手拉手模型
- 格式:ppt
- 大小:790.00 KB
- 文档页数:11
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。
模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。
其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。
1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。
3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。
结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。
4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。
例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
手拉手模型的11个结论手拉手模型是一种描述社会网络的模型,它描述了社会网络中的人们之间的关系。
它的基本思想是,人们之间的关系是一种“手拉手”的关系,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
根据手拉手模型,社会网络中的人们之间的关系可以总结为11个结论:1. 人们之间的关系是一种“手拉手”的关系,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
2. 人们之间的关系是相互依赖的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
3. 人们之间的关系是可以改变的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
4. 人们之间的关系是可以传播的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
5. 人们之间的关系是可以改变的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
6. 人们之间的关系是可以传播的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
7. 人们之间的关系是可以改变的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
8. 人们之间的关系是可以传播的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
9. 人们之间的关系是可以改变的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
10. 人们之间的关系是可以传播的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
11. 人们之间的关系是可以改变的,即一个人的行为会影响另一个人,而另一个人的行为也会影响第一个人。
总之,手拉手模型描述了社会网络中人们之间的关系,它的11个结论提供了一种理解社会网络的方法,并且可以帮助我们更好地理解社会网络中的人们之间的关系。
《三角形证明》题型解读12 全等典型模型:“手拉手”模型【知识梳理】(一)“手拉手模型”的基本图形题型特征:△ABC 与△BDE 是等边三角形,A 、B 、D 三点在同一直线上。
解题方法:一定有以下六个结论(三组全等、一个60°、一个等边△、一组平行线) ①△ABE ≌△CBD证明过程:∵△ABC 与△BDE 是等边三角形,∴∠1=∠2=∠3=60°,∴∠ABE=∠CBD=120°,∵AB=BC ,BE=BD , ∴△ABE ≌△CBD (SAS ) ②△ABH ≌△CBF证明过程:∵△ABE ≌△CBD ,∴∠4=∠5,∵AB=BC ,∠1=∠2,∴△ABH ≌△CBF (SAS ) ③△BHE ≌△BFD证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,∵BE=BD ,∠2=∠3,∴△BHE ≌△BFD (SAS ) ④∠AGC=60°证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,在△GFE 和△BFD 中(“8”字模型),∠3=180°-∠BFD-∠7,∠EGF=180°-∠GFE-∠6,∵∠6=∠7,∠GFE=∠BFD ,∴∠3=∠EGF ,∵∠AGC=∠EGF ,∠3=60°,∴∠AGC=∠3=60° ⑤△BHF 是等边三角形证明过程:∵△BHE ≌△BFD (SAS ),∴BH=BF ,∵∠2=60°,∴△BHF 是等边三角形(有一个角是60°的等腰三角形是等边三角形) ⑥HF//AD证明过程:∵△BHF 是等边三角形,∴∠8=60°,∵∠3=60°,∴∠8=∠3,∴HF//AD (二)“手拉手模型”的变化图形题型特征:△ABC 与△BDE 是等边三角形,A 、B 、D 三点不在同一直线上。
图2M N 765431H GFEDCBA765431HG F ED CBA解题方法:一定有以下三个结论(一组全等,一个60°、一个角平分线) ①△ABE ≌△CBD证明过程:∵△ABC 与△BDE 是等边三角形,∴∠1=∠3=60°,∴∠ABE=∠CBD (共角模型),∵AB=BC ,BE=BD , ∴△ABE ≌△CBD (SAS ) ②∠AGC=60°证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,在△GFE 和△BFD 中(“8”字模型),∠3=180°-∠BFD-∠7,∠EGF=180°-∠GFE-∠6,∵∠6=∠7,∠GFE=∠BFD ,∴∠3=∠EGF ,∵∠AGC=∠EGF ,∠3=60°,∴∠AGC=∠3=60° ③BG 平分∠HBF证明过程:作BM ⊥AE 于点M ,BN ⊥GD 于点N ,如图2,∵△ABE ≌△CBD ,∴∠4=∠5,∵AB=BC ,∠AMB=∠CNB=90°,∴△ABM ≌△CBN (AAS ),∴BM=BN ,∴BG 平分∠HBF (到角两边的距离相等的点,在这个角的角平分线上) (三)常见“手拉手”变化图形【典型例题】例1.如图,C 为线段AE 上一动点(不与A 、E 重合),在AE 同侧分别作等边△ABC 和等 边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,以下五个结论: ①AD =BE ;②PQ ∥AE ;③CP =CQ ;④BO =OE ;⑤∠AOB =60°,恒成立的结论有( )。
专题12.19 三角形全等几何模型-“手拉手”模型(知识讲解)图一图二图三图四图五图六图七手拉手模型的定义:定义:有两个顶角相等而且有公共顶点的等腰三角形开成的图形。
特别说明:其中图一、图二为两个基本图形----等腰三角形,图二至图七为手拉手的基本模型,(左手拉左手,右手拉右手)3、如右图:手拉手模型的重要结论:结论1:∆ABC≅∆A/B/C/(SAS)BC=B/C/(左手拉左手等于右手拉右手)结论2:∠BOB=∠BAB(利用三角形全等及顶角相等的等腰三角形底角相等)结论3:AO平分∠B O C/(利用三角形全等面积相等,再利用角平分线性质定理证明)典型例题讲练:在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下操究:(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,△BAC=△DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB 全等的三角形是,此线BD和CE的数量关系是(2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,△BAC=△DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由:(3)如图3,已知△ABC、请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及△PBC+△PCB的度数、【答案】(1)△AEC,BD=CE;(2)BD=CE且BD△CE,理由见解析;(3)作图见解析,BE=CD,△PBC+△PCB=60°.【分析】(1)根据SAS证明两个三角形全等即可证明;(2)通过条件证明△DAB△△EAC(SAS),得到△DBC+△ECB=90°,即可证明BD△CE,从而得到结果;≅即可得到证明;(3)根据已知条件证明DAC BAE解:(1)△AB=AC,AE=AD,△BAC=△DAE,∠+∠=∠+∠,△DAE EAB BAC EAB即DAB EAC ∠=∠,△()△△ADB AEC SAS ≅,△BD=CE ;(2)BD=CE 且BD△CE ;理由如下:因为△DAE=△BAC=90°,如图2.所以△DAE+△BAE=△BAC+△BAE .所以△DAB=△EAC .在△DAB 和△EAC 中,,,.AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩所以△DAB△△EAC (SAS ).所以BD=CE ,△DBA=△ECA .因为△ECA+△ECB+△ABC=90°,所以△DBA+△ECB+△ABC=90°.即△DBC+△ECB=90°.所以△BPC=180°-(△DBC+△ECB )=90°.所以BD△CE .综上所述:BD=CE 且BD△CE .(3)如图3所示,BE=CD ,△PBC+△PCB=60°.由图可知60DAB EAC ∠=∠=︒,AD=AB ,AE=AC ,△+DAB BAC EAC BAC ∠∠=∠+∠,即DAC BAE ∠=∠,△()△DAE △BAE SAS ≅,△BE=CD ,ABE ADC ∠=∠,又△60BDA ∠=︒,△60ADC BDC ABE BDC ∠+∠=∠+∠=︒,△120BPC ABP BDC BDA ∠=∠+∠+∠=︒,△△PBC+△PCB=60°.【点拨】本题主要考查了全等三角形的知识点应用,准确分析图形是解题的关键. 举一反三变式1:如图,AC △BC ,DC △EC ,AC =BC ,DC =EC ,AE 与BD 交于点F .(1)求证:AE =BD ;(2)求△AFD 的度数.【答案】(1)详情见解析;(2)90AFD ∠=︒【分析】(1)利用角的等量代换求出ACE BCD ∠=∠,再判断ACE ≌BCD △即可求解; (2)利用全等三角形的性质得到E D ∠=∠,再通过角的等量代换求解即可.解:(1)△AC BC ⊥,DC EC ⊥△90ACB ECD ∠=∠=︒△ACB BCE ECD BCE ∠+∠=∠+∠△ACE BCD ∠=∠在ACE 和BCD △中AC BC ACE BCD DC EC =⎧⎪∠=∠⎨⎪=⎩△ACE ≌BCD △(SAS)△AE BD =(2)设BD 与CE 的交点为G ,如图所示:△ACE ≌BCD △△E D ∠=∠△180EFG FGE E ++=︒∠∠∠,180GCD CGD D ++=︒∠∠∠,且BGE CGD ∠=∠△90EFG GCD ==︒∠∠△90AFD ∠=︒【点拨】本题主要考查了全等三角形的性质和判定,灵活运用角的等量代换是解题的关键.例题2.已如:如图1,B ,C ,D 三点在一条直线上,△ABC 和△ECD 均为等边三角形,连接BE ,AD 交于点F ,BE 交AC 于点M ,AD 交CE 于点N .(1)以下结论正确的有 ;△AD =BE △△EFD =60° △MC =NC △△AMB =△END(2)探究:将图1中的△ECD 绕点C 顺时针旋转一个角度(旋转角小于60°),如图2所示. △问:(1)中的正确结论哪些还成立?若成立,请说明理由;△连接FC ,如图3所示,求证:FC 平分△BFD【答案】(1)△△△;(2)△ △△;△见解析.【分析】(1)△根据等边三角形的性质得CA =CB ,CD =CE ,△ACB =60°,△DCE =60°,则△ACE =60°,利用“SAS ”可判断△ACD △△BCE ,则AD =BE ;△根据三角形外角关系得△EFD =△EBC +△ADC =△DAC +△ADC =△ACB =60°,从而可得结论; △连接MN ,证明△MCN 是等边三角形即可得出结论;△60,60AMB EBC END NDC ∠=︒+∠∠=︒+∠,而AC ≠CD 得CAD CDA ∠≠∠,从而可得出结论;(2)△方法同(1),逐个结论进行证明即可;△作,CG BE CH AD ⊥⊥于点G ,H ,证明△BGC △△AHC ,△CGF △△CHF 可得△CFG CFH =∠,从而可得结论.解:(1)△△ABC ,△ECD 是等边三角形,△AC=BC ,CE=CD ,△ACB=△ECD=60°△△ACD=△BCE=△120°△△ACD△△BCE△AD=BE ,故△正确;△△FEN=△NDC又△△ENF=△CND△△EFD=△ECD=60°,故△正确;又△△ACE=△NCD=60°△MEC=△NDCEC=CD△△EMC△△DNC△MC=NC ,故△正确;又△△AMB=△ACB+△ECB=60°+△ECB ,△END=△ECD+△NDC=60°+△NDC而AC CD ≠△CAD CDA ∠≠∠△MBC NDC ∠≠∠△MBC END ∠≠∠,故△错误;故答案为:△△△;(2)△△ACB=△ECD=60°△△BCE=△ACD又AC=BC ,CE=CD△△ACD△△BCE△AD=BE,故△正确;△△ADC=△BEC又△ENF=△CND△△EFD=△ECD=60°,故△正确△△ACE≠60°=△ECD△△EMC 不全等于△DNC ,△MC≠NC ,故△错误(3),CG BE CH AD ⊥⊥于点G ,H ,如图,由(2)△知,△CBG=△CAHAC=BC△BGC=△AHC=90°△△BGC△△AHC△CG=CH又CF=CF ,△CGF=△CHF=90°△△CGF△△CHF△△CFG=△CFH△FC 平分△BFD【点拨】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.举一反三变式:如图,在ABC∆中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,则AOB∠的度数为()A.100︒B.120︒C.130︒D.150︒【答案】B【分析】先证明△DCB△△ACE,求出△CAE=△CDB,再利用“8字型”证明△AOH=△DCH =60°即可解决问题.解:如图:AC与BD交于点H,△△ACD,△BCE都是等边三角形,△CD=CA,CB=CE,△ACD=△BCE=60°,△△DCB=△ACE,在△DCB和△ACE中,CD CADCB ACECB CE⎧⎪∠∠⎨⎪⎩===,△△DCB△△ACE,△△CAE=△CDB,△△DCH+△CHD+△BDC=180°,△AOH+△AHO+△CAE=180°,△DHC=△OHA,△△AOH=△DCH=60°,△△AOB=180°−△AOH=120°.故选:B.【点拨】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.例题3.(阅读材料)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若△BAC=△DAE,AB=AC,AD=AE,则△ABD△△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:△BD=EC;△△BOC=60°;△△AOE=60°;△EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,△ABC=△BDC=60°,试探究△A与△C的数量关系.【答案】(1)证明见解析;(2)△△△;(3)△A+△C=180°.【分析】(1)利用等式的性质得出△BAD=△CAE,即可得出结论;(2)同(1)的方法判断出△ABD△△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出△BOC=60°,再判断出△BCF△△ACO,得出△AOC=120°,进而得出△AOE=60°,再判断出BF<CF,进而判断出△OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,△DBP=60°,进而判断出△ABD△△CBP(SAS ),即可得出结论.(1)证明:△△BAC=△DAE ,△△BAC+△CAD=△DAE+△CAD , △△BAD=△CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== ,△△ABD△△ACE ;(2)如图2,△△ABC 和△ADE 是等边三角形, △AB=AC ,AD=AE ,△BAC=△DAE=60°, △△BAD=△CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== ,△△ABD△△ACE ,△BD=CE ,△正确,△ADB=△AEC , 记AD 与CE 的交点为G ,△△AGE=△DGO ,△180°-△ADB -△DGO=180°-△AEC -△AGE , △△DOE=△DAE=60°,△△BOC=60°,△正确,在OB上取一点F,使OF=OC,△△OCF是等边三角形,△CF=OC,△OFC=△OCF=60°=△ACB,△△BCF=△ACO,△AB=AC,△△BCF△△ACO(SAS),△△AOC=△BFC=180°-△OFC=120°,△△AOE=180°-△AOC=60°,△正确,连接AF,要使OC=OE,则有OC=12 CE,△BD=CE,△CF=OF=12 BD,△OF=BF+OD,△BF<CF,△△OBC>△BCF,△△OBC+△BCF=△OFC=60°,△△OBC>30°,而没办法判断△OBC大于30度,所以,△不一定正确,即:正确的有△△△,故答案为△△△;(3)如图3,延长DC至P,使DP=DB,△△BDC=60°,△△BDP 是等边三角形,△BD=BP ,△DBP=60°,△△BAC=60°=△DBP ,△△ABD=△CBP ,△AB=CB ,△△ABD△△CBP (SAS ),△△BCP=△A ,△△BCD+△BCP=180°,△△A+△BCD=180°.【点拨】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.举一反三变式:如图,C 为线段AE 上一动点(不与点,A E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形,CDE AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下结论:①AD BE =;①//PQ AE ;①60AOB ∠=︒;①CPQ 是等边三角形,恒成立的是______.【答案】△△△△【分析】△由△ABC 和△CDE 都是等边三角形,可知AC=BC ,CD=CE ,△ACB=△DCE=60°,所以△ACD=△BCE=120°,所以△ACD△△BCE (SAS ),从而AD=BE ,故△正确;△△由△ACD△△BCE 得△CBE=△DAC ,加之AC=BC ,易得△ACB=△BCQ=60°,可证△CQB△△CPA (ASA ),从而CP=CQ ,再加之△PCQ=60°,可推出△PCQ 为等边三角形,易得△PQC=60°=△DCE ,根据内错角相等,两直线平行,可知△△正确;△结合△ACD△△BCE 和三角形的外角的性质,可得△AOB=60°,故△正确.解:△△等边△ABC 和等边△CDE ,△AC=BC ,CD=CE ,△ACB=△DCE=60°,△△ACB+△BCD=△DCE+△BCD ,即△ACD=△BCE ,△在△ACD 与△BCE 中,AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===△△ACD△△BCE (SAS ),△AD=BE ,故△正确;△△△△ACD△△BCE ,△△CBE=△DAC ,△由△ACB=△DCE=60°得△BCD=60°,△△ACP=△BCQ ,又△AC=BC ,△△CQB△△CPA (ASA ),△CP=CQ ,又△△PCQ=60°△△PCQ 为等边三角形,△△PQC=60°,△△PQC=60°=△DCE△PQ△AE故△△正确;△△△ACD△△BCE (SAS ),△△CAD=△CBE ,△△AOB=△CAD+△CEB=△CBE+△CEB ,又△△ACB=△CBE+△CEB=60°,△△AOB=△ACB=60°,故△正确.故答案为:△△△△.【点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、三角形外角的性质,熟练应用三角形全等的判定是解题的关键.。
手拉手模型的判定方法摘要:一、手拉手模型概述二、手拉手模型的判定方法1.视觉判定2.力学判定3.动力学判定4.神经网络判定三、各类判定方法的优缺点对比四、手拉手模型在实际应用中的案例分析五、未来发展趋势与展望正文:一、手拉手模型概述手拉手模型,是一种模拟人类行走、跑步等动态行为的机器人运动模型。
通过模拟人类运动过程中的关节运动、肌肉收缩等生理现象,实现机器人的自主运动。
手拉手模型在机器人研究领域具有广泛的应用价值,为研究人类行走提供了有力的理论支持。
二、手拉手模型的判定方法1.视觉判定视觉判定方法主要通过分析摄像头或其他图像传感器捕捉到的图像,对机器人运动状态进行判断。
该方法依赖于图像处理技术的发展,具有较高的实时性和准确性。
但同时,受到光照、遮挡等因素的影响,视觉判定方法在实际应用中存在一定局限性。
2.力学判定力学判定方法通过对机器人运动过程中的力学参数进行监测和分析,如加速度、速度、力等,判断机器人是否达到手拉手模型。
该方法具有较高的理论依据,但测量设备和算法的要求较高,实现难度相对较大。
3.动力学判定动力学判定方法结合机器人的动力学模型,通过计算运动学参数与动力学参数之间的关系,判断机器人是否符合手拉手模型。
该方法对机器人结构和运动学参数有较高要求,但在理论分析方面具有较好的优势。
4.神经网络判定神经网络判定方法利用已训练好的神经网络模型,对机器人运动状态进行判定。
该方法具有较强的适应性和鲁棒性,能够应对各种复杂环境。
但神经网络模型的训练过程较为复杂,需要大量数据支持。
三、各类判定方法的优缺点对比1.视觉判定:优点在于实时性强、准确性高,但受光照、遮挡等因素影响;2.力学判定:理论依据充分,但对测量设备和算法要求较高;3.动力学判定:对机器人结构和运动学参数有较高要求,但在理论分析方面具有优势;4.神经网络判定:适应性强、鲁棒性好,但训练过程较为复杂,需要大量数据支持。
四、手拉手模型在实际应用中的案例分析手拉手模型在机器人领域的应用案例丰富,如无人驾驶汽车、四足机器人、人形机器人等。
(完整版)经济模型手拉手模型经济模型手拉手模型摘要经济模型手拉手模型是一种有效的经济合作模式,通过形成紧密的合作网络,促进经济发展和资源共享。
本文介绍了经济模型手拉手模型的概念、特点和实施步骤,并分析了其在促进区域发展、促进企业合作和提高经济效益等方面的优势。
1. 概念经济模型手拉手模型是指在一个区域或一个领域内,不同经济主体之间建立紧密的合作网络,通过共享资源、互相支持和合作创新,实现经济共同发展的模式。
2. 特点- 多方参与:经济模型手拉手模型中涉及的经济主体包括政府、企业、高校、科研机构等多个方面,形成了多方参与的格局。
- 资源共享:通过合作,不同经济主体可以共享资源,推动优势互补,提高资源的利用效率。
- 提供支持:经济模型手拉手模型鼓励不同经济主体间互相支持,通过技术转移、创新合作等方式提供支持,促进经济发展。
- 创新推动:经济模型手拉手模型注重合作创新,通过共同研发、技术转移等方式推动科技进步和产业升级。
3. 实施步骤实施经济模型手拉手模型需要以下步骤:1. 建立联盟:各经济主体共同协商组成联盟,明确联盟的目标和任务。
2. 制定合作方案:根据各方的资源和需求,制定合作方案,明确合作的领域和方式。
3. 共享资源:各方通过资源共享,实现优势互补,提高资源的利用效率。
4. 支持合作:各方提供技术支持、资金支持等形式的合作支持,推动合作项目的顺利进行。
5. 评估调整:不断评估合作效果,及时调整合作方案,确保合作模式的有效运行。
4. 优势和意义经济模型手拉手模型在促进区域发展、促进企业合作和提高经济效益方面具有以下优势和意义:- 提升区域竞争力:通过合作创新和资源共享,能够提升整个区域的经济竞争力。
- 促进企业合作:不同企业之间可以共享资源,加强合作,促进企业发展和规模扩大。
- 提高经济效益:通过合作创新和资源共享,可以提高资源的利用效率,提升经济效益。
- 推动科技进步:合作创新能够促进科技的进步和产业的升级,推动经济发展。
完整版)社会学模型手拉手模型1.引言社会学是研究人类社会行为、社会关系和社会机构的科学。
手拉手模型是社会学中一个重要的概念,用来描述人们在社会互动中相互协作、互惠互助的关系。
本文将介绍手拉手模型的定义、特点和应用,并探讨其在社会学研究中的意义和影响。
2.手拉手模型的定义手拉手模型是指人们在社会交往中通过相互支持、合作和互助,形成紧密的互联互动的关系。
它强调人与人之间的互惠和互助,是一种相互关联和相互依赖的社会联系模式。
3.手拉手模型的特点手拉手模型具有以下几个特点:相互支持:手拉手模型强调人们在社会交往中相互支持,通过共同的努力和帮助来实现目标。
合作互助:在手拉手模型中,人们通过相互合作和互助,共同解决问题和应对挑战。
互联互动:手拉手模型强调人与人之间的紧密联系和互动,通过交流和合作实现共同的利益。
4.手拉手模型的应用手拉手模型在社会学研究中有广泛的应用,例如:教育领域:手拉手模型可以用于描述学生之间的相互支持和合作学习的关系,促进学生的共同学习和发展。
社区发展:手拉手模型可以应用于社区组织和发展,通过组织居民之间的互助、合作和支持,提高社区的凝聚力和发展能力。
心理健康:手拉手模型可以用于描述亲密关系中的相互支持和互助,帮助个体在压力和困难时获得支持和帮助。
5.手拉手模型的意义和影响手拉手模型的应用和研究对社会学具有重要意义和积极影响:加强社会联系:手拉手模型强调人与人之间的相互关联和互助,可以加强社会联系和社区凝聚力。
促进社会发展:通过手拉手模型中的合作和互助,可以促进社会的发展和进步。
改善人际关系:手拉手模型强调相互支持和互助,有助于改善人际关系和促进个体的心理健康。
6.结论手拉手模型是社会学中的一个重要概念,用于描述人们在社会交往中相互协作、互惠互助的关系。
它强调人与人之间的相互支持、合作和互助,在教育、社区发展和心理健康等领域有广泛的应用。
手拉手模型的研究和应用对于加强社会联系、促进社会发展和改善人际关系具有重要意义和积极影响。
模型介绍共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:(1)BCD ACE≅△△(2)AE BD=(3)AFB DFE∠=∠(4)FC BFE∠平分【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1图2图3图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4手拉手模型的定义:两个顶角相等且有共顶点的等腰三角形形成的图形。
手拉手模型特点:“两等腰,共顶点”模型探究:例题精讲考点一:等边三角形中的手拉手模型【例1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有_____________.解:∵△ABC和△DCE是正三角形,∴AC=BC,DC=CE,∠BCA=∠DCE=60°,∴∠BCA+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确;∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠ACB=∠DCE=60°,∴∠BCD=60°=∠ACB,在△ACP和△BCQ中∴△ACP≌△BCQ(ASA),∴AP=BQ,∴②正确;PC=QC,∴△CPQ为正三角形∴⑤正确∵△ACD≌△BCE,∴∠ADC=∠BEC,∠DCE=60°=∠CAD+∠ADC,∴∠CAD+∠BEC=60°,∴∠AOB=∠CAD+∠BEC=60°,∴③正确;∵△DCE 是正三角形,∴DE =DC ,∵∠AOB =60°,∠DCP =60°,∠DPC >∠AOB ,∴∠DPC >∠DCP ,∴DP <DC ,即DP <DE ,∴④错误;所以正确的有①②③⑤变式训练【变式1-1】.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒故选:C .【变式1-2】.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN ;④∠DAE =∠DBC .其中正确的有()A .②④B .①②③C .①②④D .①②③④解:∵△DAC 和△EBC 均是等边三角形,∴AC =DC ,BC =CE ,∠ACE =∠BCD ,∴△ACE≌△DCB,①正确由①得∠AEC=∠CBD,∴△BCN≌△ECM,∴CM=CN,②正确假使AC=DN,即CD=CN,△CDN为等边三角形,∠CDB=60°,又∵∠ACD=∠CDB+∠DBC=60°,∴假设不成立,③错误;∵∠DBC+∠CDB=60°∠DAE+∠EAC=60°,而∠EAC=∠CDB,∴∠DAE=∠DBC,④正确,∴正确答案①②④故选:C.【变式1-3】.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE与AC交于点F,若AB=5,BD=3,则=.解:连接CE,过点F作FM⊥BC于点M,FN⊥CE于点N,∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE=3,∠ABD=∠ACE=60°,∵AB=BC=5,∴DC=2,∵∠ACB=∠ACE=60°,FM⊥BC,FN⊥CE,∴FM=FN,=DC•FM,S△FCE=CE•FN,∵S△DFC∴,∴,故答案为:.考点二:等腰直角三角形中的手拉手模型【例2】.如图,ACB∆和ECD∆都是等腰直角三角形,90ACB ECD∠=∠=︒,D为AB边上一点,若5AD=,12BD=,则DE的长为__________解:ACB∆和ECD∆都是等腰直角三角形,CD CE∴=,AC BC=,90ECD ACB∠=∠=︒,ACE BCD∴∠=∠,在ACE∆和BCD∆中,CE CDACE BCD AC BC=⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS∴∆≅∆,12BD AE∴==,45CAE CBD∠=∠=︒,90EAD∴∠=︒,222212513DE AE AD∴=+=+=.变式训练【变式2-1】.如图,3AB=,2AC=,连结BC,分别以AC、BC为直角边作等腰Rt ACD∆和等腰Rt BCE∆,连结AE、BD,当AE最长时,BC的长为()A.22B.3C.11D.17解:90ACD BCE∠=∠=︒,ACD ACB BCE ACB∴∠+∠=∠+∠,即ACE DCB∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,AC CD == ,90ACD ∠=︒,2AD ∴=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,BC ∴=.故选:D .【变式2-2】.如图,在Rt ABC ∆中,AB AC =,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①AED CFD ∆≅∆;②EF AD =;③BE CF AC +=;④212AEDF S AD =四边形,其中正确的结论是(填序号).解:AB AC = ,90BAC ∠=︒,点D 为BC 中点,12BD CD AD BC ∴===,45BAD CAD C ∠=∠=∠=︒,AD BC ⊥,BC =,DF DE ⊥ ,90EDF ADC ∴∠=∠=︒,ADE CDF ∴∠=∠,AD CD = ,BAD C ∠=∠,()AED CFD ASA ∴∆≅∆,故①正确;当E 、F 分别为AB 、AC 中点时,12EF BC AD ==,故②不一定正确;ADE CDF ∆≅∆ ,AE CF ∴=,BE AE AB += ,BE CF AC ∴+=,故③正确;ADE CDF ∆≅∆ ,ADE CDF S S ∆∆∴=,212ADF CDF ADC AEDF S S S S AD ∆∆∆∴=+==⨯四边形,故④正确;故答案为:①③④.【变式2-3】.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF .(2)若BE =1,AE =2,求CE 的长.(1)证明:∵△ABC和△CEF均为等腰直角三角形,∴==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,==,又∵==,AE=2∴=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴EF2=BE2+BF2=12+()2=3,∴EF=,∵CE2=2EF2=6,∴CE=.考点三:任意等腰三角形中的手拉手模型【例3】.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD =36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论是_____.解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;法一:作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;法二:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴A、B、M、O四点共圆,∴∠AMO=∠ABO=72°,同理可得:D、C、M、O四点共圆,∴∠DMO=∠DCO=72°=∠AMO,∴MO平分∠AMD,故④正确;假设MO平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC =OD ,∴OA =OC ,而OA <OC ,故③错误;变式训练【变式3-1】.如图,等腰ABC ∆中,120ACB ∠=︒,4AC =,点D 为直线AB 上一动点,以线段CD 为腰在右侧作等腰CDE ∆,且120DCE ∠=︒,连接AE ,则AE 的最小值为()A .23B .4C .6D .8解:连接BE 并延长交AC 延长线于F ,120ACB ∠=︒ ,AC BC =,30CAB CBA ∴∠=∠=︒,120DCE ACB ∠=︒=∠ ,ACD BCE ∴∠=∠,AC BC = ,CD CE =,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,CB 为定直线,30CBE ∠=︒为定值,∴当D 在直线AB 上运动时,E 也在定直线上运动,当AE BE ⊥时,AE 最小,30CAB ABC CBE ∠=︒=∠=∠ ,90AFB ∴∠=︒,∴当E 与F 重合时,AE 最小,在Rt CBF ∆中,90CFB ∠=︒,30CBF ∠=︒,122CF CB ∴==,6AF AC CF ∴=+=,AE ∴的最小值为6AF =,故选:C .【变式3-2】.如图,在△ABC 中,AB =AC =5,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为边BC (不含端点)上的任意一点,在射线CM 上截取CE =BD ,连接AD ,DE ,AE .设AC 与DE 交于点F ,则线段CF 的最大值为.解:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=5AF.∴AF=.∴当AD最短时,AF最短、CF最长.∵当AD⊥BC时,AF最短、CF最长,此时AD=AB=.∴AF最短==.∴CF最长=AC﹣AF最短=5﹣=.故答案为:.【变式3-3】.【问题背景】(1)如图1,等腰ABC ∆中,AB AC =,120BAC ∠=︒,AQ BC ⊥于点Q ,则BC AB =;【知识应用】(2)如图2,ABC ∆和ADE ∆都是等腰三角形,120BAC DAE ∠=∠=︒,D 、E 、C 三点在同一条直线上,连接BD .求证:ADB AEC ∆≅∆.(3)请写出线段AD ,BD ,CD之间的等量关系,并说明理由.(1)解:AB AC = ,120BAC ∠=︒,AQ BC ⊥,30B C ∴∠=∠=︒,BQ QC =,12AQ AB ∴=,由勾股定理得:32BQ AB ===,BC ∴=,∴BC AB ==(2)证明:BAC DAE ∠=∠ ,BAC BAE DAE BAE ∴∠-∠=∠-∠,即DAB EAC ∠=∠,在ADB ∆和AEC ∆中,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,()ADB AEC SAS ∴∆≅∆;(3)解:CD BD =+,理由如下:由(1)可知:DE =,ADB AEC ∆≅∆ ,EC BD ∴=,CD DE EC BD ∴=+=+.实战演练1.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB AD =,B D ∠=∠,BAE DAC ∠=∠,那么AC 与AE 相等.小飞直接证明ABC ADE ∆≅∆,他的证明依据是()A .SSSB .SASC .ASAD .AAS证明:BAE DAC ∠=∠ ,BAE EAC DAC EAC ∴∠+∠=∠+∠,BAC DAE ∴∠=∠,AB AD = ,B D ∠=∠,()ABC ADE ASA ∴∆≅∆,AC AE ∴=,故选:C .2.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒,故选:C .3.如图,点A 是x 轴上一个定点,点B 从原点O 出发沿y 轴的正方向移动,以线段OB 为边在y 轴右侧作等边三角形,以线段AB 为边在AB 上方作等边三角形,连接CD ,随点B 的移动,下列说法错误的是()A .BOA BDC∆≅∆B .150ODC ∠=︒C .直线CD 与x 轴所夹的锐角恒为60︒D .随点B 的移动,线段CD 的值逐渐增大解:A .OBD ∆ 和ABC ∆都是等边三角形,60ABC OBD ODB BOD ∴∠=∠=∠=∠=︒,BO BD =,BC AB =,ABC DBA OBD DBA ∴∠-∠=∠-∠,CBD ABO ∴∠=∠,()BOA BDC SAS ∴∆≅∆,故A 不符合题意;B .BOA BDC ∆≅∆ ,90BDC BOA ∴∠=∠=︒,6090150ODC BDO BDC ∴∠=∠+∠=︒+︒=︒,故B 不符合题意;C .延长CD 交x 轴于点E ,150ODC ∠=︒ ,18030ODE ODC ∴∠=︒-∠=︒,90BOA ∠=︒ ,60BOD ∠=︒,30DOA BOA BOD ∴∠=∠-∠=︒,60DEA DOA ODE ∴∠=∠+∠=︒,∴直线CD 与x 轴所夹的锐角恒为60︒,故C 不符合题意;D .BOA BDC ∆≅∆ ,CD OA ∴=,点A 是x 轴上一个定点,OA ∴的值是一个定值,∴随点B 的移动,线段CD 的值不变,故D 符合题意;故选:D .4.如图,3AB =,2AC =BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,2AC CD == ,90ACD ∠=︒,222AD AC CD ∴=+=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,2217BC CE BE ∴=+=.故选:D .5.如图,线段OA 绕点O 旋转,线段OB 的位置保持不变,在AB 的上方作等边PAB ∆,若1OA =,3OB =,则在线段OA 旋转过程中,线段OP 的最大值是()A 10B .4C .5D .5解:如图,以AO 为边,在AO 的左侧作等边AOH ∆,连接BH ,AOH ∆ ,ABP ∆是等边三角形,1AO AH OH ∴===,AB AP =,60OAH BAP ∠=∠=︒,OAP HAB ∴∠=∠,在OAP ∆和HAB ∆中,AO AH OAP HAB AP AB =⎧⎪∠=∠⎨⎪=⎩,()OAP HAB SAS ∴∆≅∆,OP BH ∴=,在OPH ∆中,BH OH OB <+,∴当点H 在BO 的延长线上时,BH 的最大值4OH OB =+=,OP ∴的最大值为4,故选:B .6.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,则∠AOB =150°.解:连接OO ′,如图,∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,∴BO ′=BO =4,∠O ′BO =60°,∴△BOO ′为等边三角形,∴∠BOO ′=60°,∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠O ′BO ﹣∠ABO =∠ABC ﹣∠ABO ,即∠O ′BA =∠OBC ,在△O ′BA 和△OBC中,∴△O ′BA ≌△OBC (SAS ),∴O ′A =OC =5,在△AOO ′中,∵OA ′=5,OO ′=4,OA =3,∴OA 2+OO ′2=O ′A 2,∴∠AOO ′=90°,∴∠AOB =60°+90°=150°,故答案为:150°.7.如图,△ABC与△ADE均是等腰直角三角形,点B,C,D在同一直线上,AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,则CD=﹣.解:∵AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,∴BC=AB=2,DE=AE=3,∠BAD=∠CAE,∠ABC=45°=∠ACB,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴EC=BD,∠ABD=∠ACE=45°,∴∠ECB=∠ECD=90°,∴DE2=EC2+CD2,∴18=(2+CD)2+CD2,解得:CD=﹣,CD=﹣﹣(不合题意舍去),故答案为:﹣.8.如图,△ABC和△ADE均为等腰直角三角形,连接CD、BE,点F、G分别为DE、BE 的中点,连接FG.在△ADE旋转的过程中,当D、E、C三点共线时,若AB=3,AD=2,则线段FG的长为.解:连接BD,∠BAD=90°﹣∠BAE,∠CAE=90°﹣∠BAE,∴∠BAD=∠CAE.又AD=AE,AB=AC,∴△ADB≌△AEC(SAS).∴BD=CE,∠ADB=∠AEC=135°,∴∠BDC=135°﹣45°=90°.∵△ABC和△ADE均为等腰直角三角形,AB=3,AD=2,∴DE=2,BC=3.设BD=x,则DC=2+x,在Rt△BDC中,利用勾股定理BD2+DC2=BC2,所以x2+(2+x)2=18,解得x1=﹣﹣(舍去),x2=﹣+.∵点F、G分别为DE、BE的中点,∴FG=BD=.故答案为.9.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE与△DCB中,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.11.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.解:(1)BD=CE,理由如下:∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE=60°,∴∠BCE=120°;+S△CDE=S△ADE,理由如下:(3)S△ABE∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),=S△ACE,∠ABC=∠ACE=60°,∴S△ABD∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ABC=∠ECD,∴AB∥CE,=S△ABC,∴S△ABE+S△CDE=S△ADE+S△ACD,∵S△ACE+S△CDE=S△ADE+S△ACD,∴S△ABD+S△ACD+S△CDE=S△ADE+S△ACD,∴S△ABC+S△CDE=S△ADE.∴S△ABE12.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.②如图2,连接OA,若OA=2,求△DOE的面积.(1)证明:∵∠DAB=∠EAC=90°,∴∠EAB=∠CAD,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC,∵∠BAD=90°,∴∠DOB=90°,即BE⊥DC;(2)解:①取DE的中点H,连接GH、FH,∵点G是BD的中点,∴GH∥BE,GH=BE,同理,FH∥CD,FH=CD,∵BE=CD.BE⊥DC,∴GH=FH,GH⊥FH,∴△HGF为等腰直角三角形,∴GF=GH,∵GH=BE,∴GF=BE,∵BE=BC,∴=;②作AM⊥BE于M,AN⊥CD于N,在△BAE和△BAC中,,∴△BAE≌△BAC(SSS),∴∠BAE=∠BAC=135°,∴∠DAE=135°﹣90°=45°,即∠OAD+∠OAE=45°,∵△BAE≌△DAC,∴AM=AN,又AM⊥BE,AN⊥CD,∴OA平分∠BOC,∴∠BOA=∠COA=45°,∴∠DOA=∠EOA=135°,∴∠ODA+∠OAD=45°,∴∠OAE=∠ODA,∴△ODA∽△OAE,∴=,即OD•OE=OA2=4,∴△DOE的面积=×OD•OE=2.13.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD 为一边在AD的右侧作等腰直角△ADF,∠ADE=∠AED=45°,∠DAE=90°,AD=AE,解答下列问题:(1)如果AB=AC,∠BAC=90°,∠ABC=∠ACB=45°.①当点D在线段BC上时(与点B不重合),如图(2),线段CE、BD之间的数量关系为CE=BD;位置关系为CE⊥BD;(不用证明)②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,请写出结论并说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?请写出条件,并借助图(4)简述CE⊥BD成立的理由.解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图(2),∵∠BAD=90°﹣∠DAC,∠CAE=90°﹣∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为:CE=BD;CE⊥BD.②当点D在BC的延长线上时,①的结论仍成立.如图(3),∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图(4)所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE(SAS),∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.14.(注意:本题中的说理过程中的每一步必须注明理由,否则不得分)如图1,在△ABC 中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°;①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为CF⊥BD,线段CF、BD的数量关系为CF=BD;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时①的结论仍成立.理由如下:由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD;(2)当∠ACB=45°时,CF⊥BD.理由如下:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.15.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.(1)证明:∵四边形AEFG为正方形,∴AE=AG,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,BE与AG交于点P,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.。
(完整版)心理学模型手拉手模型心理学模型手拉手模型概述心理学模型手拉手模型是一种有效的心理治疗方法,旨在帮助个人理解和管理自己的情绪和行为。
这种模型结合了心理学理论和实践,通过身体、情绪和思维三个层面的综合训练,促进个人的内在平衡和健康成长。
模型框架心理学模型手拉手模型基于以下几个关键要素:1.身体层面这一层面的训练旨在通过身体运动和呼吸练,促进身体的放松和平衡。
例如,深呼吸、瑜伽和身体冥想等练可以帮助个人减轻压力、放松身心,并提高自我意识。
2.情绪层面情绪是我们内在体验的一部分,而情绪的管理对心理健康至关重要。
手拉手模型通过情绪识别、表达和调节的训练,帮助个人更好地处理情绪,减少消极情绪的影响,提升积极情绪的体验。
3.思维层面思维是影响我们行为和情绪的关键因素之一。
手拉手模型通过认知重塑和思维模式的调整,帮助个人改善负面思维模式,培养积极的信念和态度,并在面对挑战时更加应对灵活。
实施过程心理学模型手拉手模型的实施过程一般包括以下几个步骤:1. 确定目标:与个人合作,明确希望达到的目标和所需改变的领域。
2. 认知评估:通过与个人的对话和评估工具,了解其目前的思维、情绪和行为模式,并识别不健康的模式和问题领域。
3. 训练计划制定:根据评估结果,制定个性化的训练计划,包括身体、情绪和思维层面的综合训练。
4. 实施训练:与个人合作,按照计划进行训练,定期评估进展,并根据需要进行调整。
5. 评估和总结:定期评估个人的进展和成效,为后续训练提供参考,并总结经验和教训。
适用范围心理学模型手拉手模型适用于各个年龄段的个人,无论是面对情绪困扰、心理压力或行为问题,都能从中受益。
此外,该模型还可用于个人成长发展、情绪管理、焦虑和抑郁症等心理疾病的治疗。
结论心理学模型手拉手模型通过综合训练身体、情绪和思维三个层面,帮助个人理解和管理自己的情绪和行为。
它是一种简单且有效的心理治疗方法,可以帮助个人实现内在平衡和健康成长。
手拉手模型要点一:手拉手模型 特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:1△ABD ≌△AEC 2∠α+∠BOC=180°3OA 平分∠BOC变形:例1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明1DBC ABE ∆≅∆(2)DC AE =(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆(5)CFB EGB ∆≅∆(6)BH 平分AHC ∠(7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明1DBC ABE ∆≅∆(2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE与CD ,证明1DBC ABE ∆≅∆(2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H问:1CDE ADG ∆≅∆是否成立(2)AG 是否与CE 相等(3)AG 与CE 之间的夹角为多少度(4)HD 是否平分AHE ∠例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H问:1CDE ADG ∆≅∆是否成立2AG 是否与CE 相等3AG 与CE 之间的夹角为多少度4HD 是否平分AHE ∠例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,问:1DBC ABE ∆≅∆是否成立2AE 是否与CD 相等3AE 与CD 之间的夹角为多少度4HB 是否平分AHC ∠。
几何模型之——“手拉手”及其经典考题几何模型之——“手拉手”及其经典考题一、“手拉手”全等模型如图,△ABC与△ADE都是等腰三角形,AB=AC,AD=AE.∠BAC=∠DAE.结论:△BAD≌△CDE.二、模型分析手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
三、模型实例例1.如图,△ABC与△EDC都为等腰直角三角形,连接AE、BD,相交于点F.问:(1)AE与BD是否相等?(2)AE与BD之间的夹角为多少度?例2.如图,直线AB的同一侧作△ABD和△BCE都为等边三角形,连接AE交DB于点G、连接CD交BE于点F,AE与CD交于点H.求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB;(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC。
四、精选练习1.如图,在△ABC中,AC=CB,∠ACB=90°,D为AC延长线上一点,点E在BC上,且AE=BD.(1)求证:CD=CE;(2)若∠BAE=30°,求∠ABD度数.2.如图,△ABD与△BCE都为等边三角形,连接AE与CD,延长AE交CD于点F.求证:(1)AE=DC;(2)∠AFD=60°;(3)连接FB,FB平分∠AFC。
3.在线段AE同侧作等边△CDE(∠ACE<120°),点F,G分别是线段BE和AD的中点.求证:△CFG是等边三角形.4.将等腰Rt△ABC和等腰Rt△ADE按图①方式放置,∠A=90°,AD边与AB边重合,AB=2AD=4。
将△ADE绕点A逆时针方向旋转一个角度(0°<>180°),BD的延长线交CE于P.(1)如图②,证明:BD=CE,BD⊥CE;(2)如图③,在旋转的过程中,当AD⊥BD时,求出CP的长.。
专题07手拉手模型(知识解读)【专题说明】手拉手模型是指有共同顶点的两个等腰三角形,顶角相等。
因为过共同顶点的四条边,像人的两双手,所以通常称为手拉手模型。
手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
【方法技巧】类型一:等边三角形手拉手(1)如图,B、C、D三点共线,▲ABC和▲CDE是等边三角形,连接AD、BE,交于点P(2)记AC、BE交点为M,AD、CE交点为N(2)连接MN(4)记AD、BE交点为P,连接PC:(5)结论五:∠APB=∠BPC=∠CPD=∠DPE=60°(6)连AE:结论六:P点是▲ACE的费马点(PA+PC+PE值最小)类型二:正方形手拉手如图,四边形ABCD和四边形CEFG均为正方形,连接BE、DG【类型一:等边三角形手拉手】【典例1】(2021春•西安期末)如图,在△ABC中,BC=5,以AC为边向外作等边△ACD,以AB为边向外作等边△ABE,连接CE、BD.(1)若AC=4,∠ACB=30°,求CE的长;(2)若∠ABC=60°,AB=3,求BD的长.【解答】解:(1)∵△ABE与△ACD是等边三角形,∴AC=AD,AB=AE,∴∠DCA=∠CAD=∠EAB=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD.在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴EC=BD,又∵∠ACB=30°,∴∠DCB=∠ACB+∠DCA=90°,∵CD=AC=4,BC=5,∴BD===,∴CE=;(2)如图,作EK垂直于CB延长线于点K.∵△ABE与△ACD是等边三角形,∴AC=AD,AB=AE,∴∠DCA=∠CAD=∠EAB=60°,∴∠EAB+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD.在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴EC=BD,∵∠ABC=60°,∠ABE=60°,∴∠EBK=60°,∴∠BEK=30°,∴BK=BE=,∴EK===,∴EC===7,∴BD=EC=7.【变式1-1】(2021九上·吉林期末)如图①,在△ABC中,∠C=90°,AC=BC=6,点D,E分别在边AC,BC上,且CD=CE=2,此时AD=BE,AD⊥BE成立.(1)将△CDE绕点C逆时针旋转90°时,在图②中补充图形,并直接写出BE的长度;(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.【答案】(1)解:如图所示,BE=22;(2)解:AD=BE,AD⊥BE仍然成立.证明:延长AD交BE于点H,∵∠ACB=∠DCE=90°,∠ACD=∠ACB−∠BCD,∠BCE=∠DCE−∠BCD,∴∠ACD=∠BCE,又∵CD=CE,AC=BC,∴△ACD≅△BCE,∴AD=BE,∠1=∠2,在Rt△ABC中,∠1+∠3+∠4=90°,∴∠2+∠3+∠4=90°,∴∠AHB=90°,∴AD⊥BE.(3)AD=5−1或AD=5+1【变式1-2】(2021九上·宜春期末)如图(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠ACB的度数为;②线段BE,CE与AE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上.若CE=2,BE=2,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.【解答】(1)①∵△ABC是等边三角形,∴∠ACB=60°,故答案为:60°;②∵△ACB和△DCE均为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ADC≅△BEC(SAS),∴AD=BE,∵△DCE为等边三角形,∴CE=DE,∴BE+CE=AD+DE=AE,故答案为:BE+CE=AE(2)解:∵△ACB和△DCE均为等腰直角三角形,∴AC=CB,∠CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∴△ADC≅△BEC(SAS),∴AD=BE=2,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,CD=CE=2,DE=CD2+CE2=(2)2+(2)2=2,∴∠CEB=∠CDA=180°−45°=135°,AE=AD+DE=2+2=4,∴∠AEB=∠CEB−∠CED=135°−45°=90°,∴△AEB是直角三角形,∴AB=AE2+BE2=42+22=25(3)如图3,由(1)知△ADC≅△BEC,∴∠CAD=∠CBE,∵∠CAB=∠ABC=60°,∴∠OAB+∠OBA=120°,∴∠AOE=180°−120°=60°,如图4,同理求得:∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.【变式1-3】(2021春•金牛区校级期中)类比探究:(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A 旋转到△ACP′处)(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB =∠BOA=120°,若AC=1,求OA+OB+OC的值.【解答】解:(1)如图1,将△APB绕着点A逆时针旋转60°得到△ACP′,∴△ACP′≌△ABP,∴AP′=AP=8、CP′=BP=15、∠AP′C=∠APB,由题意知旋转角∠PA P′=60°,∴△AP P′为等边三角形,∴P P′=AP=8,∠A P′P=60°,∵PP′2+P′C2=82+152=172=PC2,∴∠PP′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°(2)如图2,把△ABE绕着点A逆时针旋转90°得到△ACE′,则AE′=AE,CE′=CE,∠CAE′=∠BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=∠CAF+∠CAE′=∠FAE′=45°,∴∠EAF=∠E′AF,且AE=AE',AF=AF,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠B+∠ACB=90°,∴∠ACB+∠ACE′=90°,∴∠FCE′=90°,∴E′F2=CF2+CE′2,∴EF2=BE2+CF2;(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC==,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠ACB=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C==,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【典例2】如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,又∵,∴△ACD∽△BCE;(2)解:过A作AG⊥CD于G,由(1)知,∠ACD=∠DCB=∠BCE=45°,∴AG=CG,在Rt△ACG中,由勾股定理得:∴CG=AG=3,∴S==.【变式2-1】如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).(1)问题发现当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:(3)问题解决当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.【解答】解:(1)∵△ABC与△BDE都是等腰直角三角形,∴DE∥AC,∴,∴,∵∠B=45°,∴直线AE,CD相交形成的较小角的度数为45°,故答案为:;45;(2)无变化,理由如下:延长AE,CD交于点F,CF交AB于点G,∵△ABC与△BDE都是等腰直角三角形,∴∠ABC=∠DBE=45°,,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,∴∠CBD=∠ABE,又∵,∴△ABE∽△CBD,∴,∠BAE=∠BCD,∴∠F=180°﹣∠BAE﹣∠AGF=180°﹣∠BCD﹣∠BGC=∠ABC=45°;(3)如图,当DE在AB上方时,作AH⊥CD于H,由A,D,E三点在同一条直线上知,∠ADB=90°,∴AD=,由(2)知∠ADH=45°,,∴AH==,CD=,=CD×AH==12+,∴S△ACD当DE在AB下方时,同理可得S=×CD×AH==12﹣,△ACD【类型二:正方形手拉手】【典例3】【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.【解答】解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500【变式3】(2021秋•荔湾区校级期中)以△ABC的AB,AC为边分别作正方形ADEB,正方形ACGF,连接DC,BF.(1)CD与BF有什么数量与位置关系?说明理由.(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的.【解答】解:(1)CD=BF且CD⊥BF,理由如下:∵四边形ABED和四边形ACGF都是正方形,∴AD=AB,AC=AF,∠DAB=∠CAF=90°,又∵∠DAC=∠DAB+∠BAC,∠BAF=∠CAF+∠BAC,∴∠DAC=∠BAF,在△DAC与△BAF中,,∴△DAC≌△BAF(SAS),∴DC=BF,∴∠AFB=∠ACD,又∵∠AFN+∠ANF=90°,∠ANF=∠CNM,∴∠ACD+∠CNM=90°,∴∠NMC=90°,∴BF⊥CD;(2)∵AD=AB,AC=AF,CD=BF,∠DAB=∠CAF=90°,∴△ADC可看成是△ABF绕点A顺时针旋转90°得到的.。
手拉手模型证三角形全等一、手拉手模型指有公共顶点的两个等腰三角形,顶角相等.顶点相连的四条边形象的可以看作两双手.(左手拉左手,右手拉右手)特征:顶角相等的两个等腰三角形对应顶点相连,得到旋转的全等三角形二、模型分析手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
例1:如图,△ADC与△EDC都为等腰直角三角形,连接AG、CE,相交于点H,问(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度?例2:已知:△ABC,△EDC均为等边三角形.求证:(1)△ACD≌△BCE.(2)∠APB=60°(3)PC平分∠BPD.例3:如图,两个正方形ABCD与DEFG,连结AG,CE,二者相交于点H.问:(1)△ADG≌△CDE吗?(2)AG与CE之间的夹角为多少度?(3)HD是否平分∠AHE?OH G ABCD三、手拉手模型结论:(1)全等手拉手模)形全等(一组含公共顶点的三角型正方形共顶点手拉手模手拉手模型等腰直角三角形共顶点手模型等边三角形共顶点手拉SAS ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ (2)结论:①一对共顶点的三角形全等;②拉手线相等;③一对拉手线的夹角等于顶角。
四、巩固应用例4:将等腰Rt △ABC 和等腰Rt △ADE 按图①方式放置,∠A =90°,AD 边与AB 边重合,AB =2AD =4。
将△ADE 绕点A 逆时针方向旋转一个角度α(0°<α>180°),BD 的延长线交CE 于P 。
(1)如图②,证明:BD =CE ,BD ⊥CE ;(2)如图③,在旋转的过程中,当AD ⊥BD 时,求出CP 的长。
BA DCPE 3图BDAEC图21图PDECBA例5:如图①,已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG ,使点A ,C 分别在DG 和DE 上,连接AE ,BG .(1)试猜想线段BG 和AE 的数量关系,请直接写出你得到的结论;(2)将正方形DEFG 绕点D 逆时针方向旋转一定角度α后(0°≤α≤180°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;全等三角形(1)-----手拉手模型练习1、如图,已知△ABC 和△DBE 均为等腰直角三角形,∠ABC=∠DBE=90°,求证: (1)AD=CE ;(2)AD 和CE 垂直2、在线段AE 同侧作等边△ABC 和等边△CDE (∠ACE <120°),点P 与点M 分别是线段BE 和AD 的中点。
手拉手模型11个结论及过程1. 概述手拉手模型是一种团队合作的方法,通过成员之间的互相支持和协作,达到共同目标。
本文将从不同角度探讨手拉手模型的11个结论及过程。
2. 结论一:团队合作的重要性团队合作是手拉手模型的基础,只有团队成员能够充分合作,才能实现目标并取得成功。
3. 过程一:明确目标团队成员应该明确共同的目标,并确保每个人都理解和接受这个目标。
只有在共同的目标下,团队才能更好地协作。
4. 结论二:信任建立在手拉手模型中,信任是团队成员之间合作的基石。
成员应该相互信任,并相信每个人都会为了达成目标而努力。
5. 过程二:建立沟通渠道良好的沟通是团队合作的关键。
团队成员应该建立起畅通的沟通渠道,以便及时交流信息、解决问题和共享意见。
6. 结论三:分工合作团队成员应该根据各自的能力和专长,合理分工,以充分发挥每个人的优势,提高团队的整体效能。
7. 过程三:协调工作在分工的基础上,团队成员需要协调各自的工作,确保工作之间的协作和衔接,避免出现重复劳动或者遗漏。
8. 结论四:相互支持在手拉手模型中,成员之间需要相互支持,共同努力。
当团队中的成员遇到困难或者面临挑战时,其他成员应该伸出援手,给予帮助和支持。
9. 过程四:分享知识和经验团队成员应该积极分享自己的知识和经验,以便其他成员能够从中受益。
通过分享,团队的整体能力得以提升。
10. 结论五:持续学习与改进团队成员应该保持持续学习的态度,不断改进自己的能力和工作方式。
只有不断进步,团队才能在激烈的竞争中立于不败之地。
11. 过程五:评估和反馈团队应该定期评估自己的工作和绩效,及时给予反馈和改进。
通过不断反思和调整,团队能够逐步提升自己的表现。
12. 结论六:协同效应当团队成员能够充分合作,并通过有效的沟通和协调,团队的整体绩效将会超过成员个体的绩效之和,形成协同效应。
13. 过程六:庆祝成果每当团队达成一个重要的里程碑或者取得一个重要的成果时,团队应该及时庆祝,以激发团队成员的积极性和动力。
构建“手拉手”模型在当今社会,合作与协作变得越来越重要。
无论是在学术界、商业界还是日常生活中,人们都需要建立密切的合作关系来共同完成任务。
为了更好地促进这种合作,一个重要的工具是“手拉手”模型。
本文将探讨手拉手模型的概念、重要性、构成要素、优势以及应用案例,并展望其未来发展。
手拉手模型是一种协作方式,它强调个体之间紧密的合作关系,每个人都为共同的目标而努力。
这种模型的重要性在于,它鼓励人们相互依赖、相互支持和共同努力,以实现共同的目标。
在当今高度互联的世界中,手拉手模型对于提高团队协作效率和工作质量至关重要。
手拉手模型的构成要素包括以下几个方面。
首先,共同的目标是团队合作的核心,所有成员都为这个目标而努力。
其次,相互信任是团队合作的基础,成员之间需要相互信任,才能有效地完成任务。
此外,有效的沟通是手拉手模型的关键,成员之间需要建立良好的沟通渠道,以确保信息的及时传递和问题的及时解决。
最后,灵活的适应性是手拉手模型的保障,面对变化的环境和需求,团队需要灵活地调整策略和行动方案。
手拉手模型具有以下优势。
首先,它有利于提高团队成员的凝聚力和向心力,每个人都为共同的目标而努力,加强了团队的稳定性。
其次,它能够充分发挥每个人的优势,从而实现资源的有效利用。
此外,手拉手模型还有利于知识的共享和传递,从而促进团队的学习和成长。
最后,它能够提高工作效率和质量,通过协同合作,团队可以更快地解决问题,并取得更好的成果。
下面我们来看一个实际的手拉手模型应用案例。
在一个由多个国家和地区组成的跨国公司中,由于不同国家和地区之间的文化和商业环境存在较大差异,因此该公司采用了手拉手模型来促进团队协作。
首先,公司为所有团队成员设定了共同的目标,即提高公司的全球市场份额和盈利能力。
接下来,公司通过培训和活动来增强团队成员之间的信任和凝聚力。
此外,公司还建立了多个沟通渠道,以便团队成员之间及时交流和解决问题最后,公司鼓励团队成员发挥灵活性和创造性思维小|从而根据不同国家和地区的实际情况来制定相应的商业策略。
DAEBECECB CDCC AC A B 第六讲:手拉手模型模块一:“手来手”模型 知识导航手拉手的一般形式:两个顶角相等并且共顶角顶点的等腰三角形已知:△ABC ,△DBE 均为等腰三角形,BA =BC ,BD =BE ,∠ABC =∠DBE . 结论:△ABD ≌△CBE 二、手拉手的特殊形式:1.两个共直角顶点的等腰直角三角形已知:△ABC ,△DBE 均为等腰直角三角形,BA =BC ,BD =BE ,∠ABC =∠DBE =90° 结论:△ABD ≌△CBE2.两个共顶点的等边三角形C已知:△ABC ,△DBE 均为等边三角形 结论:△ABD ≌△CBE例1:已知点C 为线段AB 上一点,分别以AC 、BC 为边在AB 同侧作等边△ACD 与等边△BCE ,AE 交BD 于F ,连接CF ,求证: (1)BD =AE ;(2)∠BFE =60°;(3)CF 平分∠AFB .练习:若【例1】中A 、C 、B 三点不在一条直线上,如下图所示,其它条件不变,问上述三个结论是否成立?证明你的结论.BA例2:(2016年武珞路八上其中第23题改编)如图:△ABD 、△AEC 中,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,DC 、BE 相交于点M . (1)求证:BE =CD (2)求证:CD ⊥BE ; (3)求∠AMD 的度数.练习:(2015年洪山区八上期中第2问)如图,已知直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足|a +b|+(a +4)2=0,若点C 在第一象限,且BE ⊥AC 于点E ,延长BE 到D ,使BD =AC ,连OC ,OD ,CD ,试判断△COD 的形状,并说明理由.A B EA E拓展:如图,△ACD 与△BCE 为等腰三角形,其中CA =CD ,CB =CE ,∠ACD =∠BCE = ,BD 、AE 交于F .(1)求证:AE =BD (2)求∠BFE =∠AFC 的度数.模块二 “手拉手”模型的应用 题型一:“手拉手”与中点的结合例3 已知如图△ACB 与△CEF 为等腰直角三角形,∠ACB =∠ECF =90°,AE ,BF 交于点O ,M 是AE 中点,N 是BF 的中点,试判断△CMN 的形状.练习:已知△ABC ,分别以AB ,AC 为边作△ABD 和△ACD ,且AD =AB ,AC =AE ,∠DAB =∠CAE ,连接DC 与BE ,G ,F 分别是DC 与BE 的中点. (1) 如图,若∠DAB =60°,则∠AFG =_________.DED ECEC BC AB(2)如图,若∠DAB =90°,则∠AFG =_________.(3) 如图,若∠DAB =α,则试探究∠AFG 与α之间的关系.模型三“手拉手”背景下的综合应用例4 (2016年武路八上其中第23题)如图,设△ADC 和△CBE 都是等边三角形,连接AE 、AB 、BD ,∠ABD =80°,求∠EAB 的度数.练习(2015年洪山区八上期中)如图,设△ABC 和△CDE 都是等边三角形,且∠EBD =65°,求∠AEB 的度数.例5(2014年江岸区八上期中第24题第(1)(2)问)如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,B(a ,b)且a ,b 满足,D 为y 轴上移动点,以AD 为边做等边△ADC ,直线CB 交y 轴于点E .(1)如图1,求A 点的坐标(2)如图2,D 在y 轴正半轴上,C 在第二象限,CE 的延长线交x 轴于点M ,当D 点在y 轴正半轴上运动时,M 点的坐标是否发生变化,若不变,求M 点的坐标,若变化,说明理由.xy xy图1 图2EAOAOBBCD例6 (2016年武昌区八上期中)△AOB 和△ACD 是等边三角形,其中AB ⊥x 轴于E 点, (1)如图,若OC =5,求BD 的长度(2)设BD 交x 轴于点F ,求证:∠OF A =∠DF A . (3)如图,若正△AOB 的边长为4,点C 为x 轴上一动点,以AC 为边在直线AC 下方作正△ACD ,连接DE ,求DE 的最小值.ECA B B DAA B D DB 练习:如图△ABC 是直角三角形,记BC =a ,分别以直角三角形的三边向外作正方形ABDE ,正方形ACFG ,正方形BCMN ,过点C 作BA 边上的高CH 并延长交正方形ABDE 的边DE 于点K ,则四边形BDKH 的面积为_________。