2011年高中数学 2.2.2《用样本的数字特征估计总体的数字特征》测试 新人教A版必修3
- 格式:doc
- 大小:212.00 KB
- 文档页数:3
.2.2.2 用样本的数字特征估计总体的数字特征(二)【明目标、知重点】1.理解样本数据标准差的意义,会计算样本平均数和标准差.2.体会用样本估计总体的思想,会用样本的基本数字特征(平均数、标准差)估计总体的基本数字特征. 【填要点、记疑点】 1.标准差标准差是样本数据到平均数的一种平均距离,一般用s 表示.s = 1n[x 1-x2+x 2-x2+…+x n -x2].2.方差标准差的平方s 2叫做方差.s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数). 【探要点、究所然】 探究点一 标准差问题 平均数向我们提供了样本数据的重要信息,但是平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只有平均数还难以概括样本数据的实际状态.如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7如果你是教练,你应当如何对这次射击作出评价? 思考1 甲、乙两人本次射击的平均成绩分别为多少环?答 经计算得:x 甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x 乙=7.思考2 观察下图中两人成绩的频率分布条形图,你能说明其水平差异在哪里吗?答直观上看,还是有差异的.如:甲成绩比较分散,乙成绩相对集中.思考3 对于甲乙的射击成绩除了画出频率分布条形图比较外,还有没有其它方法来说明两组数据的分散程度?答还经常用甲乙的极差与平均数一起比较说明数据的分散程度.甲的环数极差=10-4=6,乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.思考4 如何用数字去刻画这种分散程度呢?答考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示 .思考5 所谓“平均距离”,其含义如何理解?答假设样本数据是x1,x2,…,x n,x表示这组数据的平均数.x i到x的距离是|x i-x |(i =1,2,…,n ).于是,样本数据是x 1,x 2,…,x n 到x 的“平均距离”是 S =|x 1-x |+|x 2-x |+…+|x n -x |n.由于上式含有绝对值,运算不太方便,因此,通常改用如下公式来计算标准差:s =1n[x 1-x2+x 2-x2+…+x n -x2].思考6 标准差的取值范围如何?若s =0表示怎样的意义?答 从标准差的定义可以看出,标准差s ≥0,当s =0时,意味着所有的样本数据等于样本平均数. 探究点二 方差思考1 方差的概念是怎样定义的?答 人们有时用标准差的平方s 2—方差来代替标准差,作为测量样本数据分散程度的工具,方差:s 2=1n·[(x 1-x )2+(x 2-x )2+…+(x n -x )2].思考2 对于一个容量为2的样本:x 1,x 2(x 1<x 2),它们的平均数和标准差如果分别用x 和a 表示,那么x 和a 分别等于什么?答 x =12(x 1+x 2),a =12(x 2-x 1).思考3 在数轴上,x 和a 有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?答 x 和a 的几何意义如下图所示.说明了标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.思考 4 现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?答通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.例1 求出问题中的甲乙两运动员射击成绩的标准差,并说明他们的成绩谁比较稳定?解x甲=110(7+8+7+9+5+4+9+10+7+4)=7,同理可得x乙=7.根据标准差的公式,s甲=110[7-72+8-72+…+4-72]=2;同理可得s乙≈1.095.所以s甲>s乙.因此说明甲的成绩离散程度大,乙的成绩离散程度小.由此可以估计,乙比甲的射击成绩稳定.反思与感悟标准差能够衡量样本数据的稳定性,标准差越大,数据的离散程度就越大,也就越不稳定.标准差越小,数据的离散程度就越小,也就越稳定.跟踪训练1如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________. 答案 6.8解析 从茎叶图中求出运动员在5次比赛中的分数,结合方差公式求解.依题意知,运动员在5次比赛中的分数依次为8,9,10,13,15,其平均数为8+9+10+13+155=11.由方差公式得s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=15(9+4+1+4+16)=6.8. 探究点三 标准差及方差的应用例2 画出下列四组样本数据的条形图,说明它们的异同点.(1)5,5,5,5,5,5,5,5,5; (2)4,4,4,5,5,5,6,6,6; (3)3,3,4,4,5,6,6,7,7; (4)2,2,2,2,5,8,8,8,8.解 四组样本数据的条形图如下:四组数据的平均数都是5.0,标准差分别是:0.00,0.82,1.49,2.83.它们有相同的平均数,但它们有不同的标准差,说明数据的分散程度是不一样的.反思与感悟比较两组数据的异同点,一般情况是从平均数及标准差这两个方面考虑.跟踪训练2 从甲、乙两种玉米中各抽10株,分别测得它们的株高如下:甲:25、41、40、37、22、14、19、39、21、42;乙:27、16、44、27、44、16、40、40、16、40;(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=30,x乙=110(27+16+44+27+44+16+40+40+16+40)=31,x甲<x乙.即乙种玉米的苗长得高.(2)由方差公式得:s2甲=110[(25-30)2+(41-30)2+…+(42-30)2]=104.2,同理s2乙=128.8,∴s2甲<s2乙.即甲种玉米的苗长得齐.答乙种玉米苗长得高,甲种玉米苗长得齐.例3 甲、乙两人同时生产内径为25.40 mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm):甲25.46 25.32 25.45 25.39 25.3625.34 25.42 25.45 25.38 25.4225.39 25.43 25.39 25.40 25.4425.40 25.42 25.35 25.41 25.39乙25.40 25.43 25.44 25.48 25.4825.47 25.49 25.49 25.36 25.3425.33 25.43 25.43 25.32 25.4725.31 25.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?(结果保留小数点后3位)解用计算器计算可得x甲≈25.401,x乙≈25.406;s甲≈0.037,s乙≈0.068.从样本平均数看,甲生产的零件内径比乙的更接近内径标准(25.40mm),差异很小;从样本标准差看,由于s甲<s乙,因此甲生产的零件内径尺寸比乙的稳定程度高得多.于是,可以作出判断,甲生产的零件的质量比乙的高一些.反思与感悟从上述例子我们可以看到,尽管总体是同一个,但由于样本不同,相应的样本频率分布与平均数、标准差等都会发生改变,这就会影响到我们对总体情况的估计.如果样本的代表性差,那么对总体所作出的估计就会产生偏差;样本没有代表性时,对总体作出错误估计的可能性就非常大.跟踪训练3 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.解[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02. 乙品种的样本平均数也为10,样本方差为[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.244. 因为0.244>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定. 【当堂测、查疑缺】1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 答案 B解析 A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.2.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示: 则7个剩余分数的方差为( )A.1169B.367C .36D.677答案 B 解析 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2] =17(16+9+1+0+1+9+0) =367. 3.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是x =2,方差是13,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数和方差分别为 ( )A .2,13B .2,1C .4,13D .4,3答案 D解析 因为x =2,s 2=13;所以X =3x -2=4,S 2=9s 2=3,故选D.4.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为________; (2)命中环数的标准差为________. 答案 (1)7 (2)2解析 (1)x =110(7+8+7+9+5+4+9+10+7+4)=7010=7.(2)s 2=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4, ∴命中环数标准差为2. 【呈重点、现规律】1.标准差的平方s 2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.。
2.2.2用样本的数字特征估计总体的数字特征 (两课时)零号作业一、众数、中位数、平均数1、众数:(1)定义:一组数据中出现次数最多的数称为这组数据的众数.(2)特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势 [破疑点] 众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.(3)在直方图中为最高矩形下端中点的横坐标 2、中位数:(1)定义:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数. (2)特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.[破疑点] 中位数不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.(3) 直方图面积平分线与横轴交点的横坐标.左右两边面积各占一半3、平均数:(1)定义:一组数据的和与这组数据的个数的商.数据x 1,x 2,…,x n 的平均数为xn=x 1+x 2+…+x nn(2)特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时可靠性降低.(3) 直方图中每个小矩形的面积与小矩形底边中点的横坐标的乘积之和. 二、标准差、方差1、标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用以下公式来计算s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较_ 小.2.方差(1)定义:标准差的平方,即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](2)特征:与标准差的作用相同,描述一组数据围绕平均数波动程度的大小. (3)取值范围:[0,+∞)3、数据组x 1,x 2,…,x n 的平均数为x ,方差为s 2,标准差为s ,则数据组ax 1+b ,ax 2+b ,…,ax n +b (a ,b 为常数)的平均数为a x +b ,方差为a 2s 2,标准差为4、规律总结(1)用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据. 样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据(2)平均数对数据有“取齐”的作用,代表一组数据的平均水平.标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.(3)标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.列出一组样本数据的频率分布表步骤说明:1、对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.一号作业11、众数(1)定义:一组数据中出现次数______的数称为这组数据的众数.(2)特征:一组数据中的众数可能______一个,也可能没有,反映了该组数据的____________.在直方图中为最高矩形下端中点的____________最多不止集中趋势横坐标2.中位数(1)定义:一组数据按从小到大的顺序排成一列,处于______位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是______的,反映了该组数据的______________.在频率分布直方图中,中位数左边和右边的直方图的面积______..中间唯一集中趋势相等3.平均数(1)定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,x n的平均数为x n=_________________.(2)特征:平均数对数据有“取齐”的作用,代表该组数据的_____________.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的______,但平均数受数据中_________的影响较大,使平均数在估计总体时可靠性降低.直方图中每个小矩形的面积与小矩形底边中点的横坐标的. ______x1+x2+…+x nn平均水平信息极端值乘积之和4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式来计算s=__________________________.可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕______波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较______;标准差较小,数据的离散程度较______.1n[(x1-x)2+(x2-x)2+…+(x n-x)2]平均数大小5.方差(1)定义:标准差的平方,即s2=________________________________________.(2)特征:与____________的作用相同,描述一组数据围绕平均数波动程度的大小.(3)取值范围:___________.1n[(x1-x)2+(x2-x)2+…+(x n-x)2] 标准差[0,+∞)数据组x1,x2,…,x n的平均数为x,方差为s2,标准差为s,则数据组ax1+b,ax2+b,…,ax n+b(a,b为常数)的平均数为a x+b,方差为a2s2,标准差为as.典例讲解中位数、众数、平均数的应用例1据报道,某公司的33名职工的月工资(以元为单位)如下:(1)求该公司的职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)你认为哪个统计量更能反映这个公司职工的工资水平?结合此问题谈一谈你的看法.[解析](1)平均数是x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)平均数是x′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司职工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数偏差较大,所以平均数不能反映这个公司职工的工资水平.练习1:某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映甲群市民的年龄特征?(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映乙群市民的年龄特征?[答案](1)甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2)乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁),中位数为5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.例2:(1)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差(2)某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.①求这次测试数学成绩的众数.②求这次测试数学成绩的中位数.③求这次测试数学成绩的平均分.[解析](1)x甲=15(4+5+6+7+8)=6,x乙=15(5×3+6+9)=6,甲的中位数是6,乙的中位数是5.甲的成绩的方差为15(22×2+12×2)=2,乙的成绩的方差为15(12×3+32×1)=2.4.甲的极差是4,乙的极差是4.所以A,B,D错误,C正确.(2)①由图知众数为70+802=75.②由图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.③由图知这次数学成绩的平均分为:40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.[答案](1)C (2)见解析练习1:参加市数学调研抽测的某校高三学生成绩分布的茎叶图1和频率分布直方图2均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:求参加数学抽测的人数n,抽测成绩的中位数及分数分布在[80,90),[90,100]内的人数.[答案]分数在[50,60)内的频率为2,由频率分布直方图可以看出,分数在[90,100]内的同样有2人.由2n=10×0.008,得n=25.由茎叶图可知抽测成绩的中位数为73.∴分数在[80,90)之间的人数为25-(2+7+10+2)=4.参加数学竞赛人数n=25,中位数为73,分数在[80,90),[90,100]内的人数分一号作业21.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值都不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的值相等.其中正确的结论的个数() A.1B.2 C.3 D.42、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如下图所示,假设得分值的中位数为m e,众数为m O,平均值为x,则()A.m e=m O=x B.m e=m O<x C.m e<m O<x D.m O<m e<x3、某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是() A.31,6岁B.32.6岁C.33.6岁D.36.6岁4、阶段考试以后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均分为N,那么M N为________.1、A 2 D 3、C 4、 15、为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?[解析](1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.标准差、方差的应用例3、从甲、乙两种玉米的苗中各抽10株,分别测它们的株高如下:(单位:cm)甲:25414037221419392142乙:27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?[解析]看哪种玉米的苗长得高,只要比较甲、乙两种玉米的苗的均高即可;要比较哪种玉米的苗长得齐,只要看两种玉米的苗高的方差即可,因为方差是体现一组数据波动大小的特征数.(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm).所以x甲<x乙.(2)s2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144)=110×1042=104.2(cm2),s2乙=110[(2×272+3×162+3×402+2×442)-10×312]=110×1288=128.8(cm2).所以s2甲<s2乙.[答案](1)乙种玉米的苗长得高,(2)甲种玉米的苗长得齐.练习1:甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有() A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1[答案] B练习2:一次数学知识竞赛中,两组学生成绩如下表:已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.[答案](1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s2甲=12+5+10+13+14+6×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172.s2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256.因为s2甲<s2乙,所以甲组成绩较乙组成绩稳定.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度看,甲组成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为20人,乙组成绩大于或等于90分的人数为24人,所以乙组成绩在高分阶段的人数多,同时,乙组得满分的比甲组得满分的多6人,从这一角度看,乙组成绩较好.一号作业31. 若样本数据x 1,x 2,……,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .322.为了稳定市场,确保农民增收,某农产品7个月份的每月市场收购价格与其前三个月的市场收购价格有关,并使其与前三个月的市场收购价格之差的平方和最小,下表列出的是该产品今年前6个月的市场收购价格:则前7A.757 B.767 C .11D.7873. 某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数4.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)1、C2、B3、C4、1,1,3,3。
2-2-2用样本的数字特征估计总体的数字特一、选择题1.甲、乙两中学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是( )A.因为他们平均分相等,所以学习水平一样B.成绩平均分虽然一样,方差较大的,说明潜力大,学习态度端正C.表面上看这两个学生平均成绩一样,但方差小的成绩稳定D.平均分相等,方差不等,说明学习不一样,方差较小的同学,学习成绩不稳定,忽高忽低[答案] C2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3[答案] D3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.b>c>aC.c>a>b D.c>b>a[答案] D4.甲、乙两台机床同时生产一种零件,现要检验它们的运行情况,统计10天中两台机床每天出次品数分别为甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则从平均数考试,甲、乙两台机器出次品数较少的为( )A.甲B.乙C.相同D.不能比较[答案] B[解析]x甲=110(0+1+0+2+…+4)=1.5,x乙=110(2+3+…+1)=1.2. x乙<x甲.5.已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( ) A .1 B .2 C .3 D .4[答案] B [解析] x =3+5+7+4+65=5,则方差s 2=15[(3-5)2+(5-5)2+(7-5)2+(4-5)2+(6-5)2]=2.6.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是( )A .63B .64C .65D .66[答案] A[解析] 甲、乙两人在这几场比赛中得分的中位数分别是36和27,则中位数之和是36+27=63.7.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s23A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1[答案] B8.某市在非典期间一手抓防治非典,一手抓经济发展,下表是利群超市5月份一周的利润情况记录:A.6.51万元B.6.4万元C.1.47万元D.5.88万元[答案] A[解析]从表中一周的利润可得一天的平均利润为x=0.20+0.17+0.23+0.21+0.23+0.18+0.257=0.21.又五月份共有31天,∴五月份的总利润约是0.21×31=6.51(万元).9.甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示,如图所示.若甲、乙小组的平均成绩分别是x甲、x乙,则下列结论正确的是( )A.x甲>x乙,甲比乙成绩稳定B.x甲>x乙,乙比甲成绩稳定C.x甲<x乙,甲比乙成绩稳定D.x 甲<x 乙,乙比甲成绩稳定 [答案] A[解析] 根据茎叶图可知,甲组5名同学的成绩分别是88,89,90,91,92,乙组5名同学的成绩分别是83,84,88,89,91,可得x 甲=90,x 乙=87,故有x 甲>x 乙;s 2甲=2,s 2乙=9.2,故有s 2甲>s 2乙,所以甲比乙的成绩稳定,所以选A.10.如图是一次考试结果的频数分布直方图,根据该图可估计,这次考试的平均分数为( )A .46B .36C .56D .60[答案] A[解析] 根据频数分布直方图,可估计有4人成绩在[0,20)之间,其考试分数之和为4×10=40;有8人成绩在[20,40)之间,其考试分数之和为8×30=240;有10人成绩在[40,60)之间,其考试分数之和为10×50=500;有6人成绩在[60,80)之间,其考试分数之和为6×70=420;有2人成绩在[80,100)之间,其考试分数之和为2×90=180,由此可知,考生总人数为4+8+10+6+2=30,考虑总成绩为40+240+500+420+180=1 380,平均数=1 38030=46.二、填空题11.已知样本101,100,99,a ,b 的平均数为100,方差为2,这个样本中的数据a 与b 的取值为________.[答案] 102,98或98,102[解析] 由题设知⎩⎪⎨⎪⎧a +b =2002+a -2+b -2=10,∴⎩⎪⎨⎪⎧a =102b =98或⎩⎪⎨⎪⎧a =98b =102.12由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[答案]1,1,3,3[解析]不妨设x1≤x2≤x3≤x4,得:x2+x3=4,x1+x2+x3+x4=8⇒x1+x4=4s2=1⇔(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=4⇒①如果有一个数为0或4;则其余数为2,不合题意;②只能取|x1-2|=1;得:这组数据为1,1,3,3.13.某班50名学生右眼视力的检查结果如下表所示:[答案] 1.2 0.814.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.[答案] 5[解析]由茎叶图可知,该篮球运动员6场比赛的得分分别是14,17,18,18,20,21,得分的平均数x=14+17+18+18+20+216=18,根据方差公式得s2=16[(14-18)2+(17-18)2+(18-18)2+(18-18)2+(20-18)2+(21-18)2]=5.三、解答题15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:(1)(2)谁的各门功课发展较平衡?[解析](1)x甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73,故甲的平均成绩较好.(2)s 2甲=15[(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2]=104,s 2乙=15[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=56,由s 2甲>s 2乙,知乙的各门功课发展较平衡.16.某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B 进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)完成所附的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A 与B 的亩产量及其稳定性进行比较,写出统计结论. [解析] (1)(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了的展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A 的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.17.某学校高一(1)班和高一(2)班各有49名学生,两班在一次数学测验中的成绩统计如下:(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算上上游了!”(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.[分析] (1)根据平均数、中位数、众数所反映的情况来分析;(2)结合方差的意义来提出建议.[解析](1)由于(1)班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.(2)①班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.②班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.18.从某校参加数学竞赛的试卷中抽取一个样本,考查竞赛的成绩分布,将样本分成6组,得到频率分布直方图如图,从左到右各小组的小长方形的高的比为1:1:3:6:4:2,最右边的一组的频数是8.请结合直方图的信息,解答下列问题:(1)样本容量是多少?(2)成绩落在哪个范围的人数最多?并求出该小组的频数和频率. (3)估计这次数学竞赛成绩的众数、中位数和平均数.[解析] (1)从左到右各小组的频率分别为117,117,317,617,417,217样本容量为8217=68.(2)成绩落在70~80之间的人数最多;频率为617;频数为68×617=24.(3)众数的估计值是75,中位数的估计值是 70+12-117-117-317617×10=4556≈75.83. 平均数的估计值是117×45+117×55+317×65+617×75+417×85+217×95=75.。
2.2.2用样本的数字特征估计总体的数字特征同步练习题
一、选择题:
1.关于平均数、中位数、众数的下列说法中正确一个是( ) A.中位数可以准确的反映出总体的情况 B.平均数数可以准确的反映出总体的情况 C.众数数可以准确的反映出总体的情况
D.平均数、中位数、众数都有局限性,都不能准确的反映出总体的情况 2.设6,5,4321===x x x ,则该样本的标准差为( )
A.
33 B.36 C.35 D.3
7 3.一个样本数据从小到大的顺序排列为50,30,28,23,,20,15,12x ,其中,中位数为22,则=x ( )
A.21
B.15
C.22
D.35
4.甲、乙两名射击运动员,在一次连续10次的射击中,他们所射中环数的平均数一样,但方差不同,正确评价他们的水平是( )
A.因为他们所射中环数的平均数一样,所以他们水平相同;
B.虽然射中环数的平均数一样,但方差较大的,潜力较大,更有发展前途;
C.虽然射中环数的平均数一样,但方差较小的,发挥较稳定,更有发展前途;
D.虽然射中环数的平均数一样,但方差较小的,发挥较不稳定,忽高忽低;
5.已知一组数据为13,10,,4,1,8x --且这组数的中位数是7,那么数据中的众数是( ) A.7 B.6 C.4 D.10
6.一组数据的方差为2
s ,将这组数据中的每个数据都扩大2倍,所得一组新数据的方差为( )
A.2
s B.
2
2
1s C.22s D.24s 7.若x 是10021,,,x x x 的平均值,1a 为4021,,,x x x 的平均值,2a 为100241,,,x x x 的平均值,则下列式子中正确的是( )
A.100604021a a x +=
B.100406021a a x +=
C.21a a x +=
D.2
2
1a a x +=
二、填空题:
8.数据11,10,8,7,7,5的中位数、众数、平均数分别是 9.若6个数的标准差为2,平均数为1,则此六数的平方和为 10.若40个数据的平方和是36,平均数是
2
2
,则这组数据的标准差是
11.一组数据的方差为
23
1
,若将该组数据中的每一个数都减去10得到一组新数据,则该组新数据的方差为 三、解答题:
12.甲乙两位同学进行投篮比赛,每人玩5局.每局在指定线外投篮,若第一次不进,再投第二次,依此类推,但最多只能投6次.当投进时,该局结束,并记下投篮次数.当6投不进,该局也结束,记为“×”.当第一次投进得6分,第二次投进得5分,第三次投进得4分,依此类推.第6次不投进,得0分.两人投篮情况如下:
请通过计算,判断那个投篮的水平高?
参考答案
一选择题:
1.D 2.B 3.A 4.C 5.D 6.D 7.A 答案提示:
1.根据平均数、中位数、众数的定义可知答案为(D );
2.由5=x 得3
632])()()[(31
232221==-+-+-=
x x x x x x s 3.因为共有八个数,因此,当按从小到大的顺序排列后,中位数等于最中间两数的平均数.
4.由平均数与方差的概念即知;
5.因为共有六个数,因此,当按从小到大的顺序排列后,中位数等于最中间两数的平均数,因此,10=x ;
6.由方差公式n
x x x x x x s n 2
22212
)()()(-++-+-= 分析即可;
7.由于x x x x =+++10021 ,而1402140a x x x =+++ ,
210024160a x x x =+++ ,于是,100
60402
1a a x +=
;
二、填空题:
8.
215、7、8 9.30 10.510 11.23
1
答案提示:
8.中位数为
215.观察数据11,10,8,7,7,5可知众数为“7”、中位数为“2
8
7+”通过计算得不均数为“8”;
9.由=-++-+-=
])()()[(61
262221x x x x x x s 22
62221)(6
1x x x x -+++ 即=
21)(6
1262221-+++x x x 由此即得结论; 10.=-++-+-=
])()()[(40
1
2402221x x x x x x s =-=++++-+++2240212
40222140
3640)(2)(401x x x x x x x x x 510. 11.由方差计算公式易得.
三、解答题:
因为:甲得分平均数, 乙得分平均数, 甲得分的标准差96.1=, 乙得分的标准差24.2= 所以: 甲得分平均数=乙得分平均数 甲得分的标准差<乙得分的标准差 故甲投篮的水平高.。