细胞生物学细胞核
- 格式:ppt
- 大小:5.34 MB
- 文档页数:47
细胞⽣物学之笔记-第8章细胞核第⼋章细胞核形状:圆球形、椭球形、杆状(肌细胞)、马蹄形/多叶形(⽩细胞)畸形(肿瘤)核质⽐=nuclear-cytoplasmic=V细胞核/(V细胞-V细胞核)第⼀节核膜nuclear membrane=nuclear envelope⼀.核膜的化学组成蛋⽩质:65%~75%。
分为组蛋⽩、基因调节蛋⽩、DNA&RNA聚合酶、RNA酶等。
核膜所含的酶类与内质⽹相似,G6PD 也存在在核膜上。
脂类:与内质⽹相似,含PC、PE、胆固醇、⽢油三酯等。
核膜中不饱和脂肪酸含量较低,胆固醇和⽢油三酯含量较⾼、脂肪链会较长,→核膜稳定,内核膜更稳定。
少量核酸⼆.核膜的结构(内外层核膜、核周隙、核孔复合体和核纤层等结构组成)(⼀)外核膜与糙⾯内质⽹相连接外核膜outer nuclear membrane与粗⾯内质⽹相连,①使核周间隙与内质⽹腔相通,其表⾯也常②附着核糖体;故被看作粗⾯内质⽹的特化区域,③参与了某些蛋⽩质的合成外核膜胞质⾯附着中间纤维,还与微管等成分相连——④固定细胞核并维持细胞核形态(⼆)内核膜表⾯光滑包围核质内核膜表⾯光滑,下⾯与⼀层致密的纤维⽹络——核纤层紧密相连,⽀持作⽤。
内核膜上有核纤层蛋⽩B受体,可与核纤层蛋⽩B特异性结合。
在细胞周期中,核膜的解体与重建,都与核纤层蛋⽩对核内膜的连接有关,即跟核纤层蛋⽩B受体与核纤层蛋⽩B的结合有关(三)核周隙为内、外核膜之间的缓冲区宽约20~40nm,含有多种蛋⽩质和酶(四)核孔复合体是由多种蛋⽩质构成的复合结构核孔:nuclear pore =内外核膜的融合之处形成的环状开⼝。
数⽬、密度和细胞类型、核功能状态有关。
核孔复合体:nuclear pore complex,NPC 核孔是由多种蛋⽩质以特定⽅式排列形成的复合结构。
捕鱼笼式(fish-trap)核孔复合体模型,由约30个不同的核孔蛋⽩nucleoporin, Nup组成。
细胞生物学4-细胞核知识点●基本相关●位置:脂肪细胞的细胞核在边缘腺细胞细胞核居于一侧●数量:肝细胞、肾小管、软骨细胞有双核破骨细胞数百个●形态:中性粒细胞:核分叶状●大小:幼稚的细胞核比较大成熟的细胞细胞比较小●核膜●化学组成●结构成分与内质网相似,如均含有卵磷脂和脑磷脂。
●蛋白质与脂质是主要成分蛋白质占大多数●还含有少量的核酸●不饱和脂肪酸浓度较低,胆固醇三酰甘油浓度高●亚显微结构●两层基本平行的单位膜●核膜的双层膜结构●外核膜●面向粗面内质网有核糖体附着(内质网的特化区域)●内核膜●无核糖体●有核纤层(纤维蛋白网络)支持作用●核周间隙●内含多种蛋白质和酶●与粗面内质网相通●为内外核膜的缓冲区●核孔(电镜下圆形八角形)●内外核膜融合产生的圆环状结构,是“核—质”物质交换的通道●核孔数目和分布与细胞种类及生理状态有关●代谢旺盛的细胞数目较多●动物细胞多与植物细胞●核孔复合体●定义:核孔及其周围由一组蛋白颗粒以特定方式排列而形成的复杂结构。
●结构(捕鱼笼模型)●●①朝向胞质面并与外核膜相连的胞质环。
胞质环上有8条细长的纤维;●②朝向细胞核基质并与内核膜相连的核质环,核质环上8条纤维在末端形成小环,构成篮网状结构称为核篮。
●③位于核孔中央的颗粒状的中央栓。
●④位于核孔内把胞质环、核内环和中央环连接在一起的轮辐。
●功能●1. 允许水溶性物质通过;●2.选择性运输大分子物质。
●核膜主要功能●区域化作用:将核物质与细胞质物质隔开,保证遗传物质的稳定、遗传信息的准确传递和高效表达。
●控制细胞核与细胞质的物质交换●无机离子和小分子均可以自由地通过核膜●绝大多数大分子和一些小颗粒通过核孔复合体●关于核定位信号(NLS)●组成:●典型的NLS由4-8个氨基酸组成,富含碱性氨基酸残,如Lys、Arg,及Pro●NLS的氨基酸残基片段可以是一段连续的序列(首先发现于SV40病毒T抗原),也可以分成两段,两段之间间隔约10个氨基酸残基(如核质蛋白)●NLS序列可存在于亲核蛋白的不同部位,在指导完成核输入后并不被切除,而成为蛋白质的永久结构成分●作用机制●在细胞分裂中参与染色体的定位与分离●分裂间期:染色质紧贴于核膜内表面●前中期:核膜崩溃形成片段或者小泡●减数分裂前1联会复合体末端附着在核膜内表面●参与合成生物大分子,如抗体、膜蛋白、脂质●核纤层和和和骨架●核纤层●定义:是附着于内核膜的纤维状蛋白网●特点:内连核骨架外连中间纤维●构成·:●蛋白质主要为核纤层蛋白●哺乳动物及鸟类细胞中由4种蛋白质构成(lamina A、B、C、D):●是中间纤维蛋白超家族的成员●意义:●核膜、核孔复合体、染色质●支撑核膜●维持核孔的位置及核膜·的形状●为染色质提供附着位点●对于核膜的重建●磷酸化和去磷酸化●磷酸化解聚●去磷酸化聚合●细胞分裂染色质凝集的调节●细胞核的构建有一定作用●核骨架(间期细胞核中除核膜、染色质和核仁以外的由非组蛋白组成的纤维网架结构,在结构上与核孔复合体、核纤层、核仁等结构有密切联系,又称核基质。
细胞核与细胞质细胞核是真核细胞内最大、最明显和最重要的细胞器。
是区别原核细胞与真核细胞最显著的特征之一。
一般一个细胞只有一个细胞核,但在有些特殊细胞中,有多个细胞核。
细胞核主要由核被膜、核纤层、染色质、核仁及核体组成。
细胞核是遗传信息的储存场所,与细胞遗传及代谢活动密切相关的基因复制、转录和转录初产物的加工过程均在此进行。
核被膜核被膜的形态结构核被膜是包围在细胞核外的界膜,核被膜含有两层核膜,内层核膜的内表面存在一层由中间丝相互交织成的搞电子密度的蛋白质网络结构,为核纤层。
核被膜的外核膜外表面结合有核糖体。
内外核膜之间隔有间隙,为核间隙。
在核膜的许多部位,内外核膜相互融合,成为通道,为核孔。
每一核空由一个极为精密复杂的结构所组成,此结构为核孔复合体。
核被膜是有内外两层大致平行的膜组成,向着胞质侧的一层核膜称为外核膜,常常与糙面内质网相连,其胞质面上附有大量的核糖体。
近核质一侧核膜为内核膜,其内表面光滑,含有一些特异的蛋白质。
内外核膜之间存在间隙,与糙面内质网腔相通。
有贯穿核被膜的细胞质和核质间的环形通道为核空。
靠近核孔的核膜在化学组成上与其它处的核膜不同,特称核孔区,其特征蛋白为一种跨膜糖蛋白gp210.核被膜的功能及生物学意义一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核质结构和功能区域,使得DNA复制,RNA转录在核内进行。
而蛋白质的翻译则局限在细胞质中。
这样既避免了核质间彼此相互干扰,使细胞的生命活动秩序更加井然。
同时还能保护核内的DNA分子免受损伤。
另一方面,核被膜调控细胞核内外的物质交换和信息交流。
核被膜并不是完全封闭的,核质之间进行着频繁的物质交换和信息交流。
这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。
核孔复合体的结构核孔是胞质与核质之间物质交换的通道,每一核孔都是由结构精密的核孔复合体构成,组成核孔复合体的蛋白叫核孔蛋白,核孔复合体的数量随细胞种类、转录活性不同而有较大差异。
医学细胞生物学课件细胞核2024医学细胞生物学课件:细胞核1.绪论医学细胞生物学是一门研究细胞结构和功能,以及细胞在生命过程中的作用的学科。
细胞是生命的基本单位,所有的生物现象都是由细胞的结构和功能所决定的。
细胞核作为细胞的重要组成部分,对于细胞的生长、分化和代谢等方面具有至关重要的作用。
本文将重点介绍细胞核的结构和功能,以及其在医学研究中的应用。
2.细胞核的结构细胞核是细胞中最大的结构,主要由核膜、染色质、核仁和核质组成。
核膜是由两层磷脂双分子层组成的双层膜,上面有核孔,是细胞核与细胞质之间的物质交换的通道。
染色质是由DNA、蛋白质和RNA组成的复合体,是细胞遗传信息的载体。
核仁是细胞核中的一种亚结构,主要由rRNA和蛋白质组成,是细胞合成蛋白质的重要场所。
核质是细胞核中除了染色质和核仁以外的部分,主要由核糖体、mRNA和其他小分子RNA组成。
3.细胞核的功能细胞核是细胞中最重要的调控中心,其主要功能包括遗传信息的传递、基因的表达和调控、细胞的生长和分裂等。
遗传信息的传递是指细胞核中的DNA通过复制和转录过程,将遗传信息传递给下一代细胞。
基因的表达和调控是指细胞核中的基因在特定的时间和空间被激活,产生相应的蛋白质,从而发挥生物学功能。
细胞的生长和分裂是指细胞核通过调控基因的表达,控制细胞的生长和分裂过程,维持细胞内环境的稳定。
4.细胞核在医学研究中的应用细胞核在医学研究中具有重要的应用价值,其主要应用领域包括疾病的诊断和治疗、基因编辑和细胞治疗等。
疾病的诊断和治疗是指通过检测细胞核中的遗传变异和基因表达异常,来诊断和治疗疾病。
例如,通过检测细胞核中的癌基因和抑癌基因的突变,可以诊断癌症;通过调控细胞核中的基因表达,可以治疗某些遗传性疾病。
基因编辑是指通过改变细胞核中的DNA序列,来改变细胞的遗传特性。
例如,通过CRISPR/Cas9技术,可以精确地编辑细胞核中的基因,从而治疗某些遗传性疾病。
细胞治疗是指通过改变细胞核中的基因表达,来治疗某些疾病。