人教A版高中数学必修五3.3.2 简单的线性规划问题 第1课时 简单的线性规划问题 情境互动课型
- 格式:ppt
- 大小:1.12 MB
- 文档页数:37
3.3.2 简单的线性规划问题(第1课时)【核心素养】通过学习简单的线性规划问题,提升学生的数学抽象、数学建模与数据处理的能力.【学习目标】理解什么是线性规划,并能够解决一些简单的线性规划问题.【学习重点】简单的二元线性规划问题.【学习难点】准确而快速的画出线性规划可行域,并进行最优解的求解.二、教学设计(一)课前设计1.预习任务任务 1 阅读教材P1-P4,思考:线性规划是如何形成的?它的主要功能是什么?利用线性规划解决一些简单问题.2.预习自测1.不等式组36020.x yx y≥⎧⎨<⎩-+,-+表示的平面区域是()【知识点:简单的线性规划;数学思想:数形结合】解:B2.不等式组210.y xy xy≤⎧⎪≤⎨⎪≥⎩-+,-,所表示的平面区域的面积为( )A.1B.12C.13D.14【知识点:简单的线性规划;数学思想:数形结合】解:D3.若满足条件20x yx yy a-≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.3-B.2-C.1-D.0【知识点:简单的线性规划;数学思想:数形结合】解:C(二)课堂设计1.知识回顾在平面直角坐标系中,直线:0l Ax By C++=将平面分成两部分,平面内的点分为三类:(1)直线上的点(x,y)的坐标满足:0=++CByAx;(2)直线一侧的平面区域内的点(x,y)的坐标满足:0>++CByAx;(3)直线另一侧的平面区域内的点(x,y)的坐标满足:0Ax By C++<.即二元一次不等式0Ax By C++>或0Ax By C++<在平面直角坐标系中表示直线0Ax By C++=的某一侧所有点组成的平面区域,直线0Ax By C++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.问题探究问题探究一线性规划的含义观察与思考:某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?想一想:怎样将题目条件转化为我们熟悉的不等式组?⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x想一想:在前一节二元一次不等式(组)与平面区域的学习中,如何将上述不等式组表示成平面区域?探究:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?想一想:设生产甲产品x 件,乙产品y 件时,工厂获得利润为z ,则如何表示它们的关系?错误!未找到引用源。
《简单的线性规划问题》(第一课时)一、内容及其解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、教学目标(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。
(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。
三、教学重、难点1、教学重点 :求线性规划问题的最优解2、教学难点 :学生对为什么要将求目标函数的最值问题转化为经过可行域的直线在y 轴上的截距的最值问题以及如何想到这样转化存在疑惑,在教学中应紧扣实际,突出知识的形成发展过程。
四、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。
高一数学人教A版必修5:3.3.2《简单的线性规划问题》(1)教案一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第三章不等式第三节简单的线性规划问题第一课时。
简单的线性规划问题是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,简单的线性规划问题与直线方程密不可分;另一方面,学习简单的线性规划问题也为进一步学习解析几何等内容做好准备。
二、学生学习情况分析本节课学生很容易在以下一个地方产生困惑:1. 线性约束条件的几何意义三、教学目标(1)知识和技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值(2)过程与方法:本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。
考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。
同时,可借助计算机的直观演示可使教学更富趣味性和生动性(3)情感与价值:渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣四、教学重点与难点教学重点:线性规划的图解法教学难点:寻求线性规划问题的最优解五、教学过程(一).创设情境例 1.甲、乙、丙三种食物的维生素A、B的含量及成本如下表:营养师想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?问题1:如何将此实际问题转化为数学问题呢?解:设所购甲、乙两种食物分别为千克,则丙食物为千克.又设成本为元.由题意可知应满足条件:即①.问题转化为:当满足①求成本的最小值问题.(二).分析问题问题2:如何解决这个求最值的问题呢?学生基于上一课时的学习,一般都能意识到要将不等式组①表示成平面区域(教师动画演示画不等式组①表示的平面区域).问题3:当点(x,y)在此平面区域运动时,如何求z=2x+y+50的最小值.(第一次转化)引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2x+y+50作某种几何解释呢?将等式z=2x+y+50视为x,y的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线,于是问题又转化为当这族直线与不等式组①所表示的平面区域有公共点时,求z的最小值.(第二次转化)问题4:如何更好地把握直线y+2x+50=z的几何特征呢?将其改写成斜截式y=-2x+z-50,让学生明白原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小,于是问题又转化为当直线y=-2x+z-50与平面区域有公共点时,在区域内找一个点P,使直线经过P时在y轴上的截距最小.(第三次转化)让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元)(三).形成概念1. 不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.z=2x+y+50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数.由于z=2x+y+50又是x、y的一次解析式,所以又叫做线性目标函数.2.一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.其中使目标函数取得最大值或最小值的可行解它们都叫做这个问题的最优解.(四).反思过程求解步骤:(1)画可行域---画出线性约束条件所确定的平面区域;(2)过原点作目标函数直线的平行直线;(3)平移直线,观察确定可行域内最优解的位置;(4)求最值---解有关方程组求出最优解,将最优解代入目标函数求最值. 简记为画作移求四步.(五).例题讲解例1、设2z x y =+,式中变量x 、y 满足下列条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值。