是本题的关键.26.【答案】解:(1)设函数的解析式为:y =kx +b (k ≠0),由图象可得, {5k +b =5000k+b=7000,解得,{b =7500k=−500,∴y 与x 之间的关系式:y =-500x +7500;(2)设销售收入为w 万元,根据题意得,w =yp =(-500x +7500)(12x +12), 即w =-250(x -7)2+16000,∴当x =7时,w 有最大值为16000,此时y =-500×7+7500=4000(元) 答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.【解析】(1)根据函数图象上的两点坐标,用待定系数法求出函数的解析式便可;(2)设销售收入为w 万元,根据销售收入=销售单价×销售数量和p=x+,列出w 与x 的函数关系式,再根据函数性质求得结果.本题是一次函数的应用与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数解析式,求二次函数的最值.关键是正确列出函数解析式.27.【答案】(1)证明:∵AB =AC , ∴∠B =∠ACB ,∵∠ADE +∠CDE =∠B +∠BAD ,∠ADE =∠B ,∴∠BAD =∠CDE ,∴△BAD ∽△DCE .(2)解:如图2中,作AM ⊥BC 于M .在Rt △ABM 中,设BM =4k ,则AM =BM •tan B =4k ×34=3k , 由勾股定理,得到AB 2=AM 2+BM 2,∴202=(3k )2+(4k )2,∴k =4或-4(舍弃),∵AB =AC ,AM ⊥BC ,∴BC =2BM =2•4k =32,∵DE ∥AB ,∴∠BAD =∠ADE ,∵∠ADE =∠B ,∠B =∠ACB ,∴∠BAD =∠ACB ,∵∠ABD =∠CBA ,∴△ABD ∽△CBA , ∴AB CB =DB AB , ∴DB =AB 2CB =20232=252, ∵DE ∥AB ,∴AE AC =BDBC , ∴AE =AC⋅BD BC =20×25232=12516.(3)点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF .理由:作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM =∠AMH =∠ANH =90°,∴四边形AMHN 为矩形,∴∠MAN =90°,MH =AN ,∵AB =AC ,AM ⊥BC ,∴BM =CM =12BC =12×32=16, 在Rt △ABM 中,由勾股定理,得AM =√AB 2−BM 2=√202−162=12,∵AN ⊥FH ,AM ⊥BC ,∴∠ANF =90°=∠AMD , ∵∠DAF =90°=∠MAN , ∴∠NAF =∠MAD ,∴△AFN ∽△ADM ,∴AN AM =AF AD =tan ∠ADF =tan B =34,∴AN =34AM =34×12=9, ∴CH =CM -MH =CM -AN =16-9=7,当DF =CF 时,由点D 不与点C 重合,可知△DFC 为等腰三角形,∵FH ⊥DC ,∴CD =2CH =14,∴BD =BC -CD =32-14=18,∴点D 在BC 边上运动的过程中,存在某个位置,使得DF =CF ,此时BD =18.【解析】(1)根据两角对应相等的两个三角形相似证明即可.(2)解直角三角形求出BC ,由△ABD ∽△CBA ,推出=,可得DB===,由DE ∥AB ,推出=,求出AE 即可. (3)点D 在BC 边上运动的过程中,存在某个位置,使得DF=CF .作FH ⊥BC 于H ,AM ⊥BC 于M ,AN ⊥FH 于N .则∠NHM=∠AMH=∠ANH=90°,由△AFN ∽△ADM ,可得==tan ∠ADF=tanB=,推出AN=AM=×12=9,推出CH=CM-MH=CM-AN=16-9=7,再利用等腰三角形的性质,求出CD 即可解决问题.本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.28.【答案】解:(1)由题意得:{4a −2b +c =5,a −b +c =09a +3b +c =0,解得{a =1b =−2c =−3,∴抛物线的函数表达式为y =x 2-2x -3.(2)∵抛物线与x 轴交于B (-1,0),C (3,0),∴BC =4,抛物线的对称轴为直线x =1,如图,设抛物线的对称轴与x 轴交于点H ,则H 点的坐标为(1,0),BH =2, 由翻折得C ′B =CB =4,在Rt △BHC ′中,由勾股定理,得C ′H =√C′B 2−BH 2=√42−22=2√3,∴点C′的坐标为(1,2√3),tan∠C′BH=C′HBH =2√32=√3,∴∠C′BH=60°,由翻折得∠DBH=12∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=2√33,∴点D的坐标为(1,2√33).(3)取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则{0=−k+b2√33=k+b,解得{k=√33b=√33,∴直线BP的函数表达式为y=√33x+√33.②当点P在x轴的下方时,点Q在x轴下方.∵△PCQ,△C′CB为等边三角形,∴CP=CQ,BC=CC′,∠CC′B=∠QCP=∠C′CB=60°.∴∠BCP=∠C′CQ,∴△BCP≌△C′CQ(SAS),∴∠CBP=∠CC′Q,∵BC′=CC′,C′H⊥BC,∴∠CC′Q=12∠CC′B=30°.∴∠CBP=30°,设BP与y轴相交于点E,在Rt△BOE中,OE=OB•tan∠CBP=OB•tan30°=1×√33=√33,∴点E的坐标为(0,-√33).设直线BP的函数表达式为y=mx+n,则{0=−m+n−√33=n,解得{m=−√33n=−√33,∴直线BP的函数表达式为y=-√33x−√33.综上所述,直线BP的函数表达式为y=√33x+√33或y=−√33x−√33.【解析】(1)根据待定系数法,把点A(-2,5),B(-1,0),C(3,0)的坐标代入y=ax2+bx+c得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.本题考查了二次函数的综合题,涉及的知识点有:待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,全等三角形的判定和性质,等边三角形的判定与性质,锐角三角函数等知识,综合性较强,有一定的难度.。