人教A版高中数学必修3 统计 教材分析
- 格式:doc
- 大小:573.00 KB
- 文档页数:13
高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。
一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。
二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。
2.统计学的基本概念:总体、样本、抽样、数据等。
三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。
2.概率统计方法:频率分布、概率分布、期望值等。
3.推断统计方法:参数估计、假设检验等。
四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。
2.练习题:让学生做一些实践练习,巩固所学的统计方法。
五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。
六、作业
布置相关作业,让学生进一步巩固所学知识。
七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。
注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。
高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)普通高中数学必修3(A版)学案 2.3. 变量间的相关关系2.3.1变量之间的相关关系授课时间:年月日【学习目标】通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。
【重点难点】1. 通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系。
2. 变量之间相关关系的理解。
【学习过程】一、学习引导在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、合作交流(教师可做点拨)相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。
当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。
相关关系是一种非确定性关系。
(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)三、随堂练习思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:商品销售收入与广告支出经费之间的关系。
(还与商品质量,居民收入,生活环境等有关)四、能力提升1. 上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?2. 对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?3. 相关关系与函数关系的异同点?【小结反思】1. 变量具有不确定性,需要通过收集大量的数据(通过调查或试验)在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系做出正确的判断。
第一章 算法初步(略)第二章 统计2.1 随机抽样1、总体和样本(1)总体:在统计学中 , 把研究对象的全体叫做总体. (2)个体:把每个研究对象叫做个体.(3)总体容量:把总体中个体的总数叫做总体容量.(4)样本容量:为了研究总体x 的有关性质,一般从总体中随机抽取一部分:1x ,2x ,3x , ……,n x 研究,我们称它为样本...其中个体的个数称为样本容量..... 2、简单随机抽样(1)定义:一般地,设一个总体包含有N 个个体,从中逐个不放回地抽取n 个个体作为样本)(N n ≤,如果每次抽取时总体内的各个个体被抽到的机会相等,就称这样的抽样方法为简单随机抽样.(2)特点:① 被抽取样本的总体个数N 是有限的;② 样本是从总体中逐个抽取的; ③ 是一种不放回抽样;④ 每个样本被抽中的可能性相同(概率相等);⑤ 总体单位之间差异程度较小和数目较少时,采用简单随机抽样. (3)常用的方法⎩⎨⎧.②;①随机数法抽签法3、系统抽样(等距抽样或机械抽样):(1)定义:当总体中的个体较多时,可将总体分为均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样叫做系统抽样.(2)步骤:① 编号:先将总体的N 个个体编号;② 分段:确定分段间隔k ,对编号进行分段,当n N 是整数时,取n N k =(当nN 不是整数时,要先剔除零头);③ 确定第1个编号:在第1段用简单随机抽样确定第一个个体编号l ;④ 成样:按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(k l +),再加k 得到第3个个体编号(k l 2+),依次进行下去,直到获取整个样本.4、分层抽样:(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.(2)步骤:① 分层:根据题意,将总体分成互不交叉的层;② 定抽样比:根据总体中的个体数N 和样本容量n 计算抽样比Nn k =; ③ 定各层抽取的数目:确定第i 层应该抽取的个体数目k N n i i ⨯=; ④ 抽取个体:在各层中随机抽取该层确定的个体数目.5、三种抽样方法的异同点:2.2 用样本估计总体1、频率、样本容量、频数的关系2、作频率分布直方图的步骤(1) 求极差,即计算最大值与最小值的差; (2) 决定组距与组数; (3) 将数据分组;(4) 计算各小组的频率,列频率分布表; (5) 画频率分布直方图.3、众数、中位数、平均数4、平均数、方差、标准差(1)平均数:nx x x x x n++++=321(2)方 差:nx x x x x x x x s n 22322212)()()()(-++-+-+-=(3)标准差:[]22322212)()()()(1x x x x x x x x ns s n -++-+-+-==. 5、从频率分布直方图中估计众数、平均数、中位数(1)众 数:最高矩形所在组的组中值即为众数的估计值. (2)平均数:每个小矩形的面积乘以小矩形底边中点的横坐标之和. (3)中位数:中位数左边和右边直方图的面积相等.2.3 变量间的相关关系1、散点图将样本中的n 个数据点),(11y x ,),(22y x ,…,),(n n y x 描在直角坐标系中,所得到的图形叫做散点图.2、正相关与负相关(1)正相关:从散点图上看,点分布在从左下角到右上角的区域内. (2)负相关:从散点图上看,点分布在从左上角到右下角的区域内.3、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.【重要结论】散点可能在回归直线上,也可能不再回归直线上,但样本点的中心),(y x 必在回归直线上.(其中x 、y 分别为变量x 和y 的平均数.)4、最小二乘法(1)定义:使得样本数据的点到回归直线的距离的平方和最小...............的方法叫做最小二乘法. (2)求法:设线性回归方程为a x b yˆˆˆ+=,则 ⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====.ˆˆ,)())((ˆ1221121x b y ax n x yx n y x x x y y x x b ni i ni ii n i i ni i i例1:根据上表得到回归直线方程为a x yˆ7.0ˆ+=,据此可预测,当x =15时,y 的值为( ) A . 7.8 B . 8.2 C . 9.6 D . 8.5例2:为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天根据上表得到回归直线方程为9.5467.0ˆ+=x y,由于表中一个数据模糊不清,请你推断该数据的值为( )A . 67B . 68C . 68.3D . 71 例3:【2014全国2卷理18】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:∑∑==---=ni ini iix x y yx x b121)())((ˆ,x b y aˆˆ-=. 解:(1)方法一(利用第一个bˆ的公式):根据题意,列表如下:所以,∑∑==---=ni ii iix x y yx x b121)())((ˆ5.02814==,x b y aˆˆ-=3.245.03.4=⨯-=. 所以,线性回归方程为3.25.0ˆ+=x y. 方法二(利用第二个bˆ的公式):根据题意,列表如下: 所以,∑∑==--=ni ii ii x n xyx n yx b1221ˆ5.0471403.4474.1342=⨯-⨯⨯-=,x b y a ˆˆ-=3.245.03.4=⨯-=. 所以,线性回归方程为3.25.0ˆ+=x y.(2)由于线性回归方程3.25.0ˆ+=x y是增函数,所以,2007年至2013年该地区农村居民家庭人均纯收入逐年增加.2015年对应的x =9,此时8.63.295.0ˆ=+⨯=y,即该地区2015年农村居民家庭人均纯收入约为6.8千元.第三章 概率3.1 随机事件的概率1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例nn A f An =)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率)(A f n 稳定在某个常数上,把这个常数记作)(A P ,称为事件A 的概率.(6)频率与概率的关系:频率是概率的近似值,概率是频率的稳定值.2、事件的关系与运算【注】:互斥事件不一定是对立事件,但对立事件一定是互斥事件.3、概率的基本性质(1)任何事件的概率0≤P (A )≤1;(2)必然事件的概率为1,不可能事件的概率为0;(3)当事件A 与B 互斥时,满足加法公式:P (A ∪B )= P (A )+ P (B );(4)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )=1,P (A )=1—P (B ).3.2 古典概型 3.3 几何概型1、基本事件(1)概念:一次试验中可能出现的每一个结果称为一个基本事件,它是试验中不可再分的最简单的随机事件,在一次试验中只能有一个基本事件发生.(2)特点 ⎩⎨⎧.基本事件的和件)都可以表示成几个任何事件(除不可能事②斥的;任何两个基本事件是互①2、古典概型(1)定义:我们将具有以下两个特点的概率模型称为古典概率模型,简称为古典概型. ① 试验中所有可能出现的基本事件只有有限个; ② 每个基本事件出现的可能性都相等. (2)古典概型概率公式 基本事件的总数包含的基本事件的个数事件A A P =)(.3、几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点 ⎩⎨⎧.事件发生的概率都相等等可能性,即每个基本②限个;结果(基本事件)有无无限性,即每次试验的①(3)计算公式: 积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(.。