2020广西高考数学押题卷(含答案)
- 格式:docx
- 大小:3.31 MB
- 文档页数:16
2020年广西高考模拟考试 文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是A. A C φ⋂=B. A C C ⋃=C. B C B ⋂=D. A B C =2. 若复数2(1)z m m m i =+++是纯虚数,其中m 是实数,则1z= A. i B. i - C. 2iD. 2i -3. 若1sin()43x π-=,则sin 2x = A.79B. 79-C.13D. 13-4. 在矩形ABCD 中,8AB =,6AD =,若向该矩形内随机投一点P ,那么使ABP ∆与ADP ∆ 的面积都小于4的概率为 A.136B.112C.19D.495. 在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A. 66B. 132C. -66D. -1326. 设函数2()23f x x x =--,若从区间[2,4]-上任取一个实数x ,则所选取的实数x 满足()0f x ≤的概率为A.12B.13C.23D.147. 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m8. 已知双曲线)0(13222>=-a y a x 的离心率为2,则 =aA. 2B.26C. 25D. 19. 函数ln ()xf x x=的图象大致为 A. B.C. D.10.已知函数532sin 2064y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象与一条平行于x 轴的直线有两个交点,其横坐标分别为1x ,2x ,则12x x =+ A.43πB.23π C.3π D.6π 11.已知三棱锥ABC D -四个顶点均在半径为R 的球面上,且22===AC BC AB ,,若该三棱锥体积的最大值为1,则这个球的表面积为 A.81500π B. 9100π C. 925πD. π412. 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分別为12,F F ,过2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角项点的等腰直角三角形,则椭圆的离心率为A B .22 D -二、填空题:本题共4小题,每小题5分,共20分。
2020年广西桂林市、崇左市、贺州市高考数学模拟试卷(文科)(3月份)一、选择题(本大题共12小题,共60.0分)1.i是虚数单位,复数z=1−i在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.等差数列{a n}中,已知a1+a9=10,则a3+a4+a5+a6+a7=()A. 5B. 10C. 15D. 253.已知集合A={x|x<1},B={x|e x<1},则()A. A∩B={x|x<1}B. A∪B={x|x<e}C. A∪B={x|x<1}D. A∩B={x|0<x<1}4.已知α满足sinα=13,则cos2α=()A. 79B. 718C. −79D. −7185.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.函数f(x)=sin(2x+π3)(0≤x≤5π12)的值域为()A. [−12,1] B. [0,12] C. [0,1] D. [−12,0]7.在区间[−1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A. 12B. 13C. √24D. √238.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.如图为研究“角谷猜想”的一个程序框图.若输入n的值为10,则输出i的值为()A. 5B. 6C. 7D. 89.设m=ln2,n=lg2,则()A. m−n>mn>m+nB. m−n>m+n>mnC. m+n>mn>m−nD. m+n>m−n>mn10.过抛物线C:y2=4x的焦点F,且斜率为√3的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A. √5B. 2√2C. 2√3D. 3√311.已知函数f(x)=|lnx|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A. [3,+∞)B. (3,+∞)C. [2√2,+∞)D. (2√2,+∞)12.在一个数列中,如果∀n∈N∗,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+⋯+ a2020=()A. 4711B. 4712C. 4713D. 4715二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,−6),b⃗ =(3,m),若|a⃗+b⃗ |=|a⃗−b⃗ |,则m=______.14.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二2000人、高三n人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为______.15.点P在双曲线x2a2−y2b2=1(a>0,b>0)的右支上,其左、右焦点分别为F1、F2,直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2,则该双曲线的离心率为______.16.某校13名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共9种,分别为士兵、排长、连长、营长、团长、旅长、师长、军长和司令.游戏分组有两种方式,可以2人一组或者3人一组.如果2人一组,则必须角色相同;如果3人一组,则3人角色相同或者3人为级别连续的3个不同角色.已知这13名学生扮演的角色有3名士兵和3名司令,其余角色各1人,现在新加入1名学生,将这14名学生分成5组进行游戏,则新加入的学生可以扮演的角色的种数为______.三、解答题(本大题共7小题,共84.0分)17. 某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x 与烧开一壶水所用时间y 的一组数据,且作了一定的数据处理(如表),得到了散点图x −y −w −∑(10i=1x i −x −)2∑(10i=1w i −w −)2∑(10i=1x i −x −)(y i −y −) ∑(10i=1w i −w −)(y i −y −)1.47 20.6 0.782.350.81 −19.3 16.2表中w i =1x i2,w −=110∑w i 10i=1.(1)根据散点图判断,y =a +bx 与y =c +dx 2哪一个更适宜作烧水时间y 关于开关旋钮旋转的弧度数x 的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y 关于x 的回归方程;(3)若旋转的弧度数x 与单位时间内煤气输出量t 成正比,那么x 为多少时,烧开一壶水最省煤气?附:对于一组数据(u 1,v 1),(u 2,v 2),(u 3,v 3),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β̂=i −v )ni=1i −u )∑(u −u )2n ,α̂=v −β̂u .18. △ABC 中的内角A ,B ,C 的对边分别是a ,b ,c ,若√5b =4c ,B =2C(Ⅰ)求cos B(Ⅱ)若c =5,点D 为边BC 上一点,且BD =6,求△ADC 的面积19.底面ABCD为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若DA=DH=DB=4,AE=CG=3.(1)求证:EG⊥DF;(2)求三棱锥F−BEG的体积.20.已知椭圆C:x2a2+y2b2=1(a>b>0),与x轴负半轴交于A(−2,0),离心率e=12.(1)求椭圆C的方程;(2)设直线l:y=kx+m与椭圆C交于M(x1,y1),N(x2,y2)两点,连接AM,AN并延长交直线x=4于E(x3,y3),F(x4,y4)两点,若1y1+1y2=1y3+1y4,求证:直线MN恒过定点,并求出定点坐标.21.设函数f(x)=1+ln(x+1)x(x>0).(1)设ℎ(x)=(x+1)f(x),求曲线y=ℎ(x)在x=1处的切线方程;(2)若f(x)>kx+1恒成立,求整数k的最大值.22. 已知曲线C 1的参数方程为{x =√2cosθy =sinθ(θ为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)若过点F(1,0)的直线l 与C 1交于A ,B 两点,与C 2交于M ,N 两点,求|FA||FB||FM||FN|的取值范围.23. 已知f(x)=|x −1|+1,F(x)={f(x),x ≤312−3x,x >3.(1)解不等式f(x)≤2x +3;(2)若方程F(x)=a 有三个解,求实数a 的取值范围.-------- 答案与解析 --------1.答案:D解析:解:复数z =1−i 在复平面上对应的点的坐标为(1,−1),位于第四象限. 故选:D .由已知求得z 的坐标得答案.本题考查复数的代数表示法及其几何意义,是基础题. 2.答案:D解析:解:等差数列{a n }中,已知a 1+a 9=10=2a 5,∴a 5=5, 则a 3+a 4+a 5+a 6+a 7=5a 5=25, 故选:D .由题意利用等差数列的性质,求得要求式子的值. 本题主要考查等差数列的性质,属于基础题. 3.答案:C解析:解:∵A ={x|x <1},B ={x|x <0}, ∴A ∩B ={x|x <0},A ∪B ={x|x <1}. 故选:C .可以求出集合B ,然后进行交集和并集的运算即可. 本题考查了描述法的定义,指数函数的单调性,交集和并集的运算,考查了计算能力,属于基础题. 4.答案:A解析:解:∵α满足sinα=13,∴cos2α=1−2sin 2α=1−2×(13)2=79.故选:A .由已知利用二倍角的余弦函数公式即可计算求解.本题主要考查了二倍角的余弦函数公式在三角函数化简求值中的应用,属于基础题. 5.答案:A解析:解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立,故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:A .根据充分条件和必要条件的定义结合面面垂直的性质即可得到结论.本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键. 6.答案:A解析:解:∵0≤x ≤5π12,∴π3≤2x +π3≤7π6,∴y =sin (2x +π3)∈[−12,1].故选:A.由0≤x≤5π12,可得π3≤2x+π3≤7π6,利用正弦函数的单调性即可得出.本题考查了正弦函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.7.答案:C解析:【分析】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于较易题.利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.解析:解:圆x2+y2=1的圆心为(0,0)圆心到直线y=k(x+3)的距离为√k2+1要使直线y=k(x+3)与圆x2+y2=1相交,则|3k|√k2+1<1,解得−√24<k<√24.∴在区间[−1,1]上随机取一个数k,使y=k(x+3)与圆x2+y2=1相交的概率为2√242=√24.故选:C.8.答案:B解析:解:模拟程序的运行,可得i=0n=10不满足条件n=1,满足条件n是偶数,n=5,i=1不满足条件n=1,不满足条件n是偶数,n=16,i=2不满足条件n=1,满足条件n是偶数,n=8,i=3不满足条件n=1,满足条件n是偶数,n=4,i=4不满足条件n=1,满足条件n是偶数,n=2,i=5不满足条件n=1,满足条件n是偶数,n=1,i=6此时,满足条件n=1,退出循环,输出i的值为6.故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算n的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.答案:D解析:解:∵0<m<1,0<n<1,m>n,1 n −1m=m−nmn=log210−log2e=log 210e>1,故m −n >mn ,所以1m +1n =log 2(10e)>1,故m +n >mn ,由m +n >m −n故m +n >m −n >mn , 故选:D .利用倒数,作差法,判断即可.考查对数换底公式,对数的运算性质和不等式比较大小,基础题. 10.答案:C解析:【分析】本题考查直线与抛物线的位置关系,点到直线的距离公式,考查计算能力,属于中档题. 利用已知条件求出M 的坐标,求出N 的坐标,利用点到直线的距离公式求解即可. 【解答】解:抛物线C :y 2=4x 的焦点F(1,0),过F(1,0)且斜率为√3的直线的方程为y =√3(x −1), 过抛物线C :y 2=4x 的焦点F ,且斜率为√3的直线交C 于点M(M 在x 轴上方),由:{y 2=4x y =√3(x −1),解得M(3,2√3).可得N(−1,2√3),NF 的方程为:y =−√3(x −1),即√3x +y −√3=0, 则M 到直线NF 的距离为:√3+2√3−√3|√3+1=2√3.故选C . 11.答案:C解析:解:∵f(x)=|lnx|={−lnx,0<x <1lnx,x ≥1,画出图象:∵0<a <b 且f(a)=f(b),∴0<a <1<b ,−lna =lnb , ∴ln (ab)=0,则ab =1.∴2a +b ≥2√2ab =2√2,当且仅当ab =1,2a =b >0,即a =√22,b =√2时取等号.∴2a +b 的取值范围是[2√2,+∞). 故选:C .先画出函数f(x)=|lnx|的图象,利用对数的性质即可得出ab 的关系式,再利用基本不等式的性质即可求出2a +b 的取值范围.本题考查函数的零点与方程的根的关系,熟练掌握数形结合的思想方法、对数的性质和基本不等式的性质是解题的关键,是中档题. 12.答案:B解析:解:a n a n+1a n+2=k(k 为常数),且a 1=1,a 2=2,公积为8, ∴a n a n+1a n+2=8,a 1=1,a 2=2,∴1×2a3=8,解得a3=4,∴2×4a4=8,a4=1,同理可得:a5=2,a6=4.∴a n+3=a n.则a1+a2+⋯+a2020=a1+(1+2+4)×673=4712.故选:B.a n a n+1a n+2=k(k为常数),且a1=1,a2=2,公积为8,可得a n a n+1a n+2=8,a1=1,a2=2,可得其周期性,进而得出数列的和.本题考查了数列的周期性、数列求和,考查了推理能力与计算能力,属于基础题.13.答案:1解析:【分析】本题考查两个向量的数量积公式,两个向量垂直的性质,属于基础题.由题意可得a⋅b⃗=0,再利用两个向量垂直的性质,两个向量的数量积公式,求出m的值.【解答】解:∵向量a⃗=(2,−6),b⃗ =(3,m),若|a⃗+b⃗ |=|a⃗−b⃗ |,则a⋅b⃗=0,即2×3−6m=0,则m=1,故答案为:1.14.答案:24=30人,则高三被抽取的人数90−36−30=24,解析:解:高二年级抽取的人数为:2000×362400故答案为:24.根据分层抽样的定义,建立比例关系即可.本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.15.答案:53解析:解:由线段PF1的垂直平分线恰好过点F2,可得|PF2|=|F1F2|=2c,由直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,可得|OA|=a,设PF1的中点为M,由中位线定理可得|MF2|=2a,在直角三角形PMF2中,可得|PM|=√4c2−4a2=2b,即有|PF1|=4b,由双曲线的定义可得|PF1|−|PF2|=2a,即4b−2c=2a,即2b=a+c,即有4b2=(a+c)2,即4(c2−a2)=(a+c)2,c,可得a=35即e =53, 故答案为:53.运用线段的垂直平分线的性质定理可得|PF 2|=|F 1F 2|=2c ,设PF 1的中点为M ,由中位线定理可得|MF 2|=2a ,再由勾股定理和双曲线的定义可得4b −2c =2a ,结合a ,b ,c 的关系,可得a ,c 的关系,即可得到双曲线的离心率.本题考查双曲线的定义、方程和性质,主要是离心率,考查平面几何中垂直平分线定理和中位线定理的运用,考查运算能力,属于中档题. 16.答案:9解析:解:根据题意:14名学生分成5组,则一定是4个3人组和1个2人组;①若新加入的学生是土兵,则可以将这14个人分组如下:3名士兵;士兵、排长、连长各1名;营长、团长、旅长各1名;师长、军长、司令各1名;2名司令;所以新加入的学生可以是士兵,由对称性可知加入的学生也可以是司令;②若新加入的学生是排长,则可以将这14个人分组下:3名士兵;连长、营长、団长各1名;旅长、师长、军长各1名;3名司令;2名排长;所以新加入的学生可以是排长,由对称性可知加入的学生也可以是军长;③若新加入的学生是连长,则可以将这14个人分组如下:2名士兵;士兵、排长、连长1名;连长、营长、团长各1名;旅长、师长、军长各1名;3名司令;所以新加入的学生可以是连长;由对称性可知加入的学生也可以是师长;④若新加入的学生是营长,则可以将这14个人分组如下:3名士兵;排长、连长、营长1名;营长、团长、旅长各1名;师长、军长、司令答1名;2名司令;所以新加入的学生可以是营长,由对称性可知加入的学生也可以是旅长;⑤若新加入的学生是团长,则可以将这14个人分组如下:3名士兵;排长、连长、营长各1名;旅长、师长、军长各1名;3名司令;2名团长;所以新加入的学生可以是团长; 综上所述:新加入学生可以扮演9种角色; 故答案为:9根据题意,分析可得14名学生分成5组,则一定是4个3人组和1个2人组;据此分类讨论新加入学生可以扮演的角色,将其数目相加即可得答案.本题考查排列、组合的应用,注意题目限制条件比较多,分析其中的关系.17.答案:解:(1)y =c +dx 更适宜作烧水时间y 关于开关旋钮旋转的弧度数x 的回归方程类型.(2)由公式可得:d̂=i −w )10i=1i −y )∑(w −w )210=16.20.81=20,ĉ=y −d̂w =20.6−20×0.78=5, 所以所求回归方程为y =5+20x 2.(3)设t =kx ,则煤气用量S =yt =kx(5+20x 2)=5kx +20k x≥2√5kx ⋅20k x=20k ,当且仅当5kx =20k x时取“=”,即x =2时,煤气用量最小.所以x为2时,烧开一壶水最省煤气.解析:(1)根据散点图作答;(2)根据回归系数公式得出y关于ω的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.本题考查了可化为线性相关的回归方程的求解,基本不等式的应用,属于中档题.18.答案:解:(Ⅰ)由题意B=2C,则sinB=sin2C=2sinCcosC又√5b=4c,所以cosC=sinB2sinC =b2c=2√55…(4分)所以cosB=cos2C=2cos2C−1=35…(6分)(Ⅱ)因为c=5,√5b=4c,所以b=4√5…(7分)由余弦定理得,b2=a2+c2−2accosB,则80=a2+25−2×5×35×a,化简得,a2−6a−55=0,解得a=11,或a=−5(舍去),…(9分)由BD=6得,CD=5,由cosC=2√55,得sinC=√1−cos2C=√55…(10分)所以△ADC的面积s=12DC⋅AC⋅sinC=12×5×4√5×√55=10…(12分)解析:(Ⅰ)利用已知条件和三角函数关系式的恒等变换,求出相应的结果.(Ⅱ)利用上步的结论和余弦定理及三角形的面积公式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理得应用,三角形面积公式的应用及相关的运算问题.19.答案:(1)证明:连接AC,由AE//CG,AE=CG,可知四边形AEGC为平行四边形,∴EG//AC,由题意知AC⊥BD,AC⊥BF,∴EG⊥BD,EG⊥BF,∵BD∩BF=B,∴EG⊥平面BDHF,又DF⊂平面BDHF,∴EG⊥DF;(2)解:设AC∩BD=O,EG∩HF=P,由已知可得:平面ADHE//平面BCGF,平面ADHE∩平面EFGH=EH,平面BCGF∩平面EFGH=FG,∴EH//FG,同理可得:EF//HG,∴四边形EFGH为平行四边形,得P为EG的中点,又O为AC的中点,∴OP//AE且OP=AE,由OP=3,DH=4,由梯形中位线定理得BF=2.∴S △BFG =12×BF ×BC =4.∵EA//FB ,FB ⊂平面BCGF ,EA ⊄平面BCGF ,∴EA//平面BCGF , ∴点A 到平面BCGF 的距离等于点E 到平面BCGF 的距离,为2√3. ∴V F−BEG =V E−BGF =V A−BGF =13S △BFG ×2√3=8√33.解析:本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,属于中档题.(1)连接AC ,由题意可知四边形AEGC 为平行四边形,得到EG//AC ,再由已知证明EG ⊥BF ,可得EG ⊥平面BDHF ,进一步得到EG ⊥DF ;(2)设AC ∩BD =O ,EG ∩HF =P ,由已知证明EH//FG ,EF//HG ,得到四边形EFGH 为平行四边形,则P 为EG 的中点,由OP =3,DH =4,由梯形中位线定理得BF =2.求出三角形BFG 的面积,再证明EA//平面BCGF ,可得点A 到平面BCGF 的距离等于点E 到平面BCGF 的距离.然后利用等体积法求三棱锥F −BEG 的体积.20.答案:解:(1)由题有a =2,e =c a =12.∴c =1,∴b 2=a 2−c 2=3.∴椭圆方程为x 24+y 23=1.(2)法1:{y =kx +m,x 24+y 23=1.⇒(3+4k 2)x 2+8kmx +4m 2−12=0,△=64k 2m 2−4(3+4k 2)(4m 2−12)>0⇒m 2<12k 2+9, x 1+x 2=−8km 3+4k 2,x 1x 2=4m 2−123+4k 2.又k AM =k AE ∴y 1−0x 1+2=y 3−04+2⇒y 3=6y 1x1+2同理y 4=6y 2x2+2又1y 1+1y 2=1y 3+1y 4∴y 1+y 2y 1y 2=x 1+26y 1+x 2+26y 2=x 1y 2+x 2y 1+2(y 1+y 2)6y 1y 2⇒4(y 1+y 2)=x 1y 2+x 2y 1⇒4(kx 1+m +kx 2+m)=x 1(kx 2+m)+x 2(kx 1+m)⇒(4k −m)(x 1+x 2)−2kx 1x 2+8m =0, ⇒(4k −m)−8km3+4k 2−2k(4m 2−12)3+4k 2+8m =0⇒24(k+m)3+4k 2=0.∴m =−k ,此时满足m 2<12k 2+9∴y =kx +m =k(x −1)∴直线MN 恒过定点(1,0). 法2:设直线AM 的方程为:x =t 1y −2 则{x =t 1y −2x 24+y 23=1⇒(3t 1+4)y 2−12t 1y =0, ∴y =0或y 1=12t3t 12+4,∴x 1=t 1y 1−2=t 112t13t 12+4−2=6t 12−83t 12+4同理x 2=6t 22−83t 22+4,y 2=12t23t 22+4, 当x 3=4时,由x 3=t 1y 3−2有y 3=6t 1.∴E(4,6t 1)同理F(4,6t 2),又1y 1+1y 2=1y 3+1y 4,∴3t 12+412t 1+3t 22+412t 2=t 16+t 26,⇒(t 1+t 2)(3t 1t 2+4)12t 1t 2=t 1+t 26,当t 1+t 2≠0时,t 1t 2=−4,∴直线MN 的方程为y −y 1=y 1−y2x 1−x 2(x −x 1) ⇒y −12t 13t 12+4=12t 13t 12+4−12t23t 22+46t 12−83t 12+4−6t 22−83t 22+4(x −6t 12−83t 12+4)⇒y −12t 13t 12+4=4t 1+t 2(x −6t 12−83t 12+4)⇒y =4t 1+t 2x −4t 1+t 2⋅6t 12−83t 12+4+12t 13t 12+4=4t 1+t 2x −4(3t 12+4)(3t 12+4)(t 1+t 2)=4t 1+t 2(x −1),∴直线MN 恒过定点(1,0)当t 1+t 2=0时,此时也过定点(1,0)综上直线MN 恒过定点(1,0).解析:(1)利用已知条件求出a 、c ,得到b ,即可求椭圆C 的方程;(2)法1:{y =kx +m,x 24+y 23=1.⇒(3+4k 2)x 2+8kmx +4m 2−12=0,通过韦达定理,结合k AM =k AE 推出y =kx +m =k(x −1),说明直线MN 恒过定点(1,0). 法2:设直线AM 的方程为:x =t 1y −2,通过{x =t 1y −2x 24+y 23=1⇒(3t 1+4)y 2−12t 1y =0求出E(4,6t 1)同理F(4,6t 2),得到直线系方程说明直线过定点(1,0).本题考查直线与椭圆的位置关系的综合应用,考查发现问题解决问题的能力,是难题.21.答案:解:(1)由已知得ℎ(x)=(x+1)+(x+1)ln (x+1)x, 所以ℎ′(x)=x−1−ln (x+1)x 2,∴ℎ(1)=2+2ln2,ℎ′(1)=−ln2.∴切线方程为y −(2+2ln2)=−ln2×(x −1),即xln2+y −2−3ln2=0.(2)若f(x)>kx+1恒成立,由x >0得,原式可化为:k <(x+1)+(x+1)ln (x+1)x. 令ℎ(x)=(x+1)+(x+1)ln (x+1)x,则以ℎ′(x)=x−1−ln (x+1)x 2,又令m(x)=x −1−ln (x +1),∵m′(x)=1−1x+1=xx+1>0,∴m(x)在(0,+∞)上递增,而m(2)=1−ln3<0,m(3)=2−ln4>0.∴存在t ∈(2,3),使得t −1−ln (t +1)=0……①,且当x ∈(−∞,t)时,m(x)<0;x ∈(t,+∞)时,m(x)>0. ∴x =t 即为函数ℎ(x)的最小值点, ∴ℎ(x)min =ℎ(t)=t+1+(t+1)ln (t+1)t,结合①式得ln (t +1)=t −1.∴ℎ(t)=t+1+(t+1)(t−1)t=t +1,2<t <3∴3<ℎ(t)min <4.所以整数k 的最大值取3.解析:(1)先将x =1代入函数求出切点坐标,然后对原函数求导,进一步求出斜率,代入直线的点斜式方程即可.(2)将k 分离出来,然后研究函数ℎ(x)=(x+1)+(x+1)ln (x+1)x的最小值,因为ℎ′(x)=x−1−ln (x+1)x 2,.再研究分子的符号、零点,确定函数ℎ(x)的最小值即可.本题考查了利用导数研究函数的单调性、极值、最值等.同时考查了学生利用函数思想、转化与化归思想等解决问题的能力.是一道压轴题.22.答案:解:(1)曲线C 1的普通方程为x 22+y 2=1,曲线C 2的直角坐标方程为y 2=4x ;(2)设直线l 的参数方程为{x =1+tcosαy =tsinα(t 为参数) 又直线l 与曲线C 2:y 2=4x 存在两个交点,因此sinα≠0. 联立直线l 与曲线C 1:x 22+y 2=1,可得(1+sin 2α)t 2+2tcosα−1=0, 则:|FA|⋅|FB|=|t 1t 2|=11+sin 2α,联立直线l 与曲线C 2:y 2=4x 可得t 2sin 2α−4tcosα−4=0, 则|FM|⋅|FN|=|t 3t 4|=4sin 2α, 即|FA|⋅|FB||FM|⋅|FN|=11+sin 2α4sin 2α=14⋅sin 2α1+sin 2α=14⋅11+1sin 2α∈(0,18].解析:(1)直接利用参数方程和极坐标方程与直角坐标方程进行转化. (2)直接建立方程组利用根和系数的关系求出结果.本题主要考查:极坐标系与参数方程的相关知识,具体涉及到参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化、直线的参数方程的几何意义等内容.本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.23.答案:解:(1)f(x)=|x −1|+1={x(x ≥1)−x +2(x <1),①当x ≥1时,解不等式x ≤2x +3得:x ≥1,②当x <1时,解不等式−x +2≤2x +3得:−13≤x <1, 综合①②得:不等式f(x)≤2x +3的解集为:[−13,+∞)(2)F(x)={|x −1|+1,x ≤312−3x,x >3,即F(x)={2−x,x <1x,1≤x ≤312−3x,x >3.作出函数F(x)的图象如图所示,当直线y =a 与函数y =F(x)的图象有三个公共点时,方程F(x)=a 有三个解,所以1<a <3. 所以实数a 的取值范围是(1,3).解析:(1)由f(x)=|x −1|+1为分段函数,可分段讨论①当x ≥1时,②当x <1时,求不等式的解集,(2)方程F(x)=a 有三个解等价于直线y =a 与函数y =F(x)的图象有三个公共点,先画出y =F(x)的图象,再画直线y =a 观察图象即可本题考查了分段函数及数形结合的思想方法,属中档题。
广西省玉林市2019-2020学年高考数学第四次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )A .()85424πB .()85824πC .()854216πD .()858216π【答案】C 【解析】 【分析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积. 【详解】最上面圆锥的母线长为2,底面周长为2π24π⨯=,侧面积为1224π42π2⨯=,下面圆锥的母线长为252π48π⨯=,侧面积为1258π85π2⨯=,没被挡住的部分面积为22π4π212π⨯-⨯=,中间圆柱的侧面积为2π214π⨯⨯=.故表面积为()854216π,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题. 2.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】所以336a =,即32a =, 又76a =,所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.3.2021年部分省市将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A .18B .14 C .16D .12【答案】B 【解析】 【分析】 【详解】甲同学所有的选择方案共有122412C C =种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有133C =种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率31124P ==,故选B . 4.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c bC .a c <b cD .c a >c b【答案】B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c ,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.5.已知函数()f x 是奇函数,且22()'()ln(1)ln(1)1f x f x x x x -=+----,若对11[,]62x ∀∈,(1)(1)f ax f x +<-恒成立,则a 的取值范围是( )A .(3,1)--B .(4,1)--C .(3,0)-D .(4,0)-【答案】A 【解析】 【分析】先根据函数奇偶性求得()(),f x f x ',利用导数判断函数单调性,利用函数单调性求解不等式即可. 【详解】因为函数()f x 是奇函数, 所以函数'()f x 是偶函数.22()'()ln(1)ln(1)1f x f x x x x ---=--+--, 即22()'()ln(1)ln(1)1f x f x x x x --=--+--, 又22()'()ln(1)ln(1)1f x f x x x x-=+----, 所以()ln(1)ln(1)f x x x =+--,22'()1f x x =-. 函数()f x 的定义域为(1,1)-,所以22'()01f x x =>-, 则函数()f x 在(1,1)-上为单调递增函数.又在(0,1)上,()(0)0f x f >=,所以()f x 为偶函数,且在(0,1)上单调递增.由(1)(1)f ax f x +<-,可得11111ax x ax ⎧+<-⎨-<+<⎩,对11[,]62x ∈恒成立,则1120ax x a x⎧+<-⎪⎨-<<⎪⎩,21120a x a x⎧-<<-⎪⎪⎨⎪-<<⎪⎩对11[,]62x ∈恒成立,,得31 40aa-<<-⎧⎨-<<⎩,所以a的取值范围是(3,1)--.故选:A.【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题. 6.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题. 7.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A.12种B.24种C.36种D.48种【答案】C【解析】【分析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.把甲、乙两名交警看作一个整体,5个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有24C 种方法,再把这3部分分到3个不同的路口,有33A 种方法,由分步计数原理,共有234336C A ⋅=种方案。
广西省百色市2019-2020学年高考数学第一次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中CD )有15cm ,跨接了6个坐位的宽度(AB ),每个座位宽度为43cm ,估计弯管的长度,下面的结果中最接近真实值的是( )A .250cmB .260cmC .295cmD .305cm【答案】B 【解析】 【分析】»AB 为弯管,AB 为6个座位的宽度,利用勾股定理求出弧AB 所在圆的半径为r ,从而可得弧所对的圆心角,再利用弧长公式即可求解. 【详解】如图所示,»AB 为弯管,AB 为6个座位的宽度,则643258AB cm =⨯=15CD cm =设弧AB 所在圆的半径为r ,则222()r r CD AC =-+22(15)129r =-+解得562r cm ≈129sin 0.23562AOD ∠=≈可以近似地认为sin x x ≈,即0.23AOD ∠≈ 于是0.46AOB ∠≈,»AB 长5620.46258.5≈⨯≈所以260cm 是最接近的,其中选项A 的长度比AB 还小,不可能, 因此只能选B ,260或者由cos 0.97x ≈,sin 20.4526x x π≈⇒<所以弧长5622946π<⨯≈.故选:B 【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.2.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x+6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6]C .[5,8]D .[6,7]【答案】B 【解析】 【分析】作出可行域,对t 进行分类讨论分析目标函数的最大值,即可求解. 【详解】画出不等式组0024x y x y ≥⎧⎪≥⎨⎪+=⎩所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y 在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在224x y tx y+=⎧⎨+=⎩的交点(82433t t--,)处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.3.若x,y满足约束条件-0210x yx yx≤⎧⎪+≤⎨⎪+≥⎩,,,则z=32xy++的取值范围为()A.[2453,] B.[25,3] C.[43,2] D.[25,2]【答案】D 【解析】【分析】由题意作出可行域,转化目标函数32xzy+=+为连接点()3,2D--和可行域内的点(),x y的直线斜率的倒数,数形结合即可得解. 【详解】由题意作出可行域,如图,目标函数32xzy+=+可表示连接点()3,2D--和可行域内的点(),x y的直线斜率的倒数,由图可知,直线DA的斜率最小,直线DB的斜率最大,由10x yx-=⎧⎨+=⎩可得()1,1A--,由210x yx+=⎧⎨+=⎩可得()1,3B-,所以121132DAk-+==-+,325132DBk+==-+,所以225z≤≤.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题. 4.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】设i,(,)z a b a b R =+∈,由||23z z i =-,得222i=(a b z a b +--+,利用复数相等建立方程组即可. 【详解】设i,(,)z a b a b R =+∈,则222i=(a bz a b +--+,所以2220a b a b ⎧+⎪=⎨⎪+=⎩, 解得222a b ⎧=⎪⎨⎪=-⎩,故22i z =-,复数z 在复平面内对应的点为2(2)-,在第四象限. 故选:D. 【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.5.在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M 满足2MA MO=,则·OM ON u u u u r u u u r的取值范围是( ) A .[]0,2B .0,22⎡⎣C .[]22-,D .22,22-⎡⎣【答案】D 【解析】 【分析】设出M 的坐标为(,)x y ,依据题目条件,求出点M 的轨迹方程22(2)8x y +-=,写出点M的参数方程,则·os OM ON θ=u u u u r u u u r ,根据余弦函数自身的范围,可求得·OM ON u u u u r u u u r结果. 【详解】 设(,)M x y ,则∵MA MO=,()0,2A -=∴2222(2)2()x y x y ++=+∴22(2)8x y +-=为点M 的轨迹方程∴点M的参数方程为2x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)则由向量的坐标表达式有:·os OM ON θ=u u u u r u u u r又∵cos [1,1]θ∈-∴·[OM ON θ=∈-u u u u r u u u r故选:D 【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法6.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 【答案】C 【解析】 【分析】根据正弦型函数的图象得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合图像变换知识得到答案. 【详解】 由图象知:7212122T T ππππ=-=⇒=,∴2ω=. 又12x π=时函数值最大,所以2221223k k πππϕπϕπ⨯+=+⇒=+.又()0,ϕπ∈, ∴3πϕ=,从而()sin 23f x x π⎛⎫=+⎪⎝⎭,()cos 2sin 2sin 22123g x x x x πππ⎡⎤⎛⎫⎛⎫==+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需将()f x 的图象向左平移12π个单位即可得到()g x 的图象,故选C. 【点睛】已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式 (1)max min max min ,22y y y y A B -+==.(2)由函数的周期T 求2,.T πωω= (3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求.7.如图,圆O 是边长为23ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM xBA yBD =+u u u u v u u u v u u u v(,)x y ∈R ,则2x y +的最大值为( )A .2B .3C .2D .22【答案】C 【解析】 【分析】建立坐标系,写出相应的点坐标,得到2x y +的表达式,进而得到最大值. 【详解】以D 点为原点,BC 所在直线为x 轴,AD 所在直线为y 轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆; 根据三角形面积公式得到011sin 6022l r S AB AC ⨯⨯==⨯⨯⨯周长, 可得到内切圆的半径为1; 可得到点的坐标为:()()()()()3,0,3,0,0,3,0,0,cos ,1sin B CA D M θθ-+ ()cos 3,1sin ,BM θθ=+u u u u v )()3,3,3,0BD BA ==u u u ru u u v故得到 ())cos 3,1sin 33,3x BM x θθ=++=u u u u v故得到cos 333,sin 31x x θθ=+=-1sin 3sin 2333x y θθ+⎧=⎪⎪⇒⎨⎪=-+⎪⎩,()sin 4242sin 2.33333x y θθϕ+=+=++≤故最大值为:2. 故答案为C. 【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. 8.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交 【答案】D 【解析】 【分析】通过条件判断直线与平面相交,于是可以判断ABCD 的正误. 【详解】根据直线不平行于平面,且可知直线与平面相交,于是ABC 错误,故选D. 【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( )A .[1,)-+∞B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-. 故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( ) A .37 B .13C 13D 37【答案】D 【解析】 【分析】直接根据余弦定理求解即可. 【详解】解:∵3,4,120a b C ︒==∠=,∴2222cos 9161237c a b ab C =+-=++=, ∴37c = 故选:D . 【点睛】本题主要考查余弦定理解三角形,属于基础题.11.已知f(x)=-1x x e e a+是定义在R 上的奇函数,则不等式f(x-3)<f(9-x 2)的解集为( )A .(-2,6)B .(-6,2)C .(-4,3)D .(-3,4)【答案】C 【解析】 【分析】由奇函数的性质可得1a =,进而可知()f x 在R 上为增函数,转化条件得239x x -<-,解一元二次不等式即可得解. 【详解】因为()1x x e f x e a-=+是定义在R 上的奇函数,所以()()011f f +-=,即1111e ee a ae--+=++,解得1a=,即()12111xx xef xe e-==-++,易知()f x在R上为增函数.又()()239f x f x-<-,所以239x x-<-,解得43x-<<.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg20.3≈()A.30010B.40010C.50010D.60010【答案】A【解析】【分析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前n项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为29101222211023+++⋅⋅⋅+=-=,所以原数字塔中前10层所有数字之积为10231023lg230021010=≈.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前n项和公式应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。
高考数学仿真押题试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()(a bi += ) A .54i -B .54i +C .34i -D .34i +【解析】解:a i -与2bi +互为共轭复数,则2a =、1b =,,故选:D .2.已知全集U R =,{|0}A x x =…,{|1}B x x =…,则集合()(U A B =ð )A .{|0}x x …B .{|1}x x …C .{|01}x x 剟D .{|01}x x <<【解析】解:或0}x …,,故选:D .3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) A .1B .2C .3D .4【解析】解:设数列{}n a 的公差为d ,则由1510a a +=,47a =,可得12410a d +=,137a d +=,解得2d =, 故选:B .4.如图为一个圆柱中挖去两个完全相同的圆锥而形成的几何体的三视图,则该几何体的体积为( )A.13πB.23πC.43πD.53π【解析】解:圆柱的底面直径为2,高为2,圆锥的底面直径为2,高为1,该几何体的体积,故选:C.5.若变量x,y满足约束条件,则3z x y=+的最小值为()A.3 B.4 C.2 D.1【解析】解:由约束条件作出可行域如图,化目标函数3z x y=+为3y x z=-+,由图可知,当直线3y x z=-+过(0,1)A时,直线在y轴上的截距最小,z有最小值为1.故选:D.6.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16 B.18 C.24 D.32【解析】解:由题意知本题是一个分类计数问题,首先安排三辆车的位置,假设车位是从左到右一共7个, 当三辆车都在最左边时,有车之间的一个排列33A , 当左边两辆,最右边一辆时,有车之间的一个排列33A , 当左边一辆,最右边两辆时,有车之间的一个排列33A , 当最右边三辆时,有车之间的一个排列33A ,总上可知共有不同的排列法33424A ⨯=种结果, 故选:C .7.部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是( )A .716B .916 C .35D .12【解析】解:由图可知:黑色部分由9个小三角形组成,该图案由16个小三角形组成, 设“向该图案随机投一点,则该点落在黑色部分”为事件A ,由几何概型中的面积型可得:P (A ),故选:B .8.在ABC ∆中,2AD DB =,2CE EA =,则( )A .B .C .D .【解析】解:,故选:A .9.已知双曲线,O 为坐标原点,过C 的右顶点且垂直于x 轴的直线交C 的渐近线于A ,B ,过C 的右焦点且垂直于x 轴的直线交C 的渐近线于M ,N ,若O A B ∆与OMN ∆的面积之比为1:9,则双曲线C 的渐近线方程为( )A .2y x =±B .y =±C .y =±D .8y x =±【解析】解:由三角形的面积比等于相似比的平方,则2219a c =, ∴2229a b a +=,∴ba=C ∴的渐近线方程为y =±, 故选:B .10.设0sin a xdx π=⎰,则8()ax x+展开式中的常数项为( )A .560B .1120C .2240D .4480 【解析】解:设,则展开式中的通项公式为,令820r -=,求得4r =,可得展开式中的常数项为48161120C =, 故选:B .11.在我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵中,90ABC ∠=︒,12AB AA ==,BC =1CA 与平面11ABB A 所成角的大小为( ) A .30︒ B .45︒C .60︒D .90︒【解析】解:在堑堵中,90ABC ∠=︒,12AB AA ==,BC =∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,则(0C ,0),1(2A ,0,2),1(2A C =-,2)-,平面11ABB A 的法向量(0n =,1,0),设1CA 与平面11ABB A 所成角的大小为θ,则,1CA ∴与平面11ABB A 所成角的大小为45︒.故选:B .12.已知函数,若方程()1f x kx =+有四个不相等的实根,则实数k 的取值范围是()A .1(,1)3B .1(,2)3C .14(,)25D .1(,1)2【解析】解:方程()1f x kx =+有四个不相等的实根, 等价于函数()f x 的图象与直线1y kx =+有四个交点,易得:①当直线1y kx =+与函数相切时,12k =, ②当直线1y kx =+与函数相切时,利用导数的几何意义可得:1k =,即由图知函数()f x 的图象与直线1y kx =+有四个交点时, 实数k 的取值范围是112k <<, 故选:D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.10的展开式中含2x 项的系数为 5 .【解析】解:10的展开式的通项公式为,令10223r-=,求得2r =, 故展开式中含2x 项的系数为210159C =, 故答案为:5.14.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等比数列,且3tan 4B =,则的值是53. 【解析】解:a ,b ,c 成等比数列,2b ac ∴=,,3tan 4B =,3sin 5B ∴=.则.故答案为:53.15.已知0x >,0y >,且121x y+=,则xy x y ++的最小值为 7+ 【解析】解:121x y+=, 2xy x y ∴=+,,当且仅当26y xx y=时,即y =时取等号, 故xy x y ++的最小值为7+故答案为:7+16.如图,已知过椭圆的左顶点(,0)A a -作直线1交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为.【解析】解:AOP ∆是等腰三角形,(A a -,0)(0P ∴,)a . 设0(Q x ,0)y ,2PQ QA =,0(x ∴,,0)y -.∴,解得002313x a y a ⎧=-⎪⎪⎨⎪=⎪⎩.代入椭圆方程得,化为2215b a=.∴.. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数.(1)求函数()y f x =的单调增区间;(2)ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A )0=,1a =,求b c +的取值范围.【解析】解:(1)函数,由,可得,可得函数的单调递增区间是(6k ππ-,)3k ππ+,k Z ∈.(2)ABC ∆中,已知f (A ),,3A π∴=.1a =,由正弦定理可得,.2(0,)3B π∈,(66B ππ∴+∈,5)6π,,2].所以b c +的范围是(1,2].18.椭圆的左右焦点分别为1(F 0)、2F 0),点A 1)2在椭圆C 上.(1)求椭圆C 的方程;(2)直线:l y kx m =+与椭圆交于E 、F 两点,以EF 为直径的圆过坐标原点O ,求证:坐标原点O 到直线l 距离为定值.【解析】解:(1)由椭圆定义可知,,所以2a =,因为c =,所以1b =,椭圆C 的方程为:2214x y +=;(2)证明:由2214x y y kx m ⎧+=⎪⎨⎪=+⎩可得,△,即2241k m +>,设1(E x ,1)y ,2(F x ,2)y ,又,,∴,,,所以坐标原点O 到直线l. 19.某校学业水平考试中,某两个班共100名学生,物理成绩的优秀率为20%,数学成绩的频率分布直方图如图所示,数学成绩大于90分的为优秀.(1)利用频率分布直方图估计数学成绩的众数和中位数(中位数保留小数点后两位);(2)如果数学、物理都优秀的有12人,补全下列22⨯列联表,并根据列联表,判断是否有99.9%以上的把握认为数学优秀与物理优秀有关?(3)在物理优秀的20人中,随机抽取2人,记数学物理都优秀的人数为X ,求X 的概率分布列及数学期望.附:,其中.【解析】解:(1)由频率分布直方图估计数学成绩的众数是:8090852+=,由频率分布直方图得:[60,80)的频率为:,[80,90)的频率为:.估计数学成绩的中位数是:.⋯(2)列联表是:,所以有99.9%以上的把握认为数学优秀与物理优秀有关⋯(3)X的可能取值为0,1,2,,,,X 概率分布列为:数学期望.⋯20.如图①在四边形ABCD 中,//AD BC ,90BAD ∠=︒,AB =4BC =,6AD =,E 是AD 上的点,13AE AD =,P 为BE 的中点将ABE ∆沿BE 折起到△1A BE 的位置,使得14A C =,如图②. (1)求证:平面1A CP ⊥平面1A BE ;(2)点M 在线段CD 上,当直线1A M 与平面1A PD 1M A P D --的余弦值.【解析】证明:(1)BPC ∆中,2BP =,PC =,4BC =,所以BP PC ⊥,同理△1A PC 中,12A P =,PC =,14A C =, 所以1A P PC ⊥,因为1A P ⊂平面1A BE ,PB ⊂平面1A BE ,,所以PC ⊥平面1A BE ,又PC ⊂平面1A PC , 所以平面1A CP ⊥平面1A BE .⋯解:(2)以点P 为坐标原点,PE ,PC 所在直线为x ,y 轴正方向建立如图所示空间直角坐标系,1(0A ,1,C ,0,0),D ,4,0),(0E ,2,0)设M a ,0),则1A M =1a -,,1(0PA =,1,PD =4,0),设平面1A PD 的法向量为(m x =,y ,)z ,由100m PA m PD ⎧=⎪⎨=⎪⎩,得.令2x =,得(2m =,1),直线1A M 与平面1A PD ,,解得2a =或8a =(舍),∴1A M =1,, 设平面1A PD 的法向量为(n x =,y ,)z ,由,取1x =,得(1n =,1),设二面角1M A P D --的平面角为θ,则,所以当直线1A M 与平面1A PD 1M A P D --.⋯21.某财团欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格y (单位:万元)是每日产量x (单位:吨)的函数:.(1)求当日产量为3吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数); (2)记每日生产平均成本yx为m ,求证:16m <; (3)若财团每日注入资金可按数列2241n na n =-(单位:亿元)递减,连续注入60天,求证:这60天的总投入资金大于111n 亿元.【解析】解:(1)因为22321x y lnx x =-,(1)x >,所以,当3x =时,;证明:(2)要证,只需证设,则所以()h x 在(1,)+∞上单调递减,所以()h x h <(1)0= 所以16yx<, 即16m <; 证明(3)因为,又由(2)知,当1x > 时,12x lnx x ->, 所以,所以,所以.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.曲线(其中t 为参数),以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线关于1C 对称.(1)求曲线1C 的普通方程,曲线2C 直角坐标方程;(2)将2C 向左平移2个单位长度,按照12x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩变换得到3C ,点P 为3C 上任意一点,求点P 到曲线1C 距离的最大值.【解析】解:(1)由2121x t y t =+⎧⎨=-⎩消去t 得20x y --=,由2c os a ρθ=得,得,依题意2C 的圆心2(,0)C a 在上,所以020a --=,解得2a =,故曲线1C 的普通方程为20x y --=,曲线2C 的直角坐标方程为.即.(2)2C 向左平移2各单位长度后得224x y +=,再按照12x x y y ⎧'=⎪⎪⎨⎪'⎪⎩变换得到,设P 点坐标为,P 点到1C 的距离为,当23πθ=时,点P 到1C的距离最大,最大值为 [选修4-5:不等式选讲] 23.已知.(1)解关于x 的不等式()4f x >;(2)对于任意正数m 、n ,求使得不等式恒成立的x 的取值集合M .【解析】解:(1)函数,当0x …时,不等式()4f x >化为,解得1x <-;当01x <<时,不等式()4f x >化为,解得3x >,所以x ∈∅; 当1x …时,不等式()4f x >化为,解得53x >; 综上,不等式()4f x >的解集为{|1x x <-或5}3x >;⋯(2)对于任意正数m 、n ,,当且仅当1m n ==时“=”成立, 所以不等式恒成立,等价于,由(1)知,该不等式的解集为5{|1}3x x-剟, 所以x 的取值集合是[1M =-,5]3.⋯。
2020年广西南宁市、梧州市等八市高考数学模拟试卷(二)(4月份)一、选择题(本大题共12小题,共60.0分)1.设集合A={x|x2-x-6≥0},集合B={0,1,2,3,4},则A∩B=()A. {4}B. {3,4}C. {2,3,4}D. {0,1,2,3,4}2.若复数z满足,i是虚数单位,则A. B. C. D.3.若向量=(2,3),=(x,2),且•(-2)=3,则实数x的值为()A. -B.C. -3D. 34.去年年底甲、乙、丙、丁四个县人口总数为m万,各县人口占比如图,其中丙县人口为70万,则去年年底甲县的人口为A. 162万B. 176万C. 182万D. 186万5.已知双曲线C:=1(a>0)的一个焦点为(2,0),则双曲线C的渐近线方程为()A. y=±xB. y=±xC. y=±xD. y=±2x6.已知数列{a n}满足:a1=1,a n+1=3a n-2,则a6=()A. 0B. 1C. 2D. 67.已知将函数f(x)=sin(2x+φ)(0<φ<)的图象向左平移φ个单位长度后,得到函数g(x)的图象.若g(x)是偶函数,则f()=()A. B. C. D. 18.已知x,y满足条件,若z=x+2y的最小值为0,则m=()A. 1B. 2C. 3D. 49.曲线与直线y=5-x围成的平面图形的面积为()A. B. C. D.10.已知抛物线x2=2py(p>0)的准线方程为y=-1,△ABC的顶点A在抛物线上,B,C两点在直线y=2x-5上,若||=2,则△ABC面积的最小值为()A. 5B. 4C.D. 111.设过点的直线l与圆C:的两个交点为A,B,若,则A. B. C. D.12.已知一个四棱锥的三视图如图,图中网格小正方形边长为1,则该几何体的各条棱中,最长的棱的长度为()A. 4B. 6C. 4D. 4二、填空题(本大题共4小题,共20.0分)13.二项式的展开式中x4的系数为___________.(用数字作答)14.已知等差数列{a n}的前n项和为S n,若a5=7,则S9=______.15.在直三棱柱中,,,,,则异面直线与所成角的余弦值为______.16.已知函数f(x)=,若函数y=f(x)-a2有3个零点,则实数a的取值范围是______.三、解答题(本大题共7小题,共84.0分)17.已知在△ABC中,A,B,C所对的边分别为a,b,c,若a2+b2-c2=8,△ABC的面积为.(1)求角C的大小;(2)若,求sin A+sin B的值.18.一汽车销售公司对开业4年来某种型号的汽车“五一”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料日期第1年第2年第3年第4年优惠金额x(千10111312元)销售量y(辆)22243127利用散点图可知x,y线性相关(1)求出y关于x的线性回归方程=x;(2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:==,=19.如图,在侧棱垂直于底面的三棱柱ABC-A1B1C1中,AC⊥BC,AC=1,BC=2,AA1=4,M是侧面AA1C1C的对角线的交点,D,E分别是AB,BC中点.(1)求证:MD∥平面A1BC1;(2)求二面角C-ME-D的余弦值.20.已知曲线C上动点M与定点F()的距离和它到定直线l1:x=-2的距离的比是常数,若过P(0,1)的动直线l与曲线C相交于A,B两点(1)说明曲线C的形状,并写出其标准方程;(2)是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由21.已知函数f(x)=ax2-x-2ln x-1(a∈R).(1)若x=时,函数f(x)取得极值,求函数f(x)的单调区间;(2)证明:1(2n+1)(n∈N*).22.已知曲线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()(1)求曲线C的直角坐标方程;(2)设P(2,1),直线l与曲线交于点A,B,求|PA|•|PB|的值.23.已知函数f(x)=|x+3|-2.(1)解不等式f(x)<|x-1|;(2)若∃x∈R,使得f(x)≥|2x-1|+b成立,求实数b的取值范围.-------- 答案与解析 --------1.答案:B解析:解:解二次不等式x2-x-6≥0得:x≤-2或x≥3,即A=,又B={0,1,2,3,4},所以A∩B=,故选:B.由二次不等式的解法及集合的交集的运算得:A=,又B={0,1,2,3,4},所以A∩B=,得解.本题主要考查集合的交集,熟记概念即可,属于基础题型.2.答案:A解析:解:∵(1+z)(1+i)=1+2i,∴z==,故|z|=.故选:A.先由(1+z)(1+i)=1+2i,的z=,再由复数的除法运算即可求出结果.本题主要考查复数的运算以及复数的模,熟记运算法则以及模的计算公式即可,属于基础题型.3.答案:A解析:解:向量=(2,3),=(x,2),-2=(2-2x,-1),因为•(-2)=3,所以:4-4x-3=3,可得x=-.故选:A.求出向量-2,然后利用向量的数量积求解即可.本题考查向量的数量积的应用,向量的坐标运算,是基本知识的考查.4.答案:C解析:解:由统计图可得,丙县人口占四个县总人口20%,又丙县人口为70万,所以四个县总人口为=350万,又因为甲县人口占四个县总人口的52%,所以甲县的人口为350×52%=182万.故选:C.根据统计图得到丙县人口所占百分比,求出四个县的总人口,进而可求出结果.本题主要考查扇形统计图,会分析统计图即可,属于基础题型.5.答案:C解析:解:因为双曲线C:=1(a>0)的一个焦点为(2,0),所以a2+3=4,故a2=1,因此双曲线的方程为:x2=1,所以其渐近线方程为:y=±x.故选:C.先由双曲线的一个焦点坐标为(2,0),可求出双曲线的方程,进而可得其渐近线方程.本题主要考查双曲线的渐近线方程,熟记双曲线的性质即可,属于基础题型.6.答案:B解析:【解答】解:因为a1=1,a n+1=3a n-2,所以a2=3-2=1,以此类推可得a3=3a2-2=1,a4=3a3-2=1,a5=3a4-2=1,a6=3a5-2=1.故选:B.【分析】本题主要考查数列的递推公式,由题意逐步计算即可,属于基础题型.由a1=1,a n+1=3a n-2,可得a2=1,以此类推,即可得出结果.7.答案:A解析:【分析】先由题意写出g(x),根据g(x)是偶函数求出φ,即可得出结果.本题主要考查三角函数的图象变换与三角函数的性质,熟记性质即可,属于常考题型.【解答】解:由题意可得:g(x)=sin(2x+3φ),因为g(x)是偶函数,所以3φ=,k∈Z,即φ=,k∈Z,又0<φ<,所以0,解得,所以k=0,故φ=;所以f()=.故选:A.8.答案:B解析:【分析】根据约束条件作出可行域,将目标函数z=x+2y化为y=-x+,结合图象以及z=x+2y的最小值,即可求出结果.本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.【解答】解:由x,y满足条件,作出可行域,又目标函数z=x+2y表示直线y=-x+在y轴截距的二倍,因此截距越小,z就越小;由图象可得,当直线y=-x+过点A时,在y轴截距最小;由解得A(m,1-m),所以z min=m+2(1-m),又z=x+2y的最小值为0,所以2-m=0,解得m=2.故选B.9.答案:D解析:【分析】本题考查了定积分,找到积分区间和被积函数是解决此类问题的关键.本题属于基础题.联立,解得两曲线的交点为(1,4),(4,1),所以两曲线围成的面积为y=5-x-在[1,4]上的积分.【解答】解:如图:联立,解得,两曲线的交点坐标为(1,4),(4,1),所以两曲线围成的图形的面积为S==(5x--4ln x)=.故选:D.10.答案:D解析:解:因为抛物线x2=2py(p>0)的准线方程为y=-1,抛物线方程为x2=4y;又||=2,所以||=2,设点A到直线BC的距离为d,故△ABC面积为,因为A在抛物线上,设A(x,),则d====,故≥1.故选:D.先由题意求出P,得到抛物线方程,再由||=2,得||=2,设点A到直线BC的距离为d,求出△ABC面积的表达式,由点到直线的距离公式求出d的最小值即可得出结果.本题主要考查抛物线的应用,熟记抛物线性质以及点到直线距离公式即可,属于常考题型.11.答案:A解析:【分析】根据题意,设直线l的参数方程为(t为参数),进而设A的坐标为(-2+t1cosθ,t1sinθ),B的坐标为(-2+t2cosθ,t2sinθ),将直线的参数方程与圆的方程联立可得(-2+t cosθ)2+(t sinθ)2-4(-2+t cosθ)-2t sinθ+1=0,变形可得t2-(8cosθ+2sinθ)t+13=0;又由8=5,分析可得=,即t2=t1,结合根与系数的关系分析可得t12=13,解可得t1=±,由直线的参数方程的意义分析可得|AB|=|t1-t2|=|t1-t1|,计算即可得答案.本题考查直线的参数方程的应用,涉及向量的数乘运算,属于基础题.【解答】解:根据题意,直线l过点P(-2,0),设直线l的参数方程为(t为参数),又由直线l与圆C:x2+y2-4x-2y+1=0的两个交点为A,B,设A的坐标为(-2+t1cosθ,t1sinθ),B的坐标为(-2+t2cosθ,t2sinθ),则有(-2+t cosθ)2+(t sinθ)2-4(-2+t cosθ)-2t sinθ+1=0,变形可得t2-(8cosθ+2sinθ)t+13=0,又由直线l与圆C:x2+y2-4x-2y+1=0的两个交点为A,B,若8=5,则=,即t2=t1,又由t1t2=13,则有t12=13,解可得t1=±,则|AB|=|t1-t2|=|t1-t1|=;故选:A.12.答案:B解析:【分析】先由三视图还原几何体,结合题中数据,分别求出各棱长,即可得出结果.本题主要考查几何体的三视图,以及棱锥的相关计算,熟记几何体的结构特征即可,属于常考题型.【解答】解:由三视图可得该四棱锥为P-ABCD,由题中数据可得AB=BC=2,CD==,AD==,BP==4,CP==2,DP==,AP==6,即最长的棱为AP,长度为6.故选B.13.答案:15解析:【分析】本题主要考查指定项的系数,熟记二项展开式的通项公式即可,属于基础题型.先写出二项展开式的通项公式,即可求出展开式中x4的系数.【解答】解:因为二项式(x3)6的展开式的通项为T r+1=•(-1)r•,令18-=4,可得r=4,所以展开式中x4的系数为=15,故答案为15.14.答案:63解析:解:因为a5=7,所以=9a5=63.故答案为:63.直接根据等差中项的性质将S9转化为用a5表达的算式,即可得到结果.本题主要考查等差数列的前n项和,以及等差数列的性质,熟记公式即可,属于基础题型.15.答案:解析:【分析】由空间向量法求异面直线所成角得:因为AC=3,BC=3,AB=2,所以C为直角,又侧棱与底面垂直,则可建立如图所示的空间直角坐标系,则C(0,0,0),C1(0,0,4),A1(3,0,4),B(0,3,0),所以=(-3,0,-4),=(0,-4,3),设异面直线A1C与BC1所成角为θ,则cosθ=||=,得解.本题主要考查异面直线所成的角,空间向量法求异面直线所成角,是一种常用的方法,属于常考题型.【解答】解:因为AC=3,BC=3,AB=2,所以C为直角,又侧棱与底面垂直,则可建立如图所示的空间直角坐标系:则C(0,0,0),C1(0,0,4),A1(3,0,4),B(0,3,0),所以=(-3,0,-4),=(0,-4,3),设异面直线A1C与BC1所成角为θ,则cosθ=||=,故答案为:.16.答案:[-1,0)∪(0,1]解析:解:由题意,作出函数函数f(x)=,的图象如下,因为函数y=f(x)-a2有3个零点,所以关于x的方程f(x)-a2=0有三个不等实根;即函数f(x)的图象与直线y=a2有三个交点,由图象可得:0<a2≤1,解得-1≤a<0或0<a≤1.故答案为[-1,0)∪(0,1].先作出函数f(x)图象,根据函数y=f(x)-a2有3个零点,得到函数f(x)的图象与直线y=a2有三个交点,结合图象即可得出结果.本题主要考查函数的零点,灵活运用数形结合的思想即可求解,属于常考题型.17.答案:解:(1)由△ABC的面积为2,可得:,由a2+b2-c2=8,及余弦定理可得:2ab cos C=8,故:tan C=,可得:C=;(2)∵C=,2ab cos C=8,∴解得:ab=8,又a2+b2-c2=8,c=2,可得a+b=6,由正弦定理,,得:sin A+sin B==(a+b)=.解析:(1)由△ABC的面积为2,可得:,由a2+b2-c2=8,及余弦定理可得:2ab cos C=8,可得tan C=,得到角C;(2)由(1)的结果,先求出ab,根据c,即可求出a+b,再由正弦定理可得sin A+sin B=,即可求出结果.本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.18.答案:解:(1)由题中数据可得x=×(10+11+13+12)=11.5,=×(22+24+31+27)=26,x i y i=10×22+11×24+13×31+12×27=1211,=102+112+132+122=534;∴====3;故=-=26-3×11.5=-8.5,∴=3x-8.5;(2)由(1)得,当x=8.5时,=3×8.5-8.5=17,∴第5年优惠金额为8.5千元时,销售量估计为17辆.解析:(1)先由题中数据求出、,再根据线性回归方程系数和,即可得出回归方程;(2)将x=8.5代入回归方程,即可求出预测值.本题主要考查了线性回归分析应用问题,熟记最小二乘法求回归系数,是常考题型.19.答案:证明:(1)由D、E分别为边AB、BC的中点,可得DE∥AC,又由直三棱柱可知侧面AA1C1C为矩形,可得A1C1∥AC,故有A1C1∥DE,由直三棱柱可知侧面AA1C1C为矩形,可得M为A1C的中点,又由E为BC的中点,可得A1B∥ME.由DE,ME⊂平面MDE,A1C,BC1⊂平面MDE,得A1C1∥平面MDE,BC1∥平面MDE,又A1C1∩BC1=C1,可得平面MDE∥平面A1BC1,因为MD⊂平面MDE,所以MD∥平面A1BC1,解:(2)分别以CA、CB,CC1为x,y,z轴建立空间直角坐标系,如图,则C(0,0,0),A(1,0,0),B(0,2,0),C1(0,0,4),M(),D(),E(0,10),=(-,1,-2),=(),=(),设平面CME的一个法向量为=(x,y,z),则,取=-1,得=(4,0,-1),同理可求出平面DME的一个法向量=(0,2,1),cos<>===-,结合图形知二面角C-ME-D的余弦值为.解析:(1)先由面面平行的判定定理证明平面MDE∥平面A1BC1,即可得到MD∥平面A1BC1;(2)分别以CA、CB、CC1为x,y,z轴建立空间直角坐标系,分别求出平面DME与平面CME的法向量,根据法向量夹角余弦值即可得出结果.本题主要考查线面平行的判定,可根据面面平行判断线面平行;第二问主要考查用空间向量的方法求二面角,属于常考题型.20.答案:解:(1)设动点M坐标为M(x,y)点M到直线l1:x=-2的距离为d.依题意可知=,则=,化简得+=1,所以曲线C是椭圆,它的标准方程为+=1,(2)①当直线l与y轴垂直时,由椭圆的对称性可知|PA|=|PB|,又因为得=,则|QA|=|QB|,从而点Q必在y轴上.②当直线l与x轴垂直时,则A(0,),B(0,-),由①可设Q(0,y0),(y0≠1),由=得=,解得y0=1(舍去),或y0=2.则点Q的坐标只可能是Q(0,2).下面只需证明直线l斜率存在且Q(0,2)时均有由=即可.设直线l的方程为y=kx+1,代入+=1得(2k2+1)x2+4kx-2=0.设A(x1,y1),B(x2,y2),∴x1+x2=-,x1x2=-,∴+==2k,设点B关于y轴对称的点坐标B′(-x2,y2),因为直线QA的斜率k QA===k-,同理得直线QB′的斜率k QB′===-k+,∴k QA-k QB′=2k-(+)=2k-2k=0,∴k QA=k QB′,三点Q,A,B′共线.故由===.所以存在点Q(0,2)满足题意.解析:(1)先设动点M坐标为M(x,y),根据题意列出等式=,化简整理即可求出结果;(2)分情况讨论如下:当直线l与y轴垂直时,易得点Q必在y轴上.;当直线l与x轴垂直时,易得点Q的坐标只可能是Q(0,2);再证明直线l斜率存在且Q(0,2)时均有=即可.本题主要考查椭圆方程以及椭圆中的定点问题,熟记椭圆的简单性质即可求解,属于常考题型.21.答案:解:(1)由题意可得,f′(x)=2ax-2ln x-2(x>0,a∈R),由x=时,函数f(x)取得极值知=0,所以a=0.所以f(x)=-2x lnx-1,f′(x)=-2x lnx-2,(x>0),所以0<x<时,f′(x)>0,x>时,f′(x)<0,所以f(x)的单调增区间(0,),单调减区间为(,+∞).(2)当a=1时,f(x)=x2-2x lnx-1,所以f′(x)=2x-2ln x-2=2(x-ln x-1),令g(x)=x-ln x-1,则,当0<x<1时,g′(x)<0;当x>1时,g′(x)>0,g(x)的单调减区间为(0,1),单调增区间为(1,+∞),所以g(x)≥g(1)=0,所以f′(x)≥0,f(x)是增函数,所以x>1时,f(x)=x2-2x lnx-1>f(1)=0,所以x>1时,x->2ln x,令x=>1,n∈N*,得>2ln,即1+,所以,上式中n=1,2,3,…,n,然后n个不等式相加,得到1+>.解析:(1)先对函数求导,根据x=时,函数f(x)取得极值,求出a,进而可求其单调区间;(2)先令a=1,用导数的方法证明x2-2x lnx-1>0,得到x>1时,x-,再令x=>1,n∈N*,得,即),最后求1+,即可得出结论成立.本题主要考查导数的应用,熟记通常用导数的方法研究函数单调性,最值等,属于常考题型.22.答案:解(1)由ρ=4cos(θ-)得ρ2=4ρcosθ+4ρsinθ,∴ρ2=4ρcosθ+4ρsinθ,又x=ρcosθ,y=ρsinθ,∴x2+y2=4x+4y即曲线C的直角坐标方程为(x-2)2+(y-2)2=8.(2)将代入C的直角坐标方程,得t2+(-t-1)2=8,∴t2+t-7=0,设A,B两点对应的参数分别为t1,t2,∴t1t2=-7.则|PA||PB|=|t1t2|=7.解析:(1)先将ρ=4cos(θ-)化为ρ2=4ρcosθ+4ρsinθ,进而可得出其直角坐标方程;(2)将直线参数方程代入(1)的结果,整理得到t2+t-7=0,再设A,B两点对应的参数分别为t1,t2,进而可得|PA||PB|=|t1t2|,即可求出结果本题主要考查极坐标方程与直角坐标的互化,以及参数方程的应用,熟记公式即可求解,属于中档题型.23.答案:解:(1)由f(x)<|x-1|,可得|x+3|-2<|x-1|,当x≥1时,x+3-2<x-1不成立,当-3<x<1时,x+3-2<1-x,∴-3<x<0,当x≤-3时,-x-3-2<1-x,-5<1成立,∴不等式f(x)<|x-1|的解集为{x|x<0}.(2)根据题意,|x+3|-|2x-1|-2≥b,令g(x)=|x+3|-|2x-1|-2=,易知g(x)max=g()=,则有≥b,即实数b的取值范围是(-∞,].解析:本题主要了考查含绝对值不等式,熟记分类讨论的思想即可求解,属于中档题.(1)分三种情况讨论,去掉绝对值,求不等式的解集即可;(2)先由题意得,|x+3|-|2x-1|-2≥b,令g(x)=|x+3|-|2x-1|-2,求出g(x)的最小值,即可得出结果.。
2020年广西桂林市、崇左市、贺州市高考数学模拟试卷1(5月份)一、选择题(本大题共12小题,共60.0分)1.设集合,B={x|x≥2},则A∩B=()A. [2,4)B. {2,4}C. {3}D. {2,3}2.i(1+i)−2i=()A. 1−iB. −1−iC. 1−3iD. −1−3i3.若双曲线C:x2m−y2=1的一条渐近线方程为3x+2y=0,则m=()A. 49B. 94C. 23D. 324.2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,下图为该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图,根据统计图,给出下列结论:①2018年9~12月,该市邮政快递业务量完成件数约1500万件;②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为A. 3B. 2C. 1D. 0 5. 已知向量a ⃗ =(1,m),b ⃗ =(3,√3),若a ⃗ ⋅b ⃗ =6,则实数m =( )A. 0B. √3C. 3D. 0或√36. 如果实数x ,y 满足约束条件{2x +y −4≤0x −y −1≤0x ≥1,则z =3x +2y +yx 的最大值为( )A. 7B. 8C. 9D. 117. 从1,2,3,4中任取两个不同的数,则取出的两数之和为5的概率是( )A. 16B. 14C. 13D. 128. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=c(b +2c),若a =√6,cosA =78,则△ABC 的面积等于( )A. √17B. √15C. √152D. 39. 在正方体ABCD −A 1B 1C 1D 1中,M ,N 分别是线段AB 1,BC 1的中点,以下结论:①AA 1丄MN ;②MN 与AC 异面;③MN 丄面BDD 1B 1;其中正确的是( )A. ①B. ①②C. ①③D.②③10. “斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项的和,他设计了一个程序框图,那么在空白矩形框和判断框内应分别填入的语句是( )A. c =a ;i ≤9B. b =c ;i ≤9C. c =a ;i ≤10D. b =c ;i ≤1011. 已知F 是抛物线y 2=4x 的焦点,过F 的直线l 与抛物线相交于A,B(B 在x 轴上方),且满足BF ⃗⃗⃗⃗⃗ =4FA⃗⃗⃗⃗⃗ ,则直线l 的方程为( ) A. 3y −2x +2=0 B. y −4x +4=0 C. 3y −4x +4=0D. 2y −3x +3=012. 已知函数f ( x)=sin(ωx +π3)−cos(ωx +π6)(ω>0)在(π,3π2)上单调递减,则ω的取值范围是( )A. (0,2]B. (0,12]C. [12,1]D. [12,54]二、填空题(本大题共4小题,共20.0分)13. 已知函数f(x)={2x ,x ≥3f (x +3),x <3,则f(−2)=_____________.14. 已知曲线y =2x −lnx 的一条切线的斜率为1,则此切线方程为______. 15. 已知sin(π4+α)=12,则cos2(α−π4)= ______ .16. 已知某圆锥的母线与其底面所成角的大小为60°,若此圆锥的侧面积为8π,则该圆锥的体积为______.三、解答题(本大题共7小题,共82.0分)17. 在等差数列{a n }与等比数列{b n }中,已知a n >0,且a 1=3,b 1=2,数列{∁n }满足∁n =a n b n ,且c 2=20,c 3=56. (Ⅰ)求a n 与b n ;(Ⅱ)设T n =c 1+c 2+⋯+∁n ,求T n .18. 如图,在三棱锥P −ABC 中,AB =BC =2√2,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.19.某季节性水果A在上市当月的第x天(1≤x≤30,x∈N+)的销售价格p=50−|x−6|(元∕百斤),一水果商在第x天(1≤x≤30,x∈N+)销售水果A的量为q=a+|x−8|(百斤)(a为常数),且该水果商在第7天销售水果的销售收入为2009元.(1)求该水果商在第10天销售水果的销售收入;(2)这30天中该水果商在哪一天的销售收入最大,为多少?20.已知函数f(x)=a6x3−a4x2−ax−2的图象过点A(4,103).(1)求函数f(x)的单调递增区间;(2)若函数g(x)=f(x)−2m+3有3个零点,求m的取值范围.21.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=√22,且椭圆的短轴长为2.(1)求椭圆的标准方程;(2)已知直线l1,l2过右焦点F2,且它们的斜率乘积为−12,设l1,l2分别与椭圆交于点A,B和C,D.①求AB+CD的值;②设AB的中点M,CD的中点为N,求△OMN面积的最大值.22.在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ(cosθ+sinθ)=1与ρ(sinθ−cosθ)=1的交点的极坐标.23.已知函数f(x)=|32−x|.(Ⅰ)求不等式f(x)≤52的解集;(Ⅱ)如果存在x∈[−2,4],使不等式f(x)+f(x+2)≥m成立,求实数m的取值范围.-------- 答案与解析 --------1.答案:D解析:【分析】本题考查了集合的交集运算,属于基础题.直接根据交集的运算得出答案即可.【解答】解:因为,B={x|x≥2},所以A∩B={2,3}.故选D.2.答案:B解析:【分析】本题考查了复数的四则运算,属基础题.【解答】解:i(1+i)−2i=i−1−2i=−1−i.故选B.3.答案:A解析:【分析】本题考查双曲线的性质,考查双曲线的渐近线方程,属于基础题.根据题意,由双曲线方程分析可得双曲线的渐近线方程,结合题意可得√m =32,解可得m的值.【解答】解:由题意知,双曲线的渐近线方程为y=√m>0),3x+2y=0可化为y=−32x,则√m =32,解得m=49.故选A.4.答案:B解析:【分析】本题考查了学生分析问题能力和观察能力,考查了数字特征的分析以及柱形图的理解,需要注意的是柱形图表示的总数和饼形图所表示的总数并不相等.【解答】解:根据柱形图可知2017年完成总件数为242.4+9.6+948=1200万件,则2018年9~12月,该市邮政快递业务量完成件数约1200×(1+25%)=1500万件,故①正确;如饼形图可知:2018年9~12月该市邮政快递同城业务量完成件数为20%×1500=300万件,比2017年9~12月相比增加,故②不正确;2018年9~12月该市邮政快递国际即港澳业务量完成件数为1.4%×1500=21万件,比2017年9~12月相比增加219.6−1=11.49.6=118.75%,故③正确;综上所述,结论正确的个数为2个,故选B.5.答案:B解析:【分析】本题考查了向量的数量积的应用,考查了转化思想以及计算能力,直接利用向量的数量积化简求解即可,属于基础题;【解答】解:向量a⃗=(1,m),b⃗ =(3,√3),若a⃗⋅b⃗ =6,可得:3+√3m=6,解得m=√3.故选B.6.答案:C解析:解:作出不等式对应的平面区域(阴影部分),由u=3x+2y,平移直线u=3x+2y,由图象可知当直线u=3x+2y经过点A时,直线u=3x+2y的截距最大,此时u最大.而且yx 也恰好是AO 的连线时,取得最大值, 由{x =12x +y −4=0,解得A(1,2). 此时z 的最大值为z =3×1+2×2+21=9, 故选:C .作出不等式对应的平面区域,利用线性规划的知识,通过平移直线,得到最优解,求出斜率的最值,即可求z 的最大值.本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.7.答案:C解析:解:从1,2,3,4中任取2个不同的数,基本事件总数n =C 42=6,取出的2个数之和为5包含的基本事件有: (1,4),(2,3),∴取出的2个数之和为5的概率是p =26=13. 故选:C .基本事件总数n =C 42=6,取出的2个数之和为5包含的基本事件有2个,由此能求出取出的2个数之和为5的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.答案:C解析: 【分析】根据条件求出b =2c ,结合余弦定理求出b ,c 的值,然后利用三角形的面积公式进行求解即可. 本题主要考查三角形面积的计算,利用余弦定理以及方程关系求出b ,c 的值是解决本题的关键. 【解答】解:∵b 2=c(b +2c) ∴b 2−bc −2c 2=0 即(b +c)(b −2c)=0∵b 、c 均为三角形的边,b +c ≠0, ∴b −2c =0,即b =2c ,由三角形的余弦定理a 2=b 2+c 2−2bccosA 得:b 2+c 2−74bc =6(∗)再将b =2c 带入(∗)式可得: 5c 2−72c 2=6,即c 2=4,得c =2,b =4,又由cosA =78,可得sinA =√158,所以,三角形ABC 的面积是: S =12bcsinA =12×2×4×√158=√152, 故选:C .9.答案:C解析:解:连接B 1C ,BD ,B 1D 1,由MN 为△ACB 1的中位线可得MN//AC ,故②错误; 由AA 1⊥平面AC ,可得AA 1⊥AC , 即有AA 1⊥MN ,故①正确;由BD ⊥AC ,AC ⊥B 1B ,可得AC ⊥平面BDD 1B 1, AC//MN ,即有MN ⊥面BDD 1B 1,故③正确. 故选:C .连接B 1C ,BD ,B 1D 1,由中位线定理可判断②;由线面垂直的性质可判断①;由线面垂直的判断和性质,可判断③.本题考查空间线线、线面的位置关系的判断,考查线面垂直的判断和性质定理,考查推理能力,属于基础题.10.答案:B解析: 【分析】本题考查的知识点是程序框图解决实际问题,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.属于基础题.由斐波那契数列从第三项起每一项等于前两项的和,由程序框图从而判断空白矩形框内应为:b =c ,模拟执行程序框图,当第8次循环时,i =10,由题意不满足条件,退出执行循环,输出S 的值,即可得判断框内应为i ≤9. 【解答】解:由题意,斐波那契数列0,1,1,2,…,从第三项起每一项等于前两项的和, 分别用a ,b 来表示前两项,c 表示第三项,S 为数列前n 项和, 故空白矩形框内应为:b =c ,第1次循环:a=0,b=1,S=0+1=1,i=3,求出第3项c=1,求出前3项和S=0+1+1=2,a=1,b=1,满足条件,i=4,执行循环;第2次循环:求出第4项c=1+1=2,求出前4项和S=0+1+1+2=4,a=1,b=2,满足条件,i=5,执行循环;…第8次循环:求出第10项c,求出前10项和S,此时i=10,由题意不满足条件,退出执行循环,输出S的值.故判断框内应为i≤9.故选:B.11.答案:C解析:【分析】本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.设直线l与准线交于点P,过A,B,F,分别作准线的垂线,垂足分别为A′,B′,F′,根据三角形相似得出PA与AA′的关系,从而得出直线l的斜率,再得出直线l的方程.【解答】解:F(1,0),准线方程为x=−1,设直线l与抛物线的准线交于点P,过A,B,F,分别作准线的垂线,垂足分别为A′,B′,F′,则FF′=2,设AF=m,由抛物线性质可得:AA′=m,BF=BB′=4m,设AP=n,则PAPB =AA′BB′=14,即nn+5m =14,∴n=5m3,∴cos∠A′AP=AA′PA =mn=35,∴直线l的斜率k=tan∠A′AP=43,∴直线l的方程为y=43(x−1),即3y−4x+4=0.故选C.12.答案:C解析:【分析】本题考查两角和差的三角函数公式、考查y=Asin(ωx+φ)的图像和性质,属中档题;先将函数f(x)=sin(ωx+π3)−cos(ωx+π6)(ω>0)化简成,再根据正弦函数的单调性得{π2ω+2kπω≤π3π2ω+2kπω≥3π2,解得:12+2k≤1+43k,k∈Z,当k=0时,12≤ω≤1,问题得解.【解答】解:,π2+2kπ≤ωx≤3π2+2kπ,k∈Z,∴π2ω+2kπω≤x≤3π2ω+2kπω所以函数f(x)的单调递减区间为[π2ω+2kπω,3π2ω+2kπω],k∈Z,所以π2ω+2kπω≤π<3π2≤3π2ω+2kπω,可得12+2k≤ω≤1+4k3,∵2πω≥2|3π2−π|,∴ω≤2且ω>0,当k=0时,12≤ω≤1,故选C.13.答案:16解析:【分析】本题考查分段函数求值,属于基础题.由解析式求解即可.【解答】解: 由解析式f(−2)=f(1)=f(4)=24=16. 故答案为16.14.答案:x −y +1=0解析:解:因为曲线y =2x −lnx 的导数为:y′=2−1x , 所以2−1x =1,解得x =1,所以y =2,可得切点坐标(1,2) 切线方程为:y −2=1(x −1), 即x −y +1=0. 故答案为:x −y +1=0.直接利用函数导数值为1,求出x 值,求出切点的坐标,然后求出切线方程. 本题考查函数的导数的应用,切线方程的求法,考查计算能力,是基本知识的考查.15.答案:−12解析: 【分析】由已知式子化简可得sinα+cosα=√22,平方后结合二倍角的正弦公式可得sin2α,再由诱导公式可得结果.本题考查二倍角公式和同角三角函数的基本关系,属基础题. 【解答】解:∵sin(π4+α)=12,∴√22(sinα+cosα)=12,∴sinα+cosα=√22,平方可得1+sin2α=12,解得sin2α=−12,∴cos2(α−π4)=cos(2α−π2)=sin2α=−12.故答案为:−12.16.答案:8√33π解析: 【分析】本题考查圆锥的体积的求法,考查圆锥的性质等基础知识,考查运算求解能力,是中档题. 根据题意画出图形,结合图形设圆锥的底面半径为r ,表示出底面半径和母线长,利用圆锥的侧面积求出r ,再计算圆锥的体积. 【解答】 解:如图所示,∵圆锥的母线与其底面所成角的大小为60°,∴∠SAO=60°,由题意设圆锥的底面半径为r,则母线长为l=2r,高为ℎ=√3r,∵圆锥的侧面积为8π,∴S侧面积=πrl=π·r·2r=2πr2=8π,解得r=2,ℎ=2√3,∴圆锥的体积为V圆锥=13πr2ℎ=13π×22×2√3=8√33π.故答案为:8√33π.17.答案:解:(Ⅰ)设数列{a n}的公差为d(d>0),设数列{b n}的公比为q,c2=20,c3=56,可得(3+d)⋅2q=20,(3+2d)⋅2q2=56,解得d=2(负的舍去),则q=2,可得a n=2n+1,b n=2n;(Ⅱ)∁n=a n b n=(2n+1)⋅2n,设T n=c1+c2+⋯+∁n=3⋅2+5⋅22+⋯+(2n+1)⋅2n,2T n=3⋅22+5⋅23+⋯+(2n+1)⋅2n+1,相减可得−T n=6+2(22+⋯+⋅2n)−(2n+1)⋅2n+1=6+2⋅4(1−2n−1)1−2−(2n+1)⋅2n+1,化简可得T n=2+(2n−1)⋅2n+1.解析:(Ⅰ)设数列{a n}的公差为d(d>0),设数列{b n}的公比为q,运用等差数列和等比数列的通项公式可得公差和公比,即可得到所求通项;(Ⅱ)求得∁n=a n b n=(2n+1)⋅2n,运用错位相减法和等比数列的求和公式,化简计算可得所求和.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查方程思想和运算能力,属于中档题.18.答案:(1)证明:∵AB=BC=2√2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=√PA2−AO2=2√3,在△COM中,OM=√OC2+CM2−2OC⋅CMcos450=2√53.S△POM=12×PO×OM=12×2√3×2√53=2√153,S△COM=12×23×S△ABC=43.设点C到平面POM的距离为d.由V P−OMC=V C−POM⇒13×S△POM⋅d=13×S△OCM×PO,解得d=4√55,∴点C到平面POM的距离为4√55.解析:本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)证明:可得AB2+BC2=AC2,即△ABC是直角三角形,又POA≌△POB≌△POC,可得∠POA=∠POB=∠POC=90°,即可证明PO⊥平面ABC;(2)设点C到平面POM的距离为d.由V P−OMC=V C−POM⇒13×S△POM⋅d=13×S△OCM×PO,解得d即可.19.答案:解:(1)由已知第7天的销售价格p=49,∴第7天的销售收入W7=49×(a+1)=2009(元),∴a=40.第10天的销售收入W10=46×42=1932(元)(2)设第x天的销售收入为W x,则W x={(44+x)(48−x),1≤x≤6 2009,x=7(56−x)(32+x),8≤x≤30当1≤x≤6时,W x=(44+x)(48−x)=−x2+4x+2112=−(x−2)2+2116,∴当x=2时取最大值W2=2116元.当8≤x≤30时,W x=(56−x)(32+x)=−x2+24x+1792=−(x−12)2+1936,∴当x=12时取最大值W12=1936元.由于W2>W7>W12,∴第2天该水果商的销售收入最大,为2116元.解析:本题考查函数与方程的综合应用,分段函数的应用,考查最值的求法,考查计算能力. (1)直接利用条件,求解第10天的销售收入即可.(2)设第x 天的销售收入为W x ,W x ={(44+x)(48−x)1≤x ≤62009x =7(56−x)(32+x)8≤x ≤30.,利用分段函数求出W 2>W 7>W 12,推出第2天该水果商的销售收入最大以及最大值.20.答案:解:(1)A (4,103),所以323a −4a −4a −2=103,解得a =2,即f (x )=13x 3−12x 2−2x −2,所以f ,(x )=x 2−x −2,由f ,(x )>0,得x <−1或x >2,所以函数f(x)的单调递增区间为(−∞,−1),(2,+∞); (2)由(1)知,,可知要使函数g(x)=f(x)−2m +3有3个零点,则−163<2m −3<−56,解得−76<m <1312,所以m 的取值范围为(−76,1312).解析:本题考查利用导数研究函数的单调性和极值以及函数零点与方程的根.(1)利用函数f(x)=a6x 3−a4x 2−ax −2的图象过点A (4,103),求出a ,对f(x)求导,利用导函数的符号确定单调区间;(2)由(1)求解函数的极值,通过函数零点与方程根的关系,确定m 的取值范围.21.答案:解:(1)∵椭圆的短轴长为2,∴b =1,又∵e =√1−b 2a2=√1−1a 2=√22,a 2=2,所以椭圆的方程为x 22+y 2=1.(2)①F 2(1,0),设直线AB 的方程为y =k(x −1),A(x 1,y 1),B(x 2,y 2),{x 2+2y 2=2y =k(x −1),x 2+2k 2(x 2−2x +1)=2,(1+2k 2)x 2−4k 2x +2k 2−2=0, x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−21+2k 2, |x 1−x 2|=√16k 4(1+2k 2)2−4(2k 2−2)(1+2k 2)(1+2k 2)2=2√2√1+k 21+2k 2,|AB|=2√2(1+k 2)1+2k , ∵K AB K CD =−12,用−12k 替换上式中的k 得 ∴|CD|=√2(4k 2+1)2k 2+1, |AB|+|CD|=2√2(k 2+1)1+2k 2+√2(4k 2+1)1+2k 2=6√2k 2+3√21+2k 2=3√2.②由①知,x 1+x 2=4k 21+2k 2,M 点的横坐标为2k 21+2k 2,代入直线方程得y =k(2k 21+2k 2−1)=−k1+2k 2,即M(2k 21+2k 2,−k 1+2k 2),用−12k 替换M 点坐标k 得N(11+2k 2,k1+2k 2),MN 的中点T 的坐标为(12,0),S ΔOMN =12×OT ×|y M −y N |=14×|2k|1+2k 2=12×|k|1+2k 2=12×11|k|+2|k|≤122√2=√28,当且仅当|k|=√22时取等号. ∴ΔOMN 面积的最大值为√28.解析:本题考查椭圆的几何性质及直线与椭圆的位置关系,属于中档题. (1)由b 根据离心率求出a 即可;(2)①设直线AB 的方程为y =k(x −1),A(x 1,y 1),B(x 2,y 2),根据弦长公式求出|AB|,再根据斜率的关系求出|CD|,整理即可;②求出M ,N 的坐标,代入面积公式,利用基本不等式即可求解.22.答案:解:曲线ρ(cos θ+sin θ)=1化为直角坐标方程为x +y =1,ρ(sin θ−cos θ)=1化为直角坐标方程为y −x =1. 联立方程组{x +y =1,y −x =1,得{x =0,y =1, 则交点为(0,1),对应的极坐标为(1,π2).解析:本题考查两曲线的交点的求法,属于基础题.把极坐标方程化为直角坐标方程,方程联立即可.23.答案:解:(Ⅰ)不等式f(x)≤52,即|x −32|≤52,即−52≤x −32≤52,求得−1≤x ≤4,故不等式的解集为[−1,4].(Ⅱ)令g(x)=f(x)+f(x +2)=|x −32|+|x +12|={1−2x , x ≤−122 , −12<x ≤322x −1 ,x >32.由题意可得g(x)在[−2,4]上的最大值大于或等于m . 当x ∈[−2,−12]时,g(x)为减函数,故g(x)≤g(−2)=5, 当x ∈(−12,32]时,g(x)=2,当x ∈(32,4]时,g(x)为增函数,g(x)的最大值为g(4)=7, 故g(x)在∈[−2,4]上的最大值为7,由题意可得m ≤7, 即m 的取值范围是(−∞,7].解析:(Ⅰ)不等式即|x−32|≤52,即−52≤x−32≤52,由此求得不等式的解集.(Ⅱ)令g(x)=f(x)+f(x+2)=|x−32|+|x+12|={1−2x , x≤−122 , −12<x≤322x−1 ,x>32,分类讨论求得g(x)在[−2,4]上的最大值,即可得到m的范围.本题主要考查绝对值不等式的解法,将带绝对值的函数化为分段函数的形式,体现了转化、分类讨论的数学思想,属于中档题.。
广西桂林市、崇左市高考数学模拟试卷(理科)(4月份)一、选择题(共12小题,每小题5分,满分60分)1.已知两集合A={x|x2+x﹣2≤0},B={x|},则A∩B=()A.[﹣2,0)B.(,1]C.[﹣2,0)∪(,1]D.[1,+∞)2.复数z=(a+i)(1﹣i),a∈R,i是虚数单位.若|z|=2,则a=()A.1 B.﹣1 C.0 D.±13.若向量,满足:||=1,( +)⊥,(3+)⊥,则||=()A.3 B.C.1 D.4.由曲线y=x2和曲线y=围成的一个叶形图如图所示,则图中阴影部分面积为()A.B.C.D.5.将函数f(x)=sinωx(ω>0)的图象向右平移个单位长度,所得图象关于点对称,则ω的最小值是()A.B.1 C.D.26.一个几何体三视图如图所示,则该几何体的表面积等于()A.2πB.4πC.6+(2+)πD.(4+2)π7.某次考试无纸化阅卷的评分规则的程序如图所示,x1,x2,x3为三个评卷人对同一道题的独立评分,p 为该题的最终得分,当x1=6,x2=9,p=8.5时,x3=()A.11 B.10 C.8 D.78.不等式组的解集为D,下列命题中正确的是()A.∀(x,y)∈D,x+2y≤﹣1 B.∀(x,y)∈D,x+2y≥﹣2C.∀(x,y)∈D,x+2y≤3 D.∀(x,y)∈D,x+2y≥29.直线l过抛物线y2=2px(p>0)的焦点F,与该抛物线及其准线的交点依次为A、B、C,若|BC|=2|BF|,|AF|=3,则P=()A.B.C.D.10.直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分别是A1B1、A1C1的中点,BC=AC=CC1,则CN与AM所成角的余弦值等于()A.B.C.D.11.已知F1,F2是双曲线的两个焦点,以F1F2为直径的圆与双曲线一个交点是P,且△F1PF2的三条边长成等差数列,则此双曲线的离心率是()A.B.C.2 D.512.定义域为{x|x≠0}的函数f(x)满足:f(xy)=f(x)f(y),f(x)>0且在区间(0,+∞)上单调递增,若m满足f(log3m)+f(log m)≤2f(1),则实数m的取值范围是()A.[,1)∪(1,3]B.[0,)∪(1,3]C.(0,]D.[1,3]二、填空题(共4小题,每小题5分,满分20分)13.设S n是等差数列{a n}的前n项和,若a1=2,S5=12,则a6等于.14.(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为.15.已知正方形ABCD的边长为2,点P、Q分别是边AB、BC边上的动点,且,则的最小值为.16.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是.三、解答题(共5小题,满分60分)17.如图,在四边形ABCD中,AB=3,AD=BC=CD=2,A=60°.(Ⅰ)求sin∠ABD的值;(Ⅱ)求△BCD的面积.18.为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.19.如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=.(1)求证:AB⊥PC;(2)求侧面BPC与侧面DPC所成的锐二面角的余弦值.20.已知圆C:(x+1)2+y2=20,点B(l,0).点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(I)求动点P的轨迹C1的方程;(Ⅱ)设,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C l于P,Q两点,求△MPQ面积的最大值.21.已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)e x(a为实数).(1)当a=4时,求函数y=g(x)在x=0处的切线方程;(2)求f(x)在区间[t,t+2](t>0)上的最小值;(3)如果关于x的方程g(x)=2e x f(x)在区间[,e]上有两个不等实根,求实数a的取值范围.[选修4-1:几何证明选讲]22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.[选修4-4:坐标系与参数方程]23.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.[选修4-5:不等式]24.已知定义在R上的函数f(x)=|x+1|+|x﹣2|的最小值为m.(Ⅰ)求m的值;广西桂林市、崇左市高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知两集合A={x|x2+x﹣2≤0},B={x|},则A∩B=()A.[﹣2,0)B.(,1]C.[﹣2,0)∪(,1]D.[1,+∞)【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式变形得:(x﹣1)(x+2)≤0,解得:﹣2≤x≤1,即A=[﹣2,1],由B中不等式变形得:<0,即>0,等价于x(2x﹣1)>0,解得:x<0或x>,即B=(﹣∞,0)∪(,+∞),则A∩B=[﹣2,0)∪(,1],故选:C.2.复数z=(a+i)(1﹣i),a∈R,i是虚数单位.若|z|=2,则a=()A.1 B.﹣1 C.0 D.±1【考点】复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:z=(a+i)(1﹣i)=a+1+(1﹣a)i,∴|z|=2=,化为a2=1.解得a=±1.故选:D.3.若向量,满足:||=1,( +)⊥,(3+)⊥,则||=()A.3 B.C.1 D.【考点】平面向量数量积的运算.【分析】由题意利用两个向量垂直的性质求得1+=0,3+=0,从而求得||的值.【解答】解:∵向量,满足:||=1,( +)⊥,∴•(+)=+=1+=0,∴=﹣1.∵(3+)⊥,∴3+=﹣3+=0,∴=3,||=,故选:B.4.由曲线y=x2和曲线y=围成的一个叶形图如图所示,则图中阴影部分面积为()【考点】定积分.【分析】利用积分求阴影的面积,找到积分上下限,和积分函数.【解答】解:有图可知阴影的面积S===.故选:A5.将函数f(x)=sinωx(ω>0)的图象向右平移个单位长度,所得图象关于点对称,则ω的最小值是()A.B.1 C.D.2【考点】正弦函数的图象.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,所得函数的解析式为y=sinω(x﹣),再根据正弦函数的图象的对称性,求得ω的值.【解答】解:将函数f(x)=sinωx(ω>0)的图象向右平移个单位长度,可得y=sinω(x﹣)=sin(ωx﹣)的图象,再根据所得图象关于点对称,可得ω••﹣=kπ,k∈Z,求得ω=2k,k∈Z,结合所给的选项,可取ω=2,故选:D.6.一个几何体三视图如图所示,则该几何体的表面积等于()A.2πB.4πC.6+(2+)πD.(4+2)π【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由三视图可知:该几何体为圆锥沿轴截取的一半.【解答】解:由三视图可知:该几何体为圆锥沿轴截取的一半.∴该几何体的表面积=++=6+π.故选:C.7.某次考试无纸化阅卷的评分规则的程序如图所示,x1,x2,x3为三个评卷人对同一道题的独立评分,p 为该题的最终得分,当x1=6,x2=9,p=8.5时,x3=()A.11 B.10 C.8 D.7【考点】程序框图.【分析】利用给出的程序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分.【解答】解:根据提供的该算法的程序框图,该题的最后得分是三个分数中差距小的两个分数的平均分.根据x1=6,x2=9,不满足|x1﹣x2|≤2,故进入循环体,输入x3,判断x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分.因此由8.5=,解出x3=8.故选:C.8.不等式组的解集为D,下列命题中正确的是()A.∀(x,y)∈D,x+2y≤﹣1 B.∀(x,y)∈D,x+2y≥﹣2C.∀(x,y)∈D,x+2y≤3 D.∀(x,y)∈D,x+2y≥2【考点】全称命题.【分析】化简不等式组,即可得出正确的结论【解答】解:∵不等式组,∴,∴,∴x+2y≥0;即x+2y≥﹣2.∴若的解集为D时,∀(x,y)∈D,x+2y≥﹣2成立.故选:B.9.直线l过抛物线y2=2px(p>0)的焦点F,与该抛物线及其准线的交点依次为A、B、C,若|BC|=2|BF|,|AF|=3,则P=()【考点】抛物线的简单性质.【分析】如图所示,设直线AB的方程为:y=k,(k≠0).与抛物线方程联立化为:k2x2﹣(2p+pk2)x+=0,由x A+=3,由|BC|=2|BF|,可得=,可得x B.再利用根与系数的关系即可得出.【解答】解:如图所示,设直线AB的方程为:y=k,(k≠0).联立,化为:k2x2﹣(2p+pk2)x+=0,∴x A x B=.∵x A+=3,∵|BC|=2|BF|,∴=,可得x B=.∴=,解得p=.故选:B.10.直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分别是A1B1、A1C1的中点,BC=AC=CC1,则CN与AM所成角的余弦值等于()A.B.C.D.【考点】异面直线及其所成的角.【分析】以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出CN 与AM所成角的余弦值.【解答】解:以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,设BC=AC=CC1=2,则C(0,0,0),N(1,0,2),A(2,0,0),M(1,1,2),=(1,0,2),=(﹣1,1,2),设CN与AM所成角为θ,则cosθ===.∴CN与AM所成角的余弦值为.故选:B.11.已知F1,F2是双曲线的两个焦点,以F1F2为直径的圆与双曲线一个交点是P,且△F1PF2的三条边长成等差数列,则此双曲线的离心率是()A.B.C.2 D.5【考点】双曲线的简单性质.【分析】通过|PF2|,|PF1|,|F1F2|成等差数列,分别设为m﹣d,m,m+d,则由双曲线定义和勾股定理求出m=4d=8a,c=,由此求得离心率的值【解答】解:因为△F1PF2的三条边长成等差数列,不妨设|PF2|,|PF1|,|F1F2|成等差数列,分别设为m ﹣d,m,m+d,则由双曲线定义和勾股定理可知:m﹣(m﹣d)=2a,m+d=2c,(m﹣d)2+m2=(m+d)2,解得m=4d=8a,c=,故离心率e==5,故选:D12.定义域为{x|x≠0}的函数f(x)满足:f(xy)=f(x)f(y),f(x)>0且在区间(0,+∞)上单调递增,若m满足f(log3m)+f(log m)≤2f(1),则实数m的取值范围是()A.[,1)∪(1,3]B.[0,)∪(1,3]C.(0,]D.[1,3]【考点】函数单调性的性质.【分析】由条件求得f(x)为偶函数,原不等式即为f(|log3m|)≤f(1),由于f(x)在区间(0,+∞)上单调递增,则由|log3m|≤1,且log3m≠0,解出即可.【解答】解:∵f(xy)=f(x)f(y),f(x)>0则令x=y=1可得f(1)=f2(1),即有f(1)=1.令x=y=﹣1,则f(1)=f2(﹣1)=1,则f(﹣1)=1.令y=﹣1,则f(﹣x)=f(x)f(﹣1)=f(x),即有f(x)为偶函数.由f(log3m)+f()≤2f(1),可得f(log3m)+f(﹣log3m)≤2f(1),即2f(log3m)≤2f(1),即f(|log3m|)≤f(1),由于f(x)在区间(0,+∞)上单调递增,则|log3m|≤1,且log3m≠0,解得≤m<1或1<m≤3.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.设S n是等差数列{a n}的前n项和,若a1=2,S5=12,则a6等于3.【考点】等差数列的前n项和.【分析】由等差数列的求和公式和已知条件可得公差d的方程,解方程可得d,由通项公式可得a6的值.【解答】解:设等差数列{a n}的公差为d,∵a1=2,S5=12,∴S5=5a1+d=10+10d=12,解得d=,∴a6=2+5×=3,故答案为:3.14.(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为40.【考点】二项式系数的性质.【分析】由于二项式展开式中各项的系数的和为2,故可以令x=1,建立起a的方程,解出a的值来,然后再由规律求出常数项【解答】解:由题意,(x+)(2x﹣)5的展开式中各项系数的和为2,所以,令x=1则可得到方程1+a=2,解得得a=1,故二项式为由多项式乘法原理可得其常数项为﹣22×C53+23C52=40故答案为4015.已知正方形ABCD的边长为2,点P、Q分别是边AB、BC边上的动点,且,则的最小值为3.【考点】平面向量数量积的运算.【分析】建立坐标系,如图所示根据,可得=0,求得x=y.化简为(x﹣1)2+3,利用二次函数的性质求得它的最小值.【解答】解:如图,分别以AB、AD所在的直线为x、y轴,建立坐标系,如图所示:则A(0,0)、B(2,0)、C(2,2)、D (0,2),设点P(x,0)、Q(2,y),x、y∈[0,2],∴=(x,﹣2),=(2,y).由,可得=2x﹣2y=0,即x=y.∴=(x﹣2,﹣2)•(x﹣2,﹣y)=(x﹣2)2+2y=x2﹣2x+4=(x﹣1)2+3≥3,则的最小值为3,故答案为:3.16.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(0,).【考点】抽象函数及其应用;函数的零点.【分析】令x=﹣1,求出f(1),可得函数f(x)的周期为2,当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,画出图形,根据函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,利用数形结合的方法进行求解.【解答】解:∵f(x+2)=f(x)﹣f(1),且f(x)是定义域为R的偶函数,令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),又f(﹣1)=f(1),∴f(1)=0 则有f(x+2)=f(x),∴f(x)是最小正周期为2的偶函数.当x∈[2,3]时,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2,函数的图象为开口向下、顶点为(3,0)的抛物线.∵函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,令g(x)=log a(|x|+1),则f(x)的图象和g(x)的图象至少有3个交点.∵f(x)≤0,∴g(x)≤0,可得0<a<1,要使函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则有g(2)>f(2),可得log a(2+1)>f(2)=﹣2,即log a3>﹣2,∴3<,解得<a<,又0<a<1,∴0<a<,故答案为:(0,).三、解答题(共5小题,满分60分)17.如图,在四边形ABCD中,AB=3,AD=BC=CD=2,A=60°.(Ⅰ)求sin∠ABD的值;(Ⅱ)求△BCD的面积.【考点】三角形中的几何计算.【分析】(Ⅰ)由余弦定理求得BD,再由正弦定理求得sin∠ABD的值;(Ⅱ)由余弦定理求得cosC,进而求得sinC,最后根据三角形的面积公式可得答案.解得,由正弦定理,,所以=.(Ⅱ)在△BCD中,BD2=BC2+CD2﹣2BC•CDcosC,所以7=4+4﹣2×2×2cosC,,因为C∈(0,π),所以,所以,△BCD的面积.18.为了解某商场旅游鞋的日销售情况,现抽取部分顾客购鞋的尺码,将所得数据绘成如图所示频率分布直方图,已知图中从左到右前三组的频率之比为1:2:3,第二组的频数为10.(1)用频率估计概率,求尺码落在区间(37.5,43.5]概率约是多少?(2)从尺码落在区间(37.5,39.5](43.5,45.5]顾客中任意选取两人,记在区间(43.5,45.5]的人数为X,求X的分布列及数学期望EX.【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)通过频率分布直方图第四组第五组的频率.再由频率之比和互斥事件的和事件的概率等于概率之和求解即可.(2)设抽取的顾客人数为n,求出n.尺码落在区间(43.5,45.5]的人数为3人,得到X可能取到的值,然后求出概率,得到期望.【解答】(本小题满分12分)解:(1)由频率分布直方图第四组第五组的频率分别为0.175,0.075.再由频率之比和互斥事件的和事件的概率等于概率之和:P=0.25+0.375+0.175=0.8﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)设抽取的顾客人数为n,则由已知可得n=40.尺码落在区间(43.5,45.5]的人数为3人,所以可知X 可能取到的值为0,1,2.又尺码落在区间(37.5,39.5]的人数为10人,所以:P(X=0)=,P (X=1)=,P(X=2)=﹣﹣﹣﹣﹣﹣所以X的数学期望EX=﹣﹣﹣﹣19.如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=.(1)求证:AB⊥PC;(2)求侧面BPC与侧面DPC所成的锐二面角的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)取AB的中点O,连结PO,CO,AC,推导出PO⊥AB,CO⊥AB,从而AB⊥平面PCO,由此能证明AB⊥PC.(2)以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出侧面BPC 与侧面DPC所成的锐二面角的余弦值.【解答】证明:(1)取AB的中点O,连结PO,CO,AC,∵△APB为等腰三角形,∴PO⊥AB,又∵四边形ABCD是菱形,∠BCD=120°,∴△ABC是等边三角形,∴CO⊥AB,又OC∩PO=O,∴AB⊥平面PCO,又PC⊂平面PCO,∴AB⊥PC.解:(2)∵四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=,∴OP==1,OC==,∴PC2=OP2+OC2,∴OP⊥OC,以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,则B(0,1,0),C(,0,0),P(0,0,1),D(),=(),=(0,﹣1,1),=(,﹣1),设=(x,y,z)是平面BPC的一个法向量,则,取x=1,得=(1,),设平面DPC的一个法向量=(a,b,c),则,取a=1,得=(1,0,),∴cos<>===,∴侧面BPC与侧面DPC所成的锐二面角的余弦值为.20.已知圆C:(x+1)2+y2=20,点B(l,0).点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(I)求动点P的轨迹C1的方程;(Ⅱ)设,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C l于P,Q两点,求△MPQ面积的最大值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由已知可得动点P的轨迹C1是一个椭圆,其中,2c=2,由此能求出动点P的轨迹C1的方程.(Ⅱ)设N(t,t2),则PQ的方程为y=2tx﹣t2,联立方程组,得:(4+20t2)x2﹣20t3x+5t4﹣20=0,由此利用根的判别式、韦达定理、点到直线距离公式、弦长公式,结合已知条件能求出三角形面积的最大值.【解答】解:(Ⅰ)由已知可得,点P满足∴动点P的轨迹C1是一个椭圆,其中,2c=2…∴动点P的轨迹C1的方程为.…(Ⅱ)设N(t,t2),则PQ的方程为:y﹣t2=2t(x﹣t),整理,得y=2tx﹣t2,联立方程组,消去y整理得:(4+20t2)x2﹣20t3x+5t4﹣20=0,…有,而,点M到PQ的高为,…由代入化简得:即;当且仅当t2=10时,S△MPQ可取最大值.当直线的斜率不存在时,x=t,S△MPQ=.∴S△MPQ最大值.…21.已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)e x(a为实数).(1)当a=4时,求函数y=g(x)在x=0处的切线方程;(2)求f(x)在区间[t,t+2](t>0)上的最小值;(3)如果关于x的方程g(x)=2e x f(x)在区间[,e]上有两个不等实根,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)把a=4代入函数g(x)的解析式,求出导数,得到g(0)和g′(0),由直线方程的点斜式得切线方程;(2)利用导数求出函数f(x)在[t,t+2]上的单调区间,求出极值和区间端点值,比较大小后得到f(x)在区间[t,t+2](t>0)上的最小值;(3)把f(x)和g(x)的解析式代入g(x)=2e x f(x),分离变量a,然后构造函数,由导数求出其在[,e]上的最大值和最小值,则实数a的取值范围可求.【解答】解:(Ⅰ)当a=4时,g(x)=(﹣x2+4x﹣3)e x,g(0)=﹣3.g′(x)=(﹣x2+2x+1)e x,故切线的斜率为g′(0)=1,∴切线方程为:y+3=x﹣0,即y=x﹣3;(Ⅱ)f′(x)=lnx+1,xf'(x)﹣0 +f(x)单调递减极小值(最小值)单调递增①当时,在区间(t,t+2)上f(x)为增函数,∴f(x)min=f(t)=tlnt;②当时,在区间上f(x)为减函数,在区间上f(x)为增函数,∴;(Ⅲ)由g(x)=2e x f(x),可得:2xlnx=﹣x2+ax﹣3,,令,.当x,h(x),h′(x)变化如下:x 1 (1,e)h′(x)﹣0 +h(x)单调递减极小值(最小值)单调递增∵,h(1)=4,h(e)=,.∴关于x的方程g(x)=2e x f(x)在区间[,e]上有两个不等实根,则.[选修4-1:几何证明选讲]22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.【考点】与圆有关的比例线段.【分析】(1)连接BE、OE,由直径所对的圆周角为直角,得到BE⊥EC,从而得出DE=BD=,由此证出△ODE≌△ODB,得∠OED=∠OBD=90°,利用圆内接四边形形的判定定理得到O、B、D、E四点共圆;(2)延长DO交圆O于点H,由(1)的结论证出DE为圆O的切线,从而得出DE2=DM•DH,再将DH 分解为DO+OH,并利用OH=和DO=,化简即可得到等式2DE2=DM•AC+DM•AB成立.【解答】解:(1)连接BE、OE,则∵AB为圆0的直径,∴∠AEB=90°,得BE⊥EC,又∵D是BC的中点,∴ED是Rt△BEC的中线,可得DE=BD.又∵OE=OB,OD=OD,∴△ODE≌△ODB.可得∠OED=∠OBD=90°,因此,O、B、D、E四点共圆;(2)延长DO交圆O于点H,∵DE⊥OE,OE是半径,∴DE为圆O的切线.可得DE2=DM•DH=DM•(DO+OH)=DM•DO+DM•OH.∵OH=,OD为△ABC的中位线,得DO=,∴,化简得2DE2=DM•AC+DM•AB.[选修4-4:坐标系与参数方程]23.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【考点】参数方程化成普通方程;点的极坐标和直角坐标的互化.【分析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程.【解答】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+=0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.[选修4-5:不等式]24.已知定义在R上的函数f(x)=|x+1|+|x﹣2|的最小值为m.(Ⅰ)求m的值;(Ⅱ)若a,b,c是正实数,且满足a+b+c=m,求证:a2+b2+c2≥3.【考点】不等式的证明;绝对值不等式的解法.【分析】(Ⅰ)|x+1|+|x﹣2|≥(x+1)(x﹣2)=3,即可求m的值;(Ⅱ)由(Ⅰ)知a+b+c=3,再由三元柯西不等式即可得证.【解答】(Ⅰ)解:因为|x+1|+|x﹣2|≥(x+1)(x﹣2)=3当且仅当﹣1≤x≤2时,等号成立,所以f(x)的最小值等于3,即m=3(Ⅱ)证明:由(Ⅰ)知a+b+c=3,又a,b,c是正实数,所以(a2+b2+c2)(12+12+12)≥(a+b+c)2=9,所以a2+b2+c2≥3。
决胜2024年高考数学押题预测卷01数 学(新高考九省联考题型)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1i z =+,则1z z =+( )A. 13i 55- B. 1355i + C. 31i 55- D. 31i55+2.已知向量()2,3a =r,()1,b x =-r ,则“()()a b a b +^-r r r r ”是“x =的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知集合{}2log 1A x x =£,{}2,2x B y y x ==£,则( )A. A B BÈ= B. A B AÈ= C. A B B=I D.R B C A R=È)(4.从正方体八个顶点中选择四个顶点构成空间四面体,则该四面体不可能( )A. 每个面都是等边三角形B. 每个面都是直角三角形C. 有一个面是等边三角形,另外三个面都是直角三角形D. 有两个面是等边三角形,另外两个面是直角三角形5.已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()fx 的最小值为( )A. eB. C. D. 2e6.已知反比例函数ky x=(0k ¹)的图象是双曲线,其两条渐近线为x 轴和y 轴,两条渐近线的夹角为π2,将双曲线绕其中心旋转可使其渐近线变为直线y x =±.已知函数1y x x =+的图象也是双曲线,其两条渐近线为直线y =和y 轴,则该双曲线的离心率是( )B. 的7.已知2sin sin a b -=2cos cos 1a b -=,则()cos 22a b -=( )A. 18-C. 14D. 78-8.已知定义域为R 的函数()f x 的导函数为()f x ¢,若函数()31f x +和()2f x ¢+均为偶函数,且()28f ¢=-,则()20231i f i =¢å的值为( )A. 0B. 8C. 8- D. 4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()sin()(0,0π)f x x w j w j =+><<的最小正周期为π,且函数()f x 的图象关于直线π12x =-对称,则下列说法正确的是( )A. 函数()f x 的图象关于点2π,03æöç÷èø对称B. 函数()f x 在区间5π0,12æöç÷èø内单调递增C. 函数()f x 在区间ππ,42æö-ç÷èø内有恰有两个零点D. 函数()f x 的图象向右平移π12个单位长度可以得到函数()cos 2g x x =的图象10.已知A 、B 是椭圆22132x y =+的左、右顶点,P 是直线x =上的动点(不在x 轴上),AP 交椭圆于点M ,BM 与OP 交于点NA. 23PA PB k k ×= B. 若点(P ,则:12AOM POM S S △△=C. OP OM ×uuu r uuuu r是常数 D. 点N 在一个定圆上11.已知四棱锥P -ABCD 是正方形,PA ^平面ABCD ,1AD =,PC 与底面ABCD ,点M 为平面ABCD 内一点,且(01)AM AD l l =<<,点N 为平面PAB 内一点,NC =,下列说法正确的是( )A. 存在l 使得直线PB 与AM 所成角为π6B. PAB ^平面PBMC. 若l =,则以P 为球心,PM 为半径的球面与四棱锥P ABCD -各面的交线长为D. 三棱锥N ACD -三、填空题:本题共3小题,每小题5分,共15分.12.如图所示是一个样本容量为100的频率分布直方图,则由图形中的数据,可知其60%分位数为___________.13.如图,“雪花曲线”也叫“科赫雪花”,它是由等边三角形生成的.将等边三角形每条边三等分,以每条边三等分的中间部分为边向外作正三角形,再将每条边的中间部分去掉,这称为“一次分形”;再用同样的方法将所得图形中的每条线段重复上述操作,这称为“二次分形”;L .依次进行“n 次分形”(*N n Î).规定:一个分形图中所有线段的长度之和为该分形图的长度.若将边长为1的正三角形“n 次分形”后所得分形图的长度不小于120,则n 的最小值是______.(参考数据:lg 20.3010»,lg30.4771»)14.在平面直角坐标系xOy 中,已知圆22:4O x y +=,若正方形ABCD 的一边AB 为圆O 的一条弦,则||OC 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数2()e ()x f x x ax a =--.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求实数a 的值;(2)求函数()f x 的单调区间.16.生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(1)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(2)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用跑步软件二的人数,求X 的分布列和数学期望;(3)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x ,2x ,3x ,4x ,其方差为21s ;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y ,2y ,3y ,4y ,其方差为22s ;1x ,2x ,3x ,4x ,1y ,2y ,3y ,4y 的方差为23s .写出21s ,22s ,23s 的大小关系.(结论不要求证明)17.如图,在四棱锥P ABCD -中,PA ^底面ABCD ,//AD BC ,AB BC ^.点M 在棱PB 上,2PM MB =,点N 在棱PC 上,223PA AB AD BC ====.(1)若2CN NP =,Q 为PD 的中点,求证://NQ 平面PAB ;(2)若直线PA 与平面AMN 所成角的正弦值为23,求PN PC 的值.18.已知抛物线C :22y px =(05p <<)上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程;(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB V 、ABE V 、ERS △的面积分别为1S 、2S 、3S 、4S .若12344S S S S =,求直线AB 的方程.19.给定正整数3N ³,已知项数为m 且无重复项的数对序列A :()()()1122,,,,,,m m x y x y x y ×××满足如下三个性质:①{},1,2,,i i x y N Î×××,且()1,2,,i i x y i m ¹=×××;②()11,2,,1i i x y i m +==×××-;③(),p q 与(),q p 不同时在数对序列A 中.(1)当3N =,3m =时,写出所有满足11x =的数对序列A ;(2)当6N =时,证明:13m £;(3)当N 为奇数时,记m 的最大值为()T N ,求()T N .决胜2024年高考数学押题预测卷01数 学(新高考九省联考题型)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2020年广西桂林市高考数学模拟试卷(文科)(3月份)一、单项选择题(本大题共12小题,共60.0分)1.已知复数z=i(−2−i),则该复数在复平面内对应的点在第()象限A. 一B. 二C. 三D. 四2.在等差数列{a n}中,若a1+a13=10,则(a5+a9)2+4a7=()A. 120B. 100C. 45D. 1403.已知集合A={x|x<2},B={x|3−2x>0},则()A. A∩B={x|x<32} B. A∩B=⌀C. A∪B={x|x<32} D. A∪B=R4.已知sin(π+α)=13,则cos2α=()A. 79B. 89C. −79D. 4√295.已知直线l1:mx+y−1=0,直线l2:(m−2)x+my−1=0,则“l1⊥l2”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知函数f(x)=sin(x+π6),其中x∈[−π3,α],若f(x)的值域是[−12,1],则cosα的取值范围是()A. [12,1) B. [−1,12] C. [0,12] D. [−12,0]7.在[−4,4]上随机地取一个数m,则事件“直线y=x+m与圆x2+y2−2x−1=0相交”发生的概率为()A. 14B. 13C. 12D. 238.执行如图的程序框图,若输入的N值为10,则输出的N值为()A. −1B. 0C. 1D. 29.如果log12x<log12y<0,那么()A. y<x<1B. x<y<1C. y>x>1D. x>y>110.已知抛物线C:y=4x2,则其准线方程为()A. x=−1B. y=−1C. x=−116D. y=−11611.已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c)则a+b+c的取值范围为()A. (1+e,1+e+e2)B. (1e+2e,2+e2)C. (2√1+e2,2+e2)D. (2√1+e2,1e+2e)12.在数列{a n}中,a1=3,a n+1a n+2=2a n+1+2a n(n∈N+),则该数列的前2015项的和是()A. 7049B. 7052C. 14098D. 14101二、填空题(本大题共4小题,共20.0分)13.已知a⃗+b⃗ =(3,4),|a⃗−b⃗ |=3,则a⃗⋅b⃗ =____________.14.某中学共有1800人,其中高二年级的人数为600.现用分层抽样的方法在全校抽取n人,其中高二年级被抽取的人数为21,则n=______.15.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为________.16.第十二届全运会将在沈阳市举行.若将6名志愿者每2人一组,分派到3个不同的场馆,且甲、乙两人必须同组,则不同的分配方案有______ 种.三、解答题(本大题共7小题,共84.0分)17.某公司为了了解用电量y(单位:度)与气温x(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,数据如表:气温(℃)141286用电量22263438(1)由散点图知,用电量y与气温x具有线性相关关系,求y关于x的线性回归方程;(2)根据(1)所求的线性回归方程估计气温为10℃时的用电量.参考公式:b=∑x ini=1y i−nxy∑x i2ni=1−nx2,a=y−bx;∑x i4i=1y i=1120,∑x i24i=1=440.18.在中,角A,B,C所对的边分别是a,b,c,且(1)求边AB的长;(2)若点D是边BC上的一点,且的面积为3√34求的正弦值.19.如图所示,在四棱锥P−ABCD中,PD⊥平面ABCD,底面ABCD是矩形,AD=PD,E、F分别是CD、PB的中点.(1)求证:EF⊥平面PAB;(2)设AB=√3BC=3,求三棱锥P−AEF的体积.20.已知点P(2,1)在椭圆C:x28+y2b2=1上.(Ⅰ)求椭圆的离心率;(Ⅱ)若直线l:x−2y+m=0(m≠0)与椭圆C交于两个不同的点A,B,直线PA,PB与x轴分别交于M,N两点,求证:|PM|=|PN|.21.设函数f(x)=(x2−1)lnx−x2+2x.(1)求曲线y=f(x)在点(2,f(2))处的切线方程;(2)证明:f(x)≥1.22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =cosθ,y =1+sinθ(θ为参数),曲线C 2的参数方程为{x =2cosφ,y =sinφ(φ为参数). (1)将C 1,C 2的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为ρ(cosθ−2sinθ)=4.若C 1上的点P 对应的参数为θ=π2,点Q 在C 2上,点M 为PQ 的中点,求点M 到直线l 距离的最小值.23. 已知函数f(x)=x|2a −x|+2x ,a ∈R .(1)若a =0,判断函数y =f(x)的奇偶性,并加以证明; (2)若函数f(x)在R 上是增函数,求实数a 的取值范围;(3)若存在实数a ∈(1,2]使得关于x 的方程f(x)−tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.【答案与解析】1.答案:D解析:本题考查复数的代数表示法及其几何意义,是基础题.利用复数代数形式的乘法运算化简,求出z的坐标得答案.解:∵z=i(−2−i)=1−2i,∴该复数在复平面内对应的点的坐标为(1,−2),在第四象限.故选:D.2.答案:A解析:本题考查了等差数列的性质,属于基础题.利用等差数列的性质可得a1+a13=2a7=10⇒a7=5,则(a5+a9)2+4a7=(2a7)2+4a7即可求得答案.解:在等差数列{a n}中,a1+a13=2a7=10⇒a7=5,∴(a5+a9)2+4a7=(2a7)2+4a7=100+20=120,故选A.3.答案:A解析:本题考查集合的交集,并集运算,属于基础题.求出B,再利用交集,并集运算求解.},A={x|x<2},解:因为B={x|3−2x>0}={x|x<32},A∪B={x|x<2}.所以A∩B={x|x<32故选A.4.答案:A解析:解:∵sin(π+α)=13,∴可得sinα=−13,∴cos2α=1−2sin2α=1−2×19=79.故选:A.由已知及诱导公式可求sinα,由二倍角的余弦函数公式即可得解.本题主要考查了诱导公式,二倍角的余弦函数公式的应用,属于基础题.5.答案:B解析:解:直线l1:mx+y−1=0,直线l2:(m−2)x+my−1=0,若“l1⊥l2”,则m(m−2)+m=0,解得m=0或m=1,故“l1⊥l2”是“m=1”的必要不充分条件,故选:B.利用两条直线相互垂直的充要条件求出m的值,再根据充分必要条件的定义即可得出.本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.6.答案:B解析:本题考查正弦余弦函数图象与性质,考查特殊角的三角函数值的应用,属于基础题.根据f(x)的值域,利用正弦函数的图象和性质,即可得出α+π6的取值范围,由此求出α的取值范围,由余弦函数图象即可取得cosα的取值范围.解:∵x∈[−π3,α],函数f(x)=sin(x+π6)的值域是[−12,1],∴x+π6∈[−π6,α+π6];由正弦函数的图象和性质知:π2≤α+π6≤7π6,解得:π3≤α≤π,由余弦函数的图象可知:−1≤cosα≤12,故选B.7.答案:C解析:本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力.利用圆心到直线的距离小于半径可得到直线与圆有公共点,可求出满足条件的m,最后根据几何概型的概率公式可求出在[−4,4]上随机地取一个数m,事件“直线y=x+m与圆x2+y2−2x−1=0相交”发生的概率.<√2,∴−3<m<1,解:直线x−y+m=0与圆(x−1)2+y2=2相交时,弦心距d=√2.故所求概率为12故选C.8.答案:D解析:解:模拟程序的运行,可得N=10满足条件N为偶数,N=5不满足条件N≤2,执行循环体,不满足条件N为偶数,N=2满足条件N≤2,退出循环,输出N的值为2.故选:D.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量N的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.答案:D解析:本题考查对数函数的性质,属于基础题.根据题意,结合对数函数的性质求解即可.解:log12x<log12y<0=log121,因为log12x为减函数,则x>y>1.故选D.10.答案:D解析:本题主要考查抛物线的定义和性质,考查学生的计算能力,比较基础,由抛物线的准线方程的定义可求得.解:由抛物线方程y=4x2可化为x 2=14y,可知抛物线的准线方程是y=−116.故选D.11.答案:B解析:本题主要考查的是对数函数图象与性质的综合应用,属于中档题.其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键.解:函数f(x)={|lnx |,0<x ≤e2−lnx,x >e,若a ,b ,c 互不相等,且f(a)=f(b)=f(c),如图,不妨a <b <c ,由已知条件可知:0<a <1<b <e <c <e 2, ∵−lna =lnb ,∴ab =1∵lnb =2−lnc , ∴bc =e 2, ∴a +b +c =b +e 2+1b,(1<b <e),令ℎ(b)=b +e 2+1b,(1<b <e),由(b +e 2+1b )′=1−e 2+1b 2<0,故(1,e)为减区间,∴2e +1e<a +b +c <e 2+2,∴a +b +c 的取值范围是:(1e +2e,2+e 2). 故选B .12.答案:B解析:本题考查了数列的周期性,考查了计算能力,属于中档题.a n+1a n +2=2a n+1+2a n (n ∈N +),变形(a n+1−2)(a n −2)=2,当n ≥2时,(a n −2)(a n−1−2)=2,两式相除可得a n+1=a n−1,可得数列{a n}是周期为2的周期数列,即可得出.解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1−2)(a n−2)=2,当n≥2时,(a n−2)(a n−1−2)=2,∴a n+1−2a n−1−2=1,可得a n+1=a n−1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.故选B .13.答案:4解析:本题考查向量数量积,利用向量数量积的运算法则以及向量的模的公式求解,属于基础题.求出|a⃗+b⃗ |2=a⃗2+2a⃗·b⃗ +b⃗ 2,|a⃗−b⃗ |2=a2⃗⃗⃗⃗ −2a⃗·b⃗ +b⃗ 2的值相减即可.解:a⃗+b⃗ =(3,4),|a⃗−b⃗ |=3,所以|a⃗+b⃗ |2=a⃗2+2a⃗·b⃗ +b⃗ 2=32+42=25,|a⃗−b⃗ |2=a⃗2−2a⃗·b⃗ +b⃗ 2=9,相减得4a⃗·b⃗ =16,a⃗·b⃗ =4,故答案为4.14.答案:63解析:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.根据分层抽样的定义建立比例关系即可得到结论.解:∵高二年级被抽取的人数为21,∴21600=n1800,得n=63,故答案为:63.15.答案:53解析:本题考查双曲线定义以及双曲线的简单性质的应用,考查计算能力. 解:根据双曲线定义|PF 1|+|PF 2|=2a ,设|PF 2|=r , 则|PF 2|=4r ,故3r =2a ,即r =2a3,即|PF 2|=2a 3.根据双曲线的几何性质,|PF 2|≥c −a ,即2a3≥c −a , 即ca ≤53,即e ≤53,故双曲线的离心率e 的最大值为53, 故答案为53.16.答案:18解析:本题考查排列、组合的综合应用,注意“甲、乙两人必须同组”,将其他四人分成2组即可. 分2步进行分析:①、将6名志愿者分成3组,每组2人,将除甲乙外的4人分成2组即可,②、将分好的3组全排列,对应3个不同的场馆,分别求出每一步的情况数目,由分步计数原理计算可得答案.解:根据题意,分2步进行分析: ①、将6名志愿者分成3组,每组2人,由于甲、乙两人必须同组,将其他4人分成2组即可,则有C 42C 22A 22=3种分组方法;②、将分好的3组全排列,对应3个不同的场馆,有A 33=6种方法; 则不同的分配方案有3×6=18种; 故答案为18.17.答案:解:(1)x =14+12+8+64=10,y =22+26+34+384=30.∴b =∑x i n i=1y i −nxy∑x i 2n i=1−nx2=1120−4×10×30440−4×102=−2,a =y −bx =30−(−2)×10=50. ∴y 关于x 的线性回归方程是y =−2x +50. (2)当x =10时,y =−2×10+50=30. ∴气温为10℃时的用电量约为30度.解析:本题考查了线性回归方程的求解及数值预测,属于基础题. (1)根据回归系数公式计算回归系数,得出回归方程; (2)把x =10代入回归方程计算y .18.答案:解:(1)因为A =2π3,由得,即,从而所以C =π6, 所以,所以c =2.(2)S ΔACD =12×b ×CD ×sin π6=3√34,解得CD =3√32,在ΔACD 中,由余弦定理得AD 2=22+(3√32)2−2×3√32×2×cos π6=74,∴AD =√72, 在ΔACD 中,由正弦定理得AD sinC =ACsin∠ADC , ∴sin∠ADC =2√77.解析:本题考查了解三角形的知识,需要学生熟练掌握三角形的恒等变换公式以及正余弦定理.(1)由A,利用B表示出C,利用两角和与差的三角函数公式对cosB=√3sinC求出C,进而求出AB 的长即可;(2)利用三角形面积公式及余弦定理和正弦定理求出∠ADC的正弦值即可.19.答案:(1)证明:∵PD⊥平面ABCD,PD⊂平面PAD,∴平面PAD⊥平面ABCD,又平面PAD∩平面ABCD=AD,底面ABCD是矩形,BA⊥AD,∴BA⊥平面PAD,则平面PBA⊥平面PAD,∵AD=PD,取PA的中点G,连接FG,DG,则DG⊥PA,∴DG⊥平面PAB.又E、F分别是CD、PB的中点,G是PA的中点,底面ABCD是矩形,∴四边形EFGD为矩形,则DG//EF,∴EF⊥平面PAB;(2)解:由AB=√3BC=3,得BC=√3,AB=3,AD=PD=√3,且F是PB的中点.∴V P−AEF=V B−AEF=V F−ABE=12V P−ABE=12⋅13S△ABE⋅PD=12×13×12×3×√3×√3=34.解析:本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.(1)由PD⊥平面ABCD,得平面PAD⊥平面ABCD,再由面面垂直的性质可得BA⊥平面PAD,得到平面PBA⊥平面PAD,由AD=PD,取PA的中点G,连接FG,DG,则DG⊥PA,可得DG⊥平面PAB,然后证明四边形EFGD为矩形,得到DG//EF,则EF⊥平面PAB;(2)由AB=√3BC=3,得BC=√3,AB=3,AD=AP=√3,且F是PB的中点.然后利用等积法求三棱锥P−AEF的体积.20.答案:解:(1)∵点P(2,1)在椭圆C:x28+y2b2=1上,代入椭圆方程得b2=2,所以椭圆x28+y22=1,c=√6,a=2√2,∴e=√32.(2)将直线l:x−2y+m=0(m≠0)代入椭圆方程x28+y22=1得,2x 2+2mx +m 2−8=0,∵直线l :x −2y +m =0(m ≠0)与椭圆C 交于两个不同的点A ,B , ∴△=4m 2−8(m 2−8)>0, 解得−4<m <0,或0<m <4, 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=−m ,x 1 x 2=m 2−82,y 1=x 1+m 2,y 2=x 2+m 2,设PA 与PB 的斜率分别为k 1,k 2,∴k 1+k 2=y 1−y1x 1+y 2−1x 2=(x 1+m 2−1)(x 2−2)+(x 2+m2−1)(x 1−2)(x 2−2) =2x 1x 2+(m −4)(x 1+x 2)−4(m −2)2(x 1−2)(x 2−2)=m 2−8−m 2+4m −4m +82(x 1−2)(x 2−2)=0,因为k 1+k 2=0, ∴∠PMN =∠PNM , 所以|PM|=|PN|.解析:(1)代入P 点利用椭圆基本量关系可求b 和离心率e .(2)联立直线与椭圆,设出AB 两个点的坐标,利用韦达定理和直线斜率公式转化求解.本题考查椭圆基本量的关系,直线与椭圆位置关系,韦达定理斜率公式运用的,考查转化思想,属于难题.21.答案:(1)解:f′(x)=x 2−1x+2xlnx −2x +2=2xlnx −x −1x+2.f′(2)=4ln2−12,f(2)=3ln2.∴曲线y =f(x)在点(2,f(2))处的切线方程为:y −3ln2=(4ln2−12)(x −2), 化为:(4ln2−12)x −y −5ln2+1=0.(2)证明:f(x)≥1⇔(x 2−1)lnx −(x −1)2≥0. 当x =1时,不等式成立.所以只需证明:x >1时,lnx ≥x−1x+1;0<x <1时,lnx ≤x−1x+1. 令ℎ(x)=lnx −x−1x+1. 则ℎ′(x)=1x −x+1−(x−1)(x+1)2=x 2+1x(x+1)2>0.∴函数ℎ(x)在(0,+∞)上是增函数. ∴x >1时,ℎ(x)>ℎ(1)=0; 0<x <1时,ℎ(x)<ℎ(1)=0. 综上可得:f(x)≥1.解析:本题考查了利用导数研究函数的单调性极值与最值及其切线方程、证明不等式、分类讨论,考查了推理能力与计算能力,属于难题. (1)f′(x)=x 2−1x+2xlnx −2x +2=2xlnx −x −1x+2.可得f′(2),f(2)=3ln2.利用点斜式即可得出切线方程.(2)f(x)≥1⇔(x 2−1)lnx −(x −1)2≥0.当x =1时,不等式成立.所以只需证明:x >1时,lnx ≥x−1x+1;0<x <1时,lnx ≤x−1x+1.利用导数研究函数的单调性极值与最值,即可得出. 22.答案:解:(1)∵曲线C 1的参数方程为{x =cosθy =1+sinθ(θ为参数),∴曲线C 1消去参数θ,得到C 1的普通方程为x 2+(y −1)2=1, 它表示以(0,1)为圆心,1为半径的圆, ∵曲线C 2的参数方程为{x =2cosϕy =sinϕ(φ为参数),∴曲线C 2消去参数φ,能求出C 2的普通方程为x 24+y 2=1,它表示中心在原点,焦点在x 轴上的椭圆.(2)由已知得P(0,2),设Q(2cosθ,sinθ),则M(cosθ,1+12sinθ), 直线l :x −2y −4=0,点M 到直线l 的距离为d =5=|√2sin(θ+π4)−6|5,所以6√5−√105≤d ≤√10+6√56, 故M 到直线l 的距离的最小值为6√5−√105.解析:(1)曲线C 1的参数方程消去参数θ,能求出C 1的普通方程及其表示的曲线;曲线C 2的参数方程消去参数φ,能求出C 2的普通方程及其表求的曲线.(2)P(0,2),设Q(2cosθ,sinθ),则M(cosθ,1+12sinθ),直线l :x −2y −4=0,点M 到直线l 的距离为d =√5=|√2sin(θ+π4)−6|√5,由此能求出M 到直线l 的距离的最小值.本题考查曲线的普通方程的求法及其表示图形的判断,考查点到直线距离的最小值的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.23.答案:解:(1)函数y =f(x)为奇函数.当a =0时,f(x)=x|x|+2x , ∴f(−x)=−x|x|−2x =−f(x), ∴函数y =f(x)为奇函数;(2)f(x)={x 2+(2−2a)x,x ≥2a−x 2+(2+2a)x,x <2a ,当x ≥2a 时,f(x)的对称轴为:x =a −1; 当x <2a 时,y =f(x)的对称轴为:x =a +1; ∴当a −1≤2a ≤a +1时,f(x)在R 上是增函数, 即−1≤a ≤1时,函数f(x)在R 上是增函数;(3)方程f(x)−tf(2a)=0的解即为方程f(x)=tf(2a)的解.由a ∈(1,2]知2a >a +1>a −1,∴y =f(x)在(−∞,a +1)上单调增,在(a +1,2a)上单调减, 在(2a,+∞)上单调增,∴当f(2a)<tf(2a)<f(a +1)时,关于x 的方程f(x)=tf(2a)有三个不相等的实数根; 即4a <t ⋅4a <(a +1)2, ∵a >1,∴1<t <14(a +1a +2), 设ℎ(a)=14(a +1a +2),∵存在a ∈(1,2]使得关于x 的方程f(x)=tf(2a)有三个不相等的实数根, ∴1<t <ℎ(a)max ,又可证ℎ(a)=14(a +1a +2)在(1,2]上单调增 ∴ℎ(a)max =98,∴1<t<9.8解析:(1)若a=0,根据函数奇偶性的定义即可判断函数y=f(x)的奇偶性;(2)根据函数单调性的定义和性质,利用二次函数的性质即可求实数a的取值范围;(3)根据方程有三个不同的实数根,建立条件关系即可得到结论.本题主要考查函数奇偶性的判断,以及函数单调性的应用,综合考查分段函数的应用,综合性较强,运算量较大.。