小学奥数六年级举一反三选编
- 格式:docx
- 大小:67.17 KB
- 文档页数:24
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算; 解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算;定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的;新定义的算式中有括号的,要先算括号里面的;但它在没有转化前,是不适合于各种运算定律的;二、精讲精练例题1假设ab=a+b+a-b,求135和1354;思路导航这题的新运算被定义为:ab 等于a 和b 两数之和加上两数之差;这里的“”就代表一种新运算;在定义新运算中同样规定了要先算小括号里的;因此,在1354中,就要先算小括号里的54;练习1:1.将新运算“”定义为:ab=a+b ×a-b.;求279;2.设ab=a2+2b,那么求106和528;3.设ab=3a -b ×1/2,求2512105;例题2设p 、q 是两个数,规定:p △q=4×q-p+q ÷2;求3△4△6;思路导航根据定义先算4△6;在这里“△”是新的运算符号;练习2:1.设p 、q 是两个数,规定p △q =4×q -p+q ÷2,求5△6△4; 2.设p 、q 是两个数,规定p △q =p2+p -q ×2;求30△5△3; 3.设M 、N 是两个数,规定MN =M/N+N/M,求1020-1/4; 例题3如果15=1+11+111+1111+11111,24=2+22+222+2222,33=3+33+333,42=4+44,那么74=________;2102=________;思路导航经过观察,可以发现本题的新运算“”被定义为;因此练习3:3△4△6=3△4×6-4+6÷2 =3△19=4×19-3+19÷2 =76-11 =6574=7+77+777+7777=8638 2102=210+210210=210420135=13+5+13-5=18+8=26 54=5+4+5-4=101354=1310=13+10+13-10=261.如果15=1+11+111+1111+11111,24=2+22+222+2222,33=3+33+333,……那么44=________;2.规定, 那么85=________;3.如果21=1/2,32=1/33,43=1/444,那么63÷26=________;例题4规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A 是几思路导航这题的新运算被定义为: = a -1×a ×a +1,据此,可以求出1/⑥-1/⑦ =1/5×6×7-1/6×7×8,这里的分母都比较大,不易直接求出结果;根据1/⑥-1/⑦ =1/⑦×A,可得出A = 1/⑥-1/⑦÷1/⑦ = 1/⑥-1/⑦×⑦ = ⑦/⑥ -1;即练习4:1.规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________;2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,……如果1/⑩+1/⑾=1/⑾×□,那么□=________;3.如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x ※3=54中,x =________;例题5设a ⊙b=4a -2b+1/2ab,求z ⊙4⊙1=34中的未知数x;思路导航先求出小括号中的4⊙1=4×4-2×1+1/2×4×1=16,再根据x ⊙16=4x -2×16+1/2×x ×16 = 12x -32,然后解方程12x -32 = 34,求出x 的值;列算式为练习5:1.设a ⊙b=3a -2b,已知x ⊙4⊙1=7求x; 2.对两个整数a 和b 定义新运算“△”:a △b= ,求6△4+9△8; 3.对任意两个整数x 和y 定于新运算,“”:xy = 其中m 是一个确定的整数;如果12=1,那么312=________;A =1/⑥-1/⑦÷1/⑦ =1/⑥-1/⑦×⑦ = ⑦/⑥-1 =6×7×8/5×6×7-1 = 1又3/5-1 = 3/54⊙1=4×4-2×1+1/2×4×1=16 x ⊙16=4x -2×16+1/2×x ×16 =12x -32 12x -32 = 34 12x= 66 x =第2讲简便运算一一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易;二、精讲精练例题1计算思路导航先去掉小括号,使和相加凑整,再运用减法的性质:a-b-c = a-b+c,使运算过程简便;所以原式=+--=13-+=13-11=2练习1:计算下面各题;1.-2 又8/17+-1又9/172. 7又5/9-+1又5/9-1又1/53. -7又7/8-6又17/20-4. 13又7/13-4又1/4+3又7/13-例题2计算333387又1/2×79+790×66661又1/4思路导航可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便;所以:原式=×79+790×=×790+790×=+×790=100000×790=练习2:计算下面各题:1. ×1又1/4+125%+1又1/2÷4/52. 975×+9又3/4×76-3. 9又2/5×425+÷1/604. ×+×例题3计算:36×+×思路导航此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = ×30;这样一转化,就可以运用乘法分配律了;所以原式=×30×+×=×30×+×=×+=×100=120练习3:计算:1. 45×+×2. 52×+×7783. 48×+×4. 72×-×例题4计算:3又3/5×25又2/5+×6又2/5思路导航虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把分成和两部分;当出现×时,我们又可以将看成8×,这样计算就简便多了;所以原式=3又3/5×25又2/5++×=3又3/5×25又2/5+×+×=+×+×8×=254+80=334练习4:计算下面各题:1.×+×2.139×137/138+137×1/1383.×+×例题5计算×+×+×思路导航先分组提取公因数,再第二次提取公因数,使计算简便;所以原式=×++×=×+×=+×=100×=6760练习5:1.×+×+×2.235×++235×-135×3.×735-3/8×5730+×第3讲简便运算二一、知识要点计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大;二、精讲精练例题1计算:1234+2341+3412+4123思路导航整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有原式=1×1111+2×1111+3×1111+4×1111=1+2+3+4×1111=10×1111=11110练习1:1.23456+34562+45623+56234+623452.45678+56784+67845+78456+845673.++++例题2计算:2又4/5×+×+×28思路导航我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算;所以原式=×+×+×8×=×++×=×+×=×+=×10=888练习2:计算下面各题:1.99999×77778+33333×666662.×-345×-123×3.77×13+255×999+510例题3计算1993×1994-1/1993+1992×1994思路导航仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算;所以原式=1992+1×1994-1/1993+1992×1994=1992×1994+1994-1/1993+1992×1994=1练习3:计算下面各题:1.362+548×361/362×548-1862.1988+1989×1987/1988×1989-13.204+584×1991/1992×584―380―1/143例题4有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少思路导航这串数中第2000个数是20002,而第2001个数是20012,它们相差:20012-20002,即20012-20002=2001×2000-20002+2001=2000×2001-2000+2001=2000+2001=4001练习4:计算:1.19912-19902 2.99992+19999 3.999×274+6274例题5计算:9又2/7+7又2/9÷5/7+5/9思路导航在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多;原式=65/7+65/9÷5/7+5/9=65×1/7+1/9÷5×1/7+1/9=65÷5=13练习5:计算下面各题:1.8/9+1又3/7+6/11÷3/11+5/7+4/92.3又7/11+1又12/13÷1又5/11+10/133.96又63/73+36又24/25÷32又21/73+12又8/25第4讲简便运算三一、知识要点在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算;二、精讲精练例题1计算:1错误!×37 2 27×错误!1 原式=1-错误!×37=1×37-错误!×37=37-错误!=36错误!练习1用简便方法计算下面各题:1. 错误!×82. 错误!×1263. 35×错误!4. 73×错误!5. 错误!×1999例题2=72×错误!+错误!×错误!=9+错误!=9错误!练习2计算下面各题:1. 64错误!×错误!2. 22错误!×错误!3. 错误!×57错误!4. 41错误!×错误!+51错误!×错误!例题3=错误!×9+41=错误!×50=30练习3计算下面各题:1. 错误!×39+错误!×272. 错误!×35+错误!×173. 错误!×5+错误!×5+错误!×10例题4=错误!+错误!+错误!×错误!=错误!×错误!计算下面各题:1.错误!×错误!+错误!×错误! 2. 错误!×错误!+错误!×错误! +错误!×错误!3.错误!×79错误!+50×错误!+错误!×错误! 4. 错误!×错误!+错误!×错误!+错误!×3错误!例题5计算:1166错误!÷41 2 1998÷1998错误!解:1原式=164+2错误!÷41=164÷41+错误!÷41练习5计算下面各题:1. 54错误!÷172. 238÷238错误!3. 163错误!÷41错误!第5讲简便运算四一、知识要点前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法也叫裂项法、拆项法进行分数的简便运算;运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的;一般地,形如错误!的分数可以拆成错误!-错误!;形如错误!的分数可以拆成错误!×错误!-错误!,形如错误!的分数可以拆成错误!+错误!等等;同学们可以结合例题思考其中的规律;二、精讲精练例题1。
目录目录 (1)专题1 简便运算 (2)专题2 比的应用 (5)专题3 行程问题 (8)专题4 工程问题 (11)专题5 面积计算 (14)专题6 周长、表面积和体积 (17)专题7 “牛吃草”问题 (20)专题8 浓度应用题 (23)专题9 流水行船题 (25)专题10 行程问题2 (28)专题11 工程问题2 (30)专题12 方程问题 (5)附件:小学数学基础知识整理 (33)专题1 简便运算专题简析根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的分数小数四则混合运算化繁为简、化难为易。
计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配率—提取公因式来简算,这种思考方法在四则运算中用处很大。
简便运算中,常用的方法有:找朋友,凑整法,提取公因式,分数裂项,最高的境界是抵消。
王牌例题1计算:4.75-9.63+(8.25-1.37)举一反三11. 6.73-2817+(3.27-1917) 2. 759-(3.8+159)-115王牌例题2计算:99999×11111举一反三21. 9999999999×11111111112. 66666×33333王牌例题3计算:36×1.09+1.2×67.3举一反三31. 45×2.08+1.5×37.6 2. 52×11.1+2.56×778 王牌例题4计算:112⨯+123⨯+134⨯+145⨯+…+1910⨯(提示:112⨯=1-12)举一反三41.123⨯+134⨯+145⨯+…+199100⨯2.113⨯+135⨯+157⨯+179⨯+…+19799⨯王牌例题5计算:81.5×15.8+81.5×51.8+67.6×18.5举一反三51. 53.5×35.3+53.5×43.2+78.5×46.52. 235×12.1+235×42.2-135×54.3王牌例题6计算:1234+2341+3412+4123举一反三61. 23456+34562+45623+56234+62345 王牌例题7计算:199319941 199319921994⨯-+⨯举一反三71. 548361362 362548186⨯+⨯-✈智力冲浪1. 45678+56784+67845+78456+845672. 72×2.09-1.8×73.63.113⨯+135⨯+157⨯+179⨯+…+1197199⨯4. 201220142013 201320141⨯+⨯-5. 124.68+324.68+524.68+724.68+924.68专题2 方程问题专题简析解答这类问题时,一定要耐心、细心,千万不要粗心。
- 1 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数举一反三六年级(全)第一周 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
小学奥数举一反三(六年级)全word百度文库一、拓展提优试题1.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).2.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.3.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.4.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.5.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.6.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.7.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.8.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.9.若一个十位数是99的倍数,则a+b=.10.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.11.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.12.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.13.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?【参考答案】一、拓展提优试题1.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.2.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.3.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.4.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.5.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.6.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.7.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.8.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.9.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.10.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.11.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.12.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.13.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.。
小学六年级奥数举一反三一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义’从而解答某些算式的一种运算。
解答定义新运算’关键是要正确地理解新定义的算式含义’然后严格按照新定义的计算程序’将数值代入’转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式’它使用的是一些特殊的运算符号’如;某、△、⊙等’这是与四则运算中的“+、-、某、÷”不同。
新定义的算式中有括号的’要先算括号里面的。
但它在没有转化前’是不适合于各种运算定律的。
二、精讲精练[例题1]假设a某b=(a+b)+(a-b)’求13某5和13某[5某4]。
[思路导航]这题新运算被定义为;a某b等于a和b两数之和加上两数之差。
这里“某”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此’在13某[5某4]中’就要先算小括号里的[5某4]。
练习1;1’将新运算“某”定义为;a某b=(a+b)某(a-b)’。
求27某9。
2’设a某b=a2+2b’那么求10某6和5某[2某8]。
3’设a某b=3a-b某1/2’求[25某12]某[10某5]。
[例题2]设p、q是两个数’规定;p△q=4某q-(p+q)÷2。
求3△(4△6)。
[思路导航]根据定义先算4△6。
在这里“△”是新的运算符号。
练习2;1.设p、q是两个数’规定p△q=4某q-[p+q]÷2’求5△[6△4]。
2.设p、q是两个数’规定p△q=p2+[p-q]某2。
求30△[5△3]。
3.设M、N是两个数’规定M某N=M/N+N/M’求10某20-1/4。
[例题3]如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’2/263某3=3+33+333’4某2=4+44’那么7某4=________;210某2=________。
[思路导航]经过观察’可以发现本题的新运算“某”被定义为。
因此练习3;1.如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’3某3=3+33+333’……那么4某4=________。
. word . .第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
第十六周用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。
所以1÷【115-(730-115×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。
练习11、师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成?2、某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天?3、甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12-112×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
(1)乙队每天完成这项工程的(12-112×3)÷2=18(2)两段时间一共是1÷(18×2+112)×2=6(天)答:两段时间一共是6天。
练习21、一项工程,甲队独做15天完成。
若甲队先做5天,乙队再做4天能完成这项工程的815。
现由甲、乙两队合做若干天后,再由乙队单独做。
做完后发现,两段时间相等。
这两段时间一共是几天?2、一项工程,甲、乙合做8天完成。
如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天。
乙独做这项工程要几天完成?3、某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天。
这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍。
终于完成了这一工作。
问总共用了多少天?移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的1116没有栽,已知哥哥每小时比弟弟每小时多栽7棵。
共要移栽西红柿苗多少棵?【思路导航】把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。
哥哥每小时栽总数的几分之几(1-1116-18×1)÷(3-1)=332一共要移栽的西红柿苗多少棵7÷【332-(18-332)】=112(棵)答:共要移栽西红柿苗112棵。
练习31、加工一批机器零件,师、徒合做12小时可以完成。
先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的35。
已知师傅每小时比徒弟多做10个零件。
这批零件共有多少个?2、修一条公路,甲、乙两队合做6天可以完成。
先由甲队修5天,再由乙队修3天,还剩这条公路的310没有修。
已知甲队每天比乙队多修20米。
这条公路全长多少米?3、修一段公路,甲队独修要40天,乙队独修要用24天。
两队同时从两端开工,结果在距中点750米处相遇。
这段公路全长多少米?一项工作,甲、乙、丙3人合做6小时可以完成。
如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的23;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的23。
如果由甲、丙合做,需几小时完成?【思路导航】将条件“甲工作6小时后,乙、丙合做2小时,可以完成这项工作的23”组合成“甲工作4小时,甲、乙、丙合做2小时可以完成这项工作的23”,则求出甲的工作效率。
同理,运用“组合法”再求出丙的工作效率。
甲每小时完成这项工程的几分之几(23-16×2)÷(6-2)=112丙每小时完成这项工程的几分之几(23-16×3)÷(6-3)=118甲、丙合做需完成的时间为:1÷(112+118)=715(小时)答:甲、丙合做完成需要715小时。
练习41、一项工作,甲、乙、丙三人合做,4小时可以完成。
如果甲做4小时后,乙、丙合做2小时,可以完成这项工作的1318;如果甲、乙合做2小时后,丙再做4小时,可以完成这项工作的1118。
这项工作如果由甲、丙合做需几小时完成?2、一项工程,甲、乙合做6天可以完成,乙、丙合做10天可以完成。
现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成。
乙独做这项工程要几天就可以完成?3、一项工程,甲、乙两队合做10天完成,乙、丙两队合做8天完成。
现在甲、乙、丙三队合做4天后,余下的工程由乙队独做512天完成。
乙队单独做这项工程需多少天可以完成?4、一件工作,甲、乙合做4小时完成,乙、丙合做5小时完成。
现在由甲、丙合做2小时后,余下的由乙6小时完成。
乙独做这件工作需几小时才能完成?例题5。
一条公路,甲队独修24天可以完成,乙队独修30天可以完成。
先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。
如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?【思路导航】将条件“先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成”组合成“甲、乙两队各修(4+7)=11天后,再由丙队单独修了7天才全部完成。
”就可以求出丙队的工作效率。
丙队每天修这条公路的【1-(124 +130 )】×(4+7)=140三队合修完成时间为1÷(124 +130 +140)=10(天) 答:10天可以完成。
练习51、 一件工作,甲单独做12小时完成。
现在甲、乙合做4小时后,乙又用6小时才完成。
这件工作始终由甲、乙合做几小时可以完成?2、 一条水渠,甲队独挖120天完成,乙队独挖40天完成。
现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完。
这条水渠由丙队单独挖,多少天可以完成?3、 一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。
如果甲、丙合做3天后,由乙单独做,还要9天才能完成。
如果全部工作由3人合做,需几天可以完成?4、 一项工程,甲、乙两队合做30天完成,甲队单独做24天后,乙队加入,两队又合做了12天。
这时甲队调走,乙队又继续做了15天才完成。
甲队独做这项工程需要多少天?答案:练11、 1÷【(320 -112)÷(3-1)】=30天 2、 乙:1÷【(1324 -524×2)÷(3-2)】=8天 甲:1÷(1324 -18)=12天 3、 乙:1÷【(1-815 -120×8)÷(12-8)】=60天 甲:1÷(120 -160)=30天练21、乙队的工作效率:(815-115×5)÷4=120总共的天数:1÷(115+120×2)×2=12天2、1÷【(1-18×6)÷3】=12天3、甲做的天数:1÷(112+118×3+124×3×2)=2天总共的天数:2+2×3+2×3×2=20天练31、师傅每小时做这批零件的(35-112×6)÷(8-6)=120这批零件共有10÷【120-(112-120)】=600个2、甲队每天修这条公路的(1-310-16×3)÷(5-3)=110这条公路全长多少米 20÷【110-(16-110)】=600米3、甲、乙两队工作效率的比是:140:124=3:5这段公路的全长 750÷(12-33+5)=6000米或 750×2÷(5-3)×(5+3)=6000 米练41、甲队的工作效率(1318-14×2)÷(4-2)=19丙队的工作效率(1118-14×2)÷(4-2)=118甲、丙合做需要的时间1÷(19+118)=6小时2、乙队每天能做全工程的【1-(16×3-110×3)】÷(6-3)=115乙队独做这项工程需要的时间1÷115=15天3.乙队每天能做全工程的【1-(110×4-18×4)】÷(512-4)=115乙队单独做这项工程需要的时间1÷115=15天4、乙队的工作效率【1-(14×2+15×2)】÷(6-2-2)=120乙独做这件工作需要的时间1÷120=20小时练51、乙每小时做这件工程的(1-112×4)÷(6+4)=115甲、乙合做完成需要的时间1÷(112+115)=623小时2、甲、乙两队完成的工作量(1120+140)×(8+2)=23丙队单独挖需要的时间1÷【(1-23)÷12】=36天3.乙的工作效率【1-(16×3+110×3)】÷(9-3-3)=115丙的工作效率110-115=130三人合做需要的时间1÷(16+110)=5天4、甲队的工作效率【1-130×(12+15)】÷(24-15)=190甲队单独做需要的时间1÷190=90天第十七周浓度问题专题简析:在百分数应用题中有一类叫溶液配比问题,即浓度问题。
我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。
这个比值就叫糖水的含糖量或糖含量。
类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。