废水中硫化物、硝酸盐和氨氮生物同步去除及其机理
- 格式:pdf
- 大小:1.24 MB
- 文档页数:6
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
污水处理:生物法、氨氮方法详解一、生物法1.生物法机理即生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用 ,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1 。
硝化反应是将氨氮转化为硝酸盐的过程 ,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源)。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此生物脱氮法运用最多。
但缺点是占地面积大,低温时效率低。
2.传统生物法目前,对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
后置反硝化工艺、前置反硝化工艺、A/O工艺、(A2/ O) UCT工艺、JBH工艺、AAA 工艺等,这些都是典型的传统硝化反硝化工艺。
3. A/O系统A/O脱氮除磷系统,即缺氧、好氧脱氮除磷系统。
具有去除废水中氮污染物的工艺,同时对脱磷亦有一定的效果。
其工艺流程是让废水依次经历缺氧、好氧两个阶段,故人们通称为缺氧、好氧脱氮除磷系统,简称A/O系统。
同步硝化反硝化原理同步硝化反硝化是一种重要的废水处理技术,它通过微生物的代谢作用将废水中的氨氮和硝酸盐氮转化为氮气释放到大气中,从而达到净化水质的目的。
这种技术在污水处理中得到了广泛的应用,下面我们就来详细了解一下同步硝化反硝化的原理。
首先,我们来介绍一下硝化反应和反硝化反应的基本过程。
硝化反应是指氨氮在微生物的作用下被氧化成亚硝酸盐,然后再被氧化成硝酸盐的过程。
而反硝化反应则是指硝酸盐被还原成氮气或氮氧化物的过程。
这两种反应是废水处理中常见的氮素转化过程。
在同步硝化反硝化中,硝化和反硝化两种反应同时进行。
这是通过控制氧气的供应来实现的。
在废水处理系统中,通常会设置好氧区和缺氧区,氨氮在好氧区被氧化成亚硝酸盐和硝酸盐,然后在缺氧区被还原成氮气或氮氧化物。
这样就实现了硝化和反硝化两种反应的同步进行。
同步硝化反硝化的原理是基于微生物的代谢特点。
在好氧条件下,氨氮被氧化成亚硝酸盐和硝酸盐,而在缺氧条件下,硝酸盐被还原成氮气或氮氧化物。
这种技术不仅能够高效地去除废水中的氨氮和硝酸盐氮,还能够减少化学药剂的使用,降低处理成本。
此外,同步硝化反硝化还具有一定的适用性。
它适用于有机负荷较高、氨氮负荷较高的废水处理系统,能够有效地提高氮素的去除效率。
而且,同步硝化反硝化技术还能够适应废水水质和流量的波动,具有一定的抗冲击负荷能力。
总的来说,同步硝化反硝化是一种高效、经济的废水处理技术,它通过控制好氧和缺氧条件下微生物的代谢过程,实现了氨氮和硝酸盐氮的同步转化,达到了净化水质的目的。
这种技术不仅能够高效去除氮污染物,还能够降低处理成本,具有一定的适用性和稳定性。
因此,在废水处理领域具有广阔的应用前景。
按照国家相关标准,生活污水处理主要是SS、BOD、COD、NH3-N、TN和TP的去除,其去除的有关机理如下:(1)SS的去除污水中SS的去除主要靠沉淀作用。
污水中的无机颗粒和大直径的有机颗粒靠自然沉淀作用就可去除;小直径的有机颗粒靠微生物的降解作用去除,而小直径的无机颗粒(包括尺度大小在胶体和亚胶体范围内的无机颗粒)则要靠活性污泥絮体的吸附、网捕作用,与活性污泥絮体同时沉淀被去除。
污水厂出水中悬浮物浓度不仅涉及到出水SS指标,出水中的BOD5、COD Cr、TP等指标也与之有关。
因为组成出水悬浮物的主要成分是活性污泥絮体,其本身的有机成份就高,而有机物本身就含磷,因此较高的出水悬浮物含量会使得出水的BOD5、COD Cr和TP增加。
因此,控制污水厂出水的SS指标是最基本的,也是很重要的。
(2)BOD5的去除污水中BOD5的去除是靠微生物的吸附作用和代谢作用,然后通过泥水分离来完成的。
活性污泥中的微生物在有氧条件下将污水中的一部分有机物用于合成新的细胞,将另一部分有机物进行分解代谢以便获得细胞合成所需的能量,其最终产物是CO2和H2O等稳定物质,其实质是将液相的有机污染物质转化为固相物质,表现为活性污泥量的增长。
(3)COD Cr的去除污水中COD C r去除的原理与BOD5基本相同。
污水厂COD Cr的去除率,取决于进水的可生化性,它与城市污水的组成有关。
对于主要以生活污水及其成份与生活污水相近的工业废水组成的城市污水,其BOD5/COD Cr≥0.5,污水的可生化性较好,出水COD Cr 值可以控制在较低的水平,能够满足COD Cr≤50mg/L的要求。
而成份主要以工业废水为主的城市污水,或BOD5/COD Cr比值较小的城市污水,其污水的可生化性较差,处理后污水中剩余的COD C r较高,要满足出水COD Cr≤50mg/L,有一定难度。
(4)氮的去除污水除氮方法主要有物理化学法和生物法两大类,在市政污水处理行业中生物法除氮是主流,也是城市污水处理中经济和常用的方法。
污水处理中的去除硝酸盐和氨氮的技术随着工业化和城市化的不断推进,污水处理变得尤为重要。
污水中的硝酸盐和氨氮是两种常见的污染物,对环境和人类健康造成严重影响。
因此,研发和应用去除硝酸盐和氨氮的技术成为了污水处理工程的重中之重。
一、去除硝酸盐的技术1. 生物处理法生物处理法是目前应用最广泛的硝酸盐去除技术之一。
该技术利用厌氧细菌将硝酸盐通过还原作用转化为氮气,进而实现硝酸盐的去除。
厌氧生物反应器、厌氧-好氧工艺以及硝酸盐假性硝化法等都属于生物处理法的一种。
生物处理法具有运行成本低、效果稳定等优点,因此在污水处理领域得到广泛应用。
2. 化学处理法化学处理法是去除硝酸盐的另一种常用技术。
其中,常用的化学处理方法包括还原法和吸附法。
还原法主要通过加入还原剂将硝酸盐还原为氨氮或氨酸盐,从而达到去除硝酸盐的目的。
吸附法则是通过在处理过程中加入特定吸附剂,利用吸附剂对硝酸盐具有较强吸附能力,将硝酸盐从污水中吸附出来。
这两种化学处理法都有着高效去除硝酸盐的特点,但由于成本较高,应用范围相对较窄。
二、去除氨氮的技术1. 曝气法曝气法是去除氨氮的常用技术之一。
在曝气池中,通过对水体进行曝气处理,通过气体和水水的接触,使得氨氮逐渐转化为游离态氮,从而实现氨氮的去除。
曝气法具有设备简单、成本较低等优点,并且在生活污水处理中得到广泛应用。
2. 膜分离法膜分离法是一种基于半透膜原理的氨氮去除技术。
该技术通过膜的选择性透过性,将氨氮从污水中分离出来。
常见的膜分离法包括超滤法、反渗透法等。
这类技术具有去除效果好、排放水质高等优势,但由于设备和维护成本较高,仍然需要进一步推广应用。
三、综合应用技术除了上述独立应用的技术,还有一些综合应用技术能够同时去除硝酸盐和氨氮。
比如,生物接触氧化法和生物膜法通过结合生物处理和化学处理的特点,充分发挥各自的优势,实现了同时去除硝酸盐和氨氮的效果。
这类综合应用技术在硝酸盐和氨氮去除领域具有较大的应用潜力。
对污水中氨氮的主要去除方法近20 年来, 对氨氮污水处理方面开展了较多的研究。
其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。
一.生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1 。
进水预处理曝气池二沉池脱氮池图1 生物脱氮工艺流程硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤: 由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源) 。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。
但缺点是占地面积大,低温时效率低[11]。
2.传统生物法目前, 国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
1932 年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification) ,1973年Barnard 结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox (A2/ O) UCT、JBH、AAA 工艺等,这些都是典型的传统硝化反硝化工艺[12]。
养殖厂污水处理中的氨氮和硝酸盐去除方法研究养殖业是我国重要的农业产业之一,但养殖厂的废水处理一直是一个严重的问题。
其中,氨氮和硝酸盐是污水中主要的污染物之一。
本文将探讨养殖厂污水处理中氨氮和硝酸盐的去除方法。
一、氨氮的去除方法:1. 生物法:生物法是一种常用的氨氮去除方法。
通过将污水经过好氧或厌氧处理槽,利用生物菌群将氨氮转化为硝酸盐,再通过硝化反硝化过程将硝酸盐还原成氮气释放出来。
2. 化学法:化学法是另一种常用的氨氮去除方法。
通过加入化学药剂,如石灰或硫酸铁,将氨氮转化为非挥发性的物质,从而使氨氮被固定并沉淀下来。
3. 物理法:物理法是一种较少使用的氨氮去除方法。
它通过高温蒸发或吸附法将氨氮从污水中分离出来。
但这种方法实施成本较高,需要耗费大量的能源。
二、硝酸盐的去除方法:1. 化学还原法:化学还原法是一种常用的硝酸盐去除方法。
通过加入合适的还原剂,如亚硫酸盐或硫化氢,将硝酸盐还原为氨氮或硫化物,以达到去除硝酸盐的目的。
2. 豆渣滤料法:豆渣滤料法是一种较为新颖的硝酸盐去除方法。
将豆渣制成滤料,将含硝酸盐的污水通过滤料层,通过豆渣的生物学反应迅速将硝酸盐去除。
3. 植物修复法:植物修复法是一种环境友好的硝酸盐去除方法。
通过种植具有吸收硝酸盐能力的水生植物,如柳树或芦苇,利用植物的吸收能力吸收水中的硝酸盐。
三、其他养殖厂污水处理建议:1. 控制养殖量:适量控制养殖数量,避免污水过多导致处理难题。
2. 改善饲养环境:改善养殖环境,减少污水产生,例如增加养殖场的通风设备,改善粪便处理设施等。
3. 加强监管:加强对养殖厂的监管,要求其合规运营,实施科学的养殖方式,减少污染物的排放。
总结起来,氨氮和硝酸盐是养殖厂污水中常见的污染物,采取适当的处理方法可以有效去除这些污染物,保护水环境。
在处理污水的同时,也要注重从源头上控制污染物的排放,加强养殖厂的环境监管,实施可持续发展的养殖模式。
这样才能保障养殖业的健康发展,并为人民提供安全健康的食品。
污水处理中的生物脱氮技术解析生物脱氮技术是污水处理中一种常用的脱氮方法,通过利用特定微生物的作用,将废水中的氨氮转化为较为稳定的氮气释放到大气中,从而达到净化废水的目的。
本文将详细解析生物脱氮技术的原理、应用和优势。
生物脱氮技术的原理主要基于硝化和反硝化过程。
硝化是指将废水中的氨氮先转化为亚硝酸盐,再进一步转化为硝酸盐的过程。
这一过程由氨氧化菌(Nitrosomonas)和亚硝酸氧化菌(Nitrobacter)共同完成。
反硝化是指将硝酸盐还原为氮气的过程,主要由反硝化菌(例如亚硝酸盐还原菌 Denitrifying bacteria)完成。
在生物脱氮技术中,首先废水进入生物处理系统,经过初级沉淀池去除悬浮物后,进入生物反应器。
在生物反应器中设置了适宜生长微生物的环境,比如填料、生物膜等。
废水中的氨氮被氨氧化菌氧化为亚硝酸盐,然后亚硝酸氧化菌进一步将亚硝酸盐氧化为硝酸盐。
在充分的氧气供应下,硝酸盐不会发生进一步的转化,而是被排放到环境中。
然而,在缺氧环境下,反硝化菌会将硝酸盐还原为氮气,从而实现脱氮的效果。
生物脱氮技术在实际应用中具有多个优势。
首先,与传统的化学脱氮方法相比,生物脱氮技术不需要添加化学试剂,不会产生二次污染,符合环保要求。
其次,生物脱氮技术更为经济和可持续,微生物在反应器中生长繁殖,无需频繁投入新鲜的生物介质。
再次,生物脱氮技术适用于处理不同规模和类型的污水,适应性强,能够适应不同负荷和水质条件。
最后,生物脱氮技术的操作相对简单,维护成本低,运行稳定可靠。
然而,生物脱氮技术也存在一些挑战和局限性。
首先,生物脱氮过程对温度、pH值、溶解氧等环境条件有一定要求,不同的微生物对环境条件的适应性不同,需要进行精确控制。
其次,反硝化过程中产生的氮气有一定的溶解度,如果不能完全释放到大气中,会对水体造成氮气过度饱和问题,可能导致水体富营养化。
此外,生物脱氮过程中可能会产生一些副产物,如亚硝酸盐、气味等,需要进行合理处理。
污水处理中的微生物原理污水处理中的微生物原理概述污水处理是将含有有机污染物和其他杂质的废水经过一系列的物理、化学和生物处理过程,使其能够达到排放标准或者再利用的水处理过程。
而在污水处理过程中,微生物起着至关重要的作用。
本文将介绍污水处理中微生物的原理及其作用。
微生物的种类及特点在污水处理中,常见的微生物种类包括细菌、真菌和藻类等。
这些微生物有以下特点:- 细菌:是最常见的微生物,以其快速繁殖能力而闻名。
它们在分解有机物和去除氮、磷等污染物中起着重要作用。
- 真菌:特别擅长分解和降解含有木质素等难降解有机物的废水。
其中,最常见的是腐生真菌和脱氮真菌。
- 藻类:能够利用光合作用将废水中的有机物和营养元素转化为生物质,起到氧化、混凝和沉降的作用。
微生物在污水处理中的作用微生物在污水处理中起着至关重要的作用。
它们通过不同的代谢途径降解废水中的有机物并去除污染物。
下面将分别介绍微生物在污水处理中的几个关键作用:1. 分解有机物细菌是在废水中分解有机物的关键微生物。
它们通过产生外胞膜酶和内胞膜酶来分解废水中的有机物,将其转化为二氧化碳和水等简单无机物。
这样可以有效减少有机物对环境造成的污染。
2. 去除氮、磷等污染物在污水处理中,氮和磷是常见的污染物,它们对水体生态环境造成很大的威胁。
微生物在去除这些污染物方面起到了关键作用。
- 氮的去除:通过硝化和反硝化作用,微生物能够将废水中的氨氮转化为硝酸盐。
然后,反硝化细菌将硝酸盐还原为氮气,进而将氮气释放到大气中。
- 磷的去除:通过微生物的吸附和沉淀作用,废水中的磷可以被微生物去除并沉淀到污泥中。
3. 氧化污染物通过细菌和藻类的作用,废水中的污染物可以被氧化为无害物质。
此过程中,微生物利用污染物中的能量和营养进行代谢,并释放出二氧化碳和水等无害物质。
4. 混凝和沉降藻类在废水处理中发挥着重要的作用。
它们通过光合作用将废水中的有机物转化为生物质,在废水中形成生物絮凝体。