ADAMSVibration振动分析模块教程
- 格式:pptx
- 大小:989.00 KB
- 文档页数:25
1.问题描述研究太阳能板展开前和卫星或火箭分离前卫星的运行。
研究其发射振动环境及其对卫星各部件的影响。
2.待解决的问题在发射过程中,运载火箭给敏感部分航天器部件以高载荷。
每个航天器部件和子系统必学设计成能够承受这些高载荷。
这就会带来附加的质量,花费高、降低整体性能。
更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。
这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。
关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。
三个bushings将launch vehicle adapter和火箭连接起来。
Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。
所以设计问题如下:找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的:传到航天器的垂直加速度不被放大;70-100HZ传递的水平加速度最小。
3.将要学习的Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。
Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。
Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。
Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。
添加频域测量供后续设计研究和优化使用。
3.1需创建的东西:振动执行器、输入通道、输出通道完全非线性模型打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。
加载Adams/vibration模块:Tools/ plugin Manager.仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。
ADAMS/Vibration模块在悬置系统振动性能分析中的应用作者:Simwe 来源:MSC发布时间:2012-05-04 【收藏】【打印】复制连接【大中小】我来说两句:(2) 逛逛论坛一、动力总成悬置系统的建模1) 动力总成的主要参数a) 动力总成的质量b) 质心位置c) 动力总成的转动惯量、惯性积d) 发动机的参数,如发动机在怠速、最大扭矩、额定转速工况下的转速、输出扭矩等。
2) 悬置系统的主要参数a) 悬置点坐标b) 悬置刚度c) 阻尼d) 安装角度。
图1 动力总成质量特性参数输入图2 ADAMS动力总成悬置系统示意图根据动力总成和悬置系统的质量特性参数、几何特性参数、力学特性参数输入,在ADAMS/view中建立动力总成悬置系统虚拟样机模型。
二、动力总成悬置系统的分析评价悬置系统性能主要从系统的避频、解耦、限位、隔振率等几个方面考察。
分为时域、频域下激励信号输入分析。
1) 悬置系统固有频率分析在ADAMS/Vibration模块下对动力总成悬置系统进行振动模态分析。
图3 模态分析对话框经仿真分析得到动力总成刚体六阶模态固有频率,如下表所示。
表中第二列为系统无阻尼固有频率,它是把系统看作保守系统的前提下得到的,即系统没有阻尼;第三列为系统的阻尼比,也叫相对阻尼系数,即系统阻尼系数与临界阻尼的比值。
图4 模态分析固有频率分布表根据发动机隔振理论,发动机激振频率与系统固有频率之比大于√2,才能起到隔振的效果;不平路面的激励频率是客观存在,一般小于2.5HZ。
2) 悬置系统振动模态能量解耦分析能量解耦法是从能量的角度来解释发动机总成悬置系统的振动解耦。
如果发动机总成悬置系统作某个自由度的振动,而其他自由度是解耦的,那么系统的振动能量只集中在该自由度上。
从能量角度来说,耦合就是沿着某个广义坐标方向的力(力矩)所作的功,转化为系统沿多个广义坐标的动能和势能。
采用能量法解耦的依据是, 当系统在作某个方向的振动而和其它方向解耦时, 则能量只集中于该自由度方向上。
ADAMS振动分析介绍ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一款广泛应用于机械工程领域的多体动力学仿真软件。
它可以用于对机械系统的运动、动力、力学性能进行仿真和分析。
其中一项重要应用就是进行振动分析。
振动是机械系统中普遍存在的现象,对于复杂的机械系统,振动分析是非常重要的。
在设计阶段进行振动分析可以对系统的结构进行优化,减少振动对系统的破坏,并提高系统的可靠性和性能。
振动分析方法ADAMS提供了多种振动分析方法,包括模态分析、频率响应分析和随机响应分析等。
模态分析模态分析是振动分析中常用的方法之一。
它通过计算机模拟的方式,求解结构系统的振型、振荡频率和振动模态的特性。
在ADAMS中,我们可以使用模态分析来确定系统的固有频率和振型。
通过模态分析,我们可以了解系统的固有振动特性,为后续的振动设计提供参考。
频率响应分析频率响应分析是用来研究结构在激励下的振动响应。
在ADAMS中,我们可以通过对系统施加激励,来计算系统在不同频率下的响应。
通过频率响应分析,我们可以了解系统在不同频率下的振动特性,判断系统是否存在共振现象,并优化系统的设计以避免共振。
随机响应分析随机响应分析是用来研究结构在随机激励下的振动响应。
在ADAMS中,我们可以通过模拟随机激励,并计算系统的随机响应。
随机响应分析可以用来评估系统的结构强度和稳定性,预测系统遇到随机激励时的振动响应。
ADAMS中的振动分析步骤在ADAMS中进行振动分析的一般步骤如下:1.构建模型:在ADAMS中构建机械系统的模型,包括系统的刚体、连接关系、约束和激励等。
2.定义材料属性:为模型中的各个部件定义材料属性。
这些属性包括材料的密度、弹性模量、泊松比等。
3.应用边界条件:定义模型中的边界条件,如约束、初始位移等。
4.进行振动分析:选择适当的振动分析方法,如模态分析、频率响应分析或随机响应分析,并设置计算参数。
ADAMS教程很详细手把手教你学会
ADAMS是一款领先的多体动力学仿真软件,广泛应用于机械、航空航天、汽车等领域。
它可以帮助工程师进行产品设计、性能分析、优化等工作。
本文将介绍ADAMS的使用方法,通过详细的手把手教程,让你轻松掌握ADAMS的技术。
接下来,我们需要在模型中添加不同的零部件,比如连接件、传动件等。
通过简单的拖拽操作,将零部件拖放到模型中,并连接它们。
通过设定零部件的属性和参数,可以定制不同的模型。
在模型构建完成后,我们可以进行仿真分析。
点击仿真按钮,ADAMS 将自动计算模型的运动学和动力学特性,得到系统的运动轨迹、力学特性等。
通过对仿真结果的分析,我们可以了解系统的行为和性能。
除了基本的模型构建和仿真分析,ADAMS还提供了优化功能。
通过设定不同的优化目标和约束条件,ADAMS可以自动优化系统设计,使其达到最佳性能。
另外,ADAMS还支持多种输出格式,比如图表、动画等。
我们可以将仿真结果输出为图表,方便进行数据分析;也可以生成动画演示,直观显示系统的运动过程。
总的来说,ADAMS是一款功能强大的多体动力学仿真软件,能帮助工程师进行产品设计和性能分析。
通过本文的手把手教程,相信你已经掌握了ADAMS的基本使用方法,希望你能够在工程设计中充分发挥ADAMS的优势。
1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。
2、检查并修改系统的设置,主要检查单位制和重力加速度。
3、修改零件名称(能极大地方便后续操作)、材料和颜色.首先在模型界面,使用线框图来修改零件名称和材料。
然后,使用view part only来修改零件的颜色。
4、添加运动副和驱动.注意:1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。
2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。
若视图定向错了,运动方向就错了,驱动函数要取负。
3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。
4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。
5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。
对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错.6)添加完运动副和驱动后,应对其进行检查。
使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。
7)进行初步仿真,再次对之前的工作进行验证。
因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。
若没问题,则进行保存。
5、添加载荷.6、修改驱动函数.一般使用速度进行定义,旋转驱动记得加d。
7、仿真。
先进行静平衡计算,再进行动力学计算。
8、后处理。
具体步骤如下:1)新建图纸,选择data,添加曲线,修改legend。
一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。
2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。
3)截图保存,得出仿真分析结论.。
河北科技师范学院学报 第25卷第2期,2011年6月Journa l of H ebe iN o r ma lU n i ve rs i ty o f Science&T echno l ogy V o.l25N o.2Jun,2011基于ADA M S/V ibrati on的曲轴受迫振动分析马淑英,陈立东,刘荣昌,陈建伟(河北科技师范学院机电工程学院,河北秦皇岛,066600)摘要:在对刚柔耦合曲轴系模型建立的基础上,给出了曲轴受迫振动的分析方法,利用A da m s/V i brati on软件对给定载荷条件下的曲轴扭转振动进行了动态仿真,仿真计算结果表明,在曲轴圆角处的位移和速度有一突变,说明在圆角处易产生变形,与实际相符。
关键词:曲轴;ADAM S;振动分析;振动模型中图分类号:TK422 文献标志码:A 文章编号:1672-7983(2011)02-0050-06曲轴系统作为发动机上主要的运动部件,它的性能优劣直接关系到发动机乃至整车的性能、可靠性和寿命。
曲轴系的振动是引发内燃机振动的主要因素。
曲轴上作用有大小、方向周期性变化的切向和法向作用力,故曲轴会产生扭转振动[1]。
由于曲轴较长,扭转刚度较小,且曲轴系的转动惯量较大,故曲轴扭转振动频率较低,在发动机工作转速范围内容易产生共振,从而引起较大噪声、加剧其它零件的磨损,甚至导致曲轴折断。
曲轴的振动本质上是三维形式的振动,不仅扭转振动是人们研究的主要内容之一,弯曲振动、纵向振动也成为研究的重要内容[2]。
因此,开展轴系多维振动的机理与控制方法的研究既有较高的学术价值,又有明确的工程应用意义。
1 曲轴的振动分析方法由于曲轴的结构和受力情况都比较复杂,在计算曲轴轴系的振动特性时,一般都要将轴系简化为比较简单的力学模型,以便于求解。
早期的曲轴振动研究主要采用离散化方法,并将曲轴振动作为纯扭转振动处理。
目前,多采用H o lzer法、传递矩阵法、有限元法、弹性波法、模态分析法等曲轴振动分析方法,其中传递矩阵法因计算方便快速应用最广,有限元法因计算精度高而受人青睐,弹性波传播法兼具上述两种方法的特点,开始被引入曲轴振动计算[3]。
基于ADAMS的盘式制动器振动分析盘式制动器是一种常见的制动装置,广泛应用于汽车、摩托车等机动车辆中。
在制动过程中,由于制动器产生的摩擦力和摩擦产生的振动力,会导致制动器的振动,进而影响制动效果和驾驶安全。
因此,对盘式制动器的振动进行分析和优化是非常重要的。
为了对盘式制动器的振动进行分析,可以使用ADAMS(Advanced Dynamic Analysis System)这个动力学仿真软件。
ADAMS是一种基于多体动力学的仿真软件,可以模拟和分析机械系统的动力学行为,包括刚体运动、受力分析等。
以下是一种基于ADAMS的盘式制动器振动分析的步骤。
首先,建立盘式制动器的三维模型。
使用ADAMS的绘图工具,可以建立一个盘式制动器的三维模型,包括刹车盘、刹车片、刹车卡钳等零件。
在建立模型时,需要考虑到实际制动器的几何形状、质量和刚度等参数。
然后,定义盘式制动器的材料属性。
在ADAMS中,可以为盘式制动器的每一个零件定义材料属性,包括材料的密度、弹性模量和泊松比等参数。
这些参数将影响盘式制动器的振动特性。
接下来,定义盘式制动器的运动学约束。
在ADAMS中,可以为盘式制动器的各个零件之间建立运动学约束,例如轴向约束、径向约束等。
这些约束可以使盘式制动器的模型遵循实际运动规律,并减少模型的自由度。
然后,定义盘式制动器的边界条件。
在ADAMS中,可以定义盘式制动器受力的边界条件。
例如,可以定义刹车盘受到的制动力大小和方向。
这些边界条件将影响盘式制动器的动力学响应。
接着,进行盘式制动器的动力学仿真。
在ADAMS中,可以对盘式制动器的模型进行动力学仿真。
通过施加边界条件和运动学约束,可以模拟盘式制动器在制动过程中的振动响应。
仿真结果可以包括盘式制动器的位移、速度和加速度等信息。
最后,分析盘式制动器的振动响应。
根据仿真结果,可以对盘式制动器的振动进行分析。
例如,可以计算刹车盘的最大位移和振动频率,评估盘式制动器的振动稳定性和制动效果。
ADAMS振动分析流程1. 概述ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种常用的多体动力学仿真软件,被广泛应用于机械系统的振动分析。
本文将介绍ADAMS振动分析的基本流程。
2. 模型建立在进行ADAMS振动分析之前,首先需要建立系统的多体动力学模型。
模型的建立可以通过两种方式实现:•几何建模:通过ADAMS软件提供的几何建模功能,可以直接构建系统的几何形状。
•CAD建模:可以使用其他CAD软件(如SolidWorks、CATIA等)建立系统的几何模型,并导入ADAMS进行后续分析。
3. 模型参数设置在建立好系统的几何模型后,需要设置模型的物理参数。
这些参数包括质量、刚度、阻尼等。
在ADAMS中,可以通过直接输入数值或者使用函数关联的方式来设置参数。
4. 载荷定义在进行振动分析前,需要定义系统的载荷。
载荷可以是外力、力矩、速度等。
可以在ADAMS中使用函数表达式、常数或者从外部文件中读取载荷数据。
5. 材料属性定义对于复杂的系统,需要为系统中的每个零件定义材料属性。
ADAMS提供了多种材料模型,可以根据实际情况选择合适的材料模型,并设置相应的材料参数。
6. 初始条件设置在进行振动分析前,需要设置系统的初始条件。
初始条件包括位置、速度等。
可以通过输入数值或者使用函数关联的方式来设置初始条件。
7. 振动分析设置在进行振动分析时,需要设置振动的类型和所要达到的目标。
ADAMS提供了多种振动分析方法,可以根据实际需要选择合适的方法。
常见的振动分析方法包括静态分析、模态分析和频率响应分析等。
8. 模型求解设置好振动分析的参数后,可以开始进行模型的求解。
ADAMS会对系统进行求解,并给出相应的结果。
结果包括位移、速度、加速度等。
9. 结果分析在进行振动分析后,可以对结果进行分析。
ADAMS提供了多种分析工具,可以绘制位移曲线、速度曲线、加速度曲线等。