定积分物理应用(2)
- 格式:ppt
- 大小:579.50 KB
- 文档页数:15
积分的基本概念及其应用积分是高等数学中一个重要的概念,被广泛应用于许多领域,例如物理学、经济学和工程学等。
积分的概念源于求和操作的推广,通过将函数曲线下的面积分割成无限多个微小的矩形,从而得到一个连续的结果。
本文将介绍积分的基本概念和常用的应用。
一、积分的基本概念积分的基本概念是对函数曲线下面积的求和操作。
根据它的定义,我们可以将积分分为定积分和不定积分两种形式。
(1)定积分定积分是对于一个函数在一定区间上的积分操作,用于计算函数曲线下的面积。
定积分通常表示为∫f(x)dx,其中f(x)为被积函数,dx表示自变量的微小增量。
在计算定积分时,我们需要确定积分的上下限和被积函数的表达式。
定积分可以看作是求解曲线和坐标轴之间的面积。
(2)不定积分不定积分是求解函数的原函数的逆运算,也称为反导数。
不定积分表示为∫f(x)dx+C,其中C为积分常数。
不定积分的结果是一个函数族,它们的导数等于被积函数。
通过不定积分,我们可以求解函数的原函数和确定函数的导数。
二、积分的应用积分作为数学工具,广泛应用于各个领域,下面将介绍一些常见的积分应用。
(1)几何应用在几何学中,积分可以用于计算曲线和曲面的面积和体积。
例如,在平面上,通过对曲线进行积分可以计算曲线所围成的封闭区域的面积。
而在三维空间中,对曲面进行积分可以计算曲面所围成的立体图形的体积。
(2)物理应用在物理学中,积分常用于计算物体的质量、质心和力的分布等问题。
通过对力的密度函数进行积分,可以求解物体的质量。
通过对力矩的密度函数进行积分,可以求解物体的质心位置。
此外,积分还可以用于计算物体受力情况下的运动轨迹。
(3)经济应用在经济学中,积分可以应用于求解消费函数、生产函数和边际收益等问题。
通过对边际收益函数进行积分,可以求解总收益函数。
同时,积分还可以用于计算市场需求曲线和供给曲线下的总收入和总成本。
(4)工程应用在工程学中,积分常用于计算流体力学、电磁学和信号处理等问题。
定积分在物理中的应⽤定积分在物理中的应⽤⽬录:⼀.摘要⼆.变⼒沿直线所作的功三.液体的侧压⼒四.引⼒问题五.转动惯量摘要:伟⼤的科学家⽜顿,有很多伟⼤的成就,建⽴了经典物理理论,⽐如:⽜顿三⼤定律,万有引⼒定律等;另外,在数学上也有伟⼤的成就,创⽴了微积分。
微积分(Calculus)是⾼等数学中研究函数的微分、积分以及有关概念和应⽤的数学分⽀。
它是数学的⼀个基础学科。
内容主要包括极限、微分学、积分学及其应⽤。
微分学包括求导数的运算,是⼀套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可⽤⼀套通⽤的符号进⾏讨论。
积分学,包括求积分的运算,为定义和计算⾯积、体积等提供⼀套通⽤的⽅法。
微积分最重要的思想就是⽤"微元"与"⽆限逼近",好像⼀个事物始终在变化你很难研究,但通过微元分割成⼀⼩块⼀⼩块,那就可以认为是常量处理,最终加起来就⾏。
微积分学是微分学和积分学的总称。
它是⼀种数学思想,‘⽆限细分’就是微分,‘⽆限求和’就是积分。
⽆限就是极限,极限的思想是微积分的基础,它是⽤⼀种运动的思想看待问题。
微积分堪称是⼈类智慧最伟⼤的成就之⼀。
在⾼中物理中,微积分思想多次发挥了作⽤。
定义:设函数f(x)在[a,b]上有界,在[a ,b]中任意插⼊若⼲个分点 a=X0在每个⼩区间[Xi-1,Xi]上任取⼀点ξi(Xi-1≤ξi≤Xi),作函数值f(ξi)与⼩区间长度的乘积f(ξi)△Xi ,并作出和()in i ix s ?=∑=1ξ如果不论对[a,b]怎样分法,也不论在⼩区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f(x)在区间[a,b]上的定积分,记作: ()dx x f ab ?即: ()()ini iab x f I dx x f ?==∑?==11设物体在连续变⼒F(x)作⽤下沿x 轴从x=a 移动到x=b,⼒的⽅向与运动⽅向平⾏,求变⼒所作的功.在[a,b]上任取⼦区间[x,x+dx],在其上所作的功元素为()dx x F dW =因此变⼒F(x)在区间[a,b]上所作的功为()dx x F W b a=例1.在⼀个带+q 电荷所产⽣的电场作⽤下,⼀个单位正电荷沿直线从距离点电荷a 处移动到b 处(a解:当单位正电荷距离原点r 时,由库仑定律电场⼒为2rq kF =则功的元素为dr rkq dW 2=所求功为:-=-==b a kq r kq dr r kq W bab a1112说明:电场在r=a 处的电势为akq dr r kq a=?∞+2例2. 在底⾯积为S 的圆柱形容器中盛有⼀定量的⽓体,由于⽓体的膨胀,把容器中的⼀个⾯积为S 的活塞从点a 处移动到点b 处(如图),求移动过程中⽓体压⼒所作的功.解:建⽴坐标系如图.由博伊尔马略特定律知压强p 与体积V 成反⽐,即xSpS F ==功元素为dx xkFdx dW ==所求功为[]ab k x k dx x k W babaln ln ===?例3.⼀蓄满⽔的圆柱形⽔桶⾼为5m ,底圆半径为3m ,试问要把桶中的⽔全部吸出需做多少功?解:建⽴坐标系如图,在任⼀⼩区间[x,x+dx]上的⼀薄层⽔的重量为dx g 23πρ??(KN )这薄层⽔吸出桶外所做的功(功元素)为xdx dW πρ9=故所求功为:5502299?==xg xdx g W ρπρπρπg 5.112=(KJ )液体侧压⼒设液体密度为ρ深为h 处的压强:h g pρ=*当平板不与⽔⾯平⾏时,所受侧压⼒就需⽤积分解决.例4.⼀⽔平横放的半径为R 的圆桶,内盛半桶密度为ρ的液体,求桶的⼀个端⾯所受的侧压⼒. 解:建⽴坐标系如图.所论半圆的⽅程为 2 2xR y-±=()R x ≤≤0利⽤对称性,侧压⼒元素 dx x R x g dP222-=ρ端⾯所受侧压⼒为322322R g dx x R x g P ?=-=ρρ说明:当桶内充满液体时,⼩窄条上的压强为()x R g +ρ,侧压⼒元素 ()dx x R x R g dP222-+=ρ,故端⾯所受侧压⼒为 ()dx x R x R g PR R222++=?-ρ令 t R x sin =↓Rg 0222arcsin 224?+-=ρ3R g ρπ=引⼒问题质量分别为1m ,2m 的质点,相距r ,⼆者间的引⼒:⼤⼩:221rmm kF =⽅向:沿两质点的连线若考虑物体对质点的引⼒,则需⽤积分解决.例5.设有⼀长度为l ,线密度为µ的均匀直棒,在其中垂线上距a 单位处有⼀质量为m 的质点M.式计算该棒对质点的引⼒.解:建⽴坐标系如图.细棒上⼩段[x ,x+dx]对质点的引⼒⼤⼩为22xa dxm kdF +=µ故垂直分⼒元素为αcos dF dF y22xa a x a dx m k +?+-=µ()2322x a dxakm +-=µ棒对质点的引⼒的垂直分⼒为()+-=2023222l yxa dxa km F µ2222l x a a x a km+-=µa a l km +-=µ棒对质点引⼒的⽔平分⼒0=x F故棒对质点的引⼒⼤⼩为22412la a l km F +=µ说明1.当细棒很长时,可视l 为⽆穷⼤,此时引⼒⼤⼩为akm µ2⽅向与细棒垂直且指向细棒.2. 若考虑质点克服引⼒沿y 轴从a 处移动到b (a dy ly y l km dW 22412+-=µ+-=b aly y dyl km W 2242µ3.当质点位于棒的左端点垂线上时,()2cos xa dxakm dF dF y +-=?-=µα()2322sin xa xdxkm dF dF x +=?=µα∴ ()+-=lyxa dxa km F 02322µ()+=lxkm F 02322µ引⼒⼤⼩为yxFF F22+=转动惯量质量为m 的质点关于轴l 的转动惯量为2mr I =与轴l 的距离为ir ,质量为im (i =1,2,…,n )的质点系关于轴l 的转动惯量为2inli irm I ∑==若考虑物体的转动惯量,则需⽤积分解决. 例6.设有⼀个半径为R,质量为M 的均匀圆盘,(1)求圆盘对通过中⼼与其垂直的轴的转动惯量. (2)求圆盘对直径所在轴的转动惯量.解:(1)建⽴坐标系如图.设圆盘⾯积为ρ.对应于[x,x+dx]的⼩圆环对轴l 的转动惯量为 dx x dI32πρ=故圆盘对轴l 的转动惯量为321212I MRR dx x ===?πρπρ ??? ?=2R M πρ(2)取旋转轴为y 轴,建⽴坐标系如图.对应于[x,x+dx]的平⾏y 轴的细条关于y 轴的转动惯量元素为dx x R xdx yx dI y222222-==ρρ故圆盘对y 轴的转动惯量为dx x R RR y--=222I ρdx x R xR2224-=?ρtdt t R 220ρ(令x=Rsint )244141MRR ==ρπ ??? ?=2R M πρ1. ⽤定积分求⼀个分布在某区间上的整体量Q 的步骤:(1)先⽤微分分析法求出它的微分表达式dQ ⼀般微分的⼏何形状有:条、段、环、带、扇、⽚、壳等. (2)然后⽤定积分来表⽰整体量Q ,并计算他. 2. 定积分的物理应⽤:变⼒做功,侧压⼒,引⼒,转动惯量等.○1抓起污泥后提出井⼝,已知井深30m ,抓⽃⾃重400N ,缆绳每⽶重50N ,抓⽃抓起的污泥中2000N ,提升速度为3m/s,在提升过程中污泥以20N/s 的速度从抓⽃缝隙中漏掉,现将抓起污泥的抓⽃提升到井⼝,问克服重⼒需做多少焦⽿(J )功?(99考研)提⽰:作x 轴如图.将抓起污泥的抓⽃由x 提升dx 所作的功为井深30m ,抓⽃⾃重400N ,缆绳每⽶重50N ,抓⽃抓起的污泥中2000N,提升速度为3m/s,污泥以20N/s 的速度从抓⽃缝隙中漏掉321d dW dW dW W ++=克服抓⽃⾃重:dx dW 4001=克服缆绳中:()dx x dW -?=30502抓⽃升⾄x 处所需时间:3x(s )提升抓⽃中的污泥:-=32020003()dx x x W??-+-+=∴30032020003050400()J 91500=○2.设星形线t a x 3cos =,t a y 3sin =上没⼀点处线密度的⼤⼩等于该点到原点距离的⽴⽅,再点O 处有⼀单位质点,求星形线在第⼀象限的弧段对这质点的引⼒.提⽰:如图.()()ds y x k yx ds y x k dF 2122222322+=++=αcos ?=dF dF x()ds yx x yx k 222122+?+=kxds =kyds dF dF y=?=αsin()[]()dtt t a t t a t a k F x22223cos sin3sin cos 3cos ?+-??=? ??=2042sin cos 3πtdt t k a253ka=同理253kaF y=故星形线在第⼀象限的弧段对该质点的引⼒⼤⼩为2253kaF =在⾼中物理中还有很多例⼦,⽐如我们学过的瞬时速度,瞬时加速度、感应电动势、引⼒势能等都⽤到了微积分思想,所有这些例⼦都有它的共性。
试论定积分在物理及其他领域的应用1. 引言1.1 定积分的基本概念定积分是微积分的一个重要概念,它在数学中有着广泛的应用。
定积分的基本概念可以简单地理解为一个函数在一定区间内的累积效果。
在几何学中,定积分可以用来计算曲线下面积,图形的面积和体积等问题。
在数学上,定积分可以看作是不定积分的反运算,通过定积分我们可以求解函数的定积分值。
在实际应用中,定积分被广泛运用于物理、工程、经济等领域。
它的应用使得复杂问题的计算变得简单清晰。
通过定积分,我们可以计算出物体的质量、力的大小、功的大小等物理量。
在力学中,定积分可以用来描述物体的运动规律,计算出物体的位置、速度和加速度等。
在电磁学中,定积分常常用来计算电场强度、磁场强度等问题。
在热力学中,定积分可以用来计算热量、熵等热力学量。
在工程学中,定积分可以帮助工程师计算出工程设计中的各种参数。
在经济学中,定积分在求解供求关系、成本、收益等问题上起着重要作用。
定积分在各个领域中都有着重要的应用价值。
它的基本概念对于理解定积分的应用具有重要意义。
通过深入研究定积分的基本概念,可以更好地理解其在不同领域中的具体应用。
1.2 定积分在物理领域的重要性定积分在物理领域的重要性体现在多个方面,首先在力学中,定积分可以用来描述物体的质量、速度、加速度、力和能量等物理量随时间的变化,从而帮助解决力学中的各种问题。
在电磁学中,定积分可以用来描述电流、电荷、电场、磁场等物理量在空间中的分布和变化规律,从而帮助解决电磁学中的各种问题。
在热力学中,定积分可以用来描述热量、温度、熵等热力学量在空间中的分布和变化规律,从而帮助解决热力学中的各种问题。
在工程学和经济学中,定积分也有着重要的应用,可以用来描述工程和经济系统中的各种物理量的变化规律,从而帮助解决工程和经济学中的各种问题。
定积分在物理领域中的重要性不可忽视,它为我们理解和应用物理定律提供了重要的数学工具和方法。
2. 正文2.1 定积分在力学中的应用在力学中,定积分是一个非常重要的数学工具,它可以用来描述物体在运动过程中的各种性质和运动规律。
定积分在物理学中的应用积分在物理学中作为一种“全局”而非局部的方法,能够用来求解许多复杂系统的总体属性,广泛地应用于物理学中各个方面,其中最常用的就是力学。
积分在力学中的应用主要有两个方面:求解力的动力学和求解位置的力学。
其中动力学通常应用导数,如布朗-特里安力学中的机械动力学,而位置力学则通常使用积分,像是拉格朗日力学的位置力学等。
布朗-特里安力学是一种建立在冯·诺依曼结构的物理学理论。
它主要用于描述与经典力相关联的系统,通过使用细分和积分来求解系统。
简而言之,使用导数和积分,就可以求出系统的运动方程。
而根据拉格朗日力学,可以得出一个系统的动力学特性,也就是说可以得出其运动轨迹方程。
积分在电磁学中也有重要的应用。
例如,世界著名的电磁学家盖伊·法拉第曾将电磁学的所有现象描述为电磁场的密度和磁场的流量,他提出了一个统一的方程——完全电磁学方程(Maxwell's equation),它将电磁波的表现形式写作∮⃗E.dt,其中⃗E为电场的强度矢量,把这个积分写成A=∫E⃗Adt⃗。
综上所述,Maxwell's equation可以用来求出电磁波在任何情况下的分布情况。
积分在物理学中也有许多应用,例如量子力学中的对称性分析。
量子力学中常使用到对称性和对称性分析,而积分正好可以帮助我们求出量子力学模型的特殊参数的值。
此外,积分还被广泛用于统计力学中,例如统计力学方程和各种热力学量的求解等。
总之,积分在物理学中有着广泛而重要的应用,使得物理学家可以更好地理解和探索现实物理世界。
历史上有着许多杰出物理学家,如爱因斯坦和爱迪生等,他们都在物理学领域有着杰出的贡献,而积分则是其中不可或缺的工具。
定积分的计算方法及其在几何物理等领域的应用定积分是微积分中的一个重要概念,它在数学、几何和物理等领域中都有广泛的应用。
本文将介绍定积分的计算方法,并探讨其在几何物理等领域中的应用。
一、定积分的计算方法定积分是通过将函数在一个闭区间上的取值进行累加来计算的。
可以分为以下几种常见的计算方法:1. 函数图像分析法通过观察函数图像的特点,我们可以确定定积分的上下限和积分区间,并求解出函数在该区间上的定积分。
例如,对于连续函数而言,可以通过求解曲线下方的面积来计算定积分。
2. 函数积分法定积分与函数的不定积分存在紧密的联系,可以通过函数的不定积分来计算定积分。
通过积分的基本公式和求导与积分的逆关系,可以推导出定积分的计算公式。
3. 数值逼近法对于某些函数,无法通过解析的方式求得其定积分,这时可以借助于数值逼近方法来近似计算。
常用的数值逼近方法包括矩形法、梯形法和辛普森法等。
二、定积分在几何领域的应用1. 曲线长度计算定积分可以用来计算曲线的长度。
对于平面曲线,可以将曲线划分为无数个微小的线段,并对其长度进行累加,最终得到曲线的总长度。
2. 曲线包围的面积计算定积分可以用来计算曲线所包围的面积。
通过将曲线所在的区域分割成无数个微小的矩形或三角形,并对其面积进行累加,可以得到所求的面积。
3. 旋转体的体积计算定积分可以用来计算旋转体的体积。
当平面图形绕某条轴线旋转一周形成旋转体时,可以通过定积分计算旋转体的体积。
三、定积分在物理领域的应用1. 质量、密度和体积计算定积分可以应用在质量、密度和体积的计算中。
通过将物体分割成无数个微小的部分,并对其进行累加,可以计算出质量、密度和体积的值。
2. 能量和功的计算定积分可以用来计算能量和功。
对于一定范围内的力和位移,可以通过定积分计算功;而能量也可以通过积分的方式计算。
3. 力学问题的求解定积分在力学领域的应用非常广泛。
例如,通过对速度-时间曲线进行定积分可以计算物体的位移;通过对加速度-时间曲线进行定积分则可以计算物体的速度。
人教A 版 选修2—2 精讲细练1.7.2 定积分在物理中的应用一、知识精讲1.做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛a bv (t )d t 。
2.一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s (单位:m),则力F 所作的功为W =Fs ;而若是变力所做的功W ,等于其力函数F (x )在位移区间[a ,b ]上的定积分,即W =⎠⎛a b F (x )d x 。
二、典例细练【题型一】:求变速直线运动的路程、位移例题1:有一动点P 沿x 轴运动,在时间t 的速度为v(t)=8t -2t 2 (速度的正方向与x 轴正方向一致).求(1)P 从原点出发,当t =3时,离开原点的路程;(2)当t =5时,P 点的位置;(3)从t =0到t =5时,点P 经过的路程;(4)P 从原点出发,经过时间t 后又返回原点时的t 值.【解析】 (1)由v(t)=8t -2t 2≥0,得0≤t≤4,即当0≤t≤4时,P 点向x 轴正方向运动,t>4时,P 点向x 轴负方向运动.故t =3时,点P 离开原点的路程s 1=⎠⎛03(8t -2t 2)dt =(4t 2-23t 3)|30=18.(2)当t =5时,点P 离开原点的位移s 2=⎠⎛05(8t -2t 2)dt =(4t 2-23t 3)|50=503.∴点P 在x 轴正方向上距离原点503处.(3)从t =0到t =5时,点P 经过的路程s 3=⎠⎛04(8t -2t 2)dt -⎠⎛45(8t -2t 2)dt =(4t 2-23t 3)|40-(4t 2-23t 3)|54=26. (4)依题意⎠⎛0t(8t -2t 2)dt =0, 即4t 2-23t 3=0,解得t =0或t =6,t =0对应于P 点刚开始从原点出发的情况, t =6是所求的值.变式训练:A 、B 两站相距7.2km ,一辆电车从A 站开往B 站,电车开出ts 后到达途中C 点,这一段速度为(m/s),到C 点的速度达24m/s ,从C 点到B 站前的D 点以等速行驶,从D 点开始刹车,经ts 后,速度为(24-m/s ,在B 点恰好停车,试求:(1)A 、C 间的距离;(2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间.【解析】 (1)设A 到C 经过t 1s ,由=24得t 1=20(s),所以AC =∫200==240(m).(2)设从D→B 经过t 2s ,由24-=0得t 2=20(s),所以DB =∫200(24-dt =240(m).(3)CD =7200-2×240=6720(m).从C 到D 的时间为t 3=672024=280(s).于是所求时间为20+280+20=320(s).【题型二】:求变力做的功例题2:设有一根长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.【解析】设x 表示弹簧伸长的量(单位:m),F(x)表示加在弹簧上的力(单位:N).由题意F(x)=kx,且当x=m时,F=100 N,即=100,∴k=2000,∴F(x)=2000x.∴将弹簧由25 cm伸长到40 cm时所做的功为W=错误!2000xdx=1000x2|错误!=(J).变式训练:一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1运动到x=3处(单位:m),则力F(x)所做的功为()A.8J B.10J C.12J D.14J【答案】D【解析】由变力做功公式有:W=3(4x-1)dx=(2x2-x)|31=14(J),故应选D.⎠⎛1。