直升机空气动力学涡流理论
- 格式:ppt
- 大小:9.77 MB
- 文档页数:39
现代直升机旋翼空气动力学•目录:•第1章绪论1.1空气动力学的内容1.1.1定义1.1.2研究问题的类型1.2空气动力学的研究工具1.2.1解析工具1.2.2计算工具1.2.3实验工具1.3直升机概况1.3.1发展简述1.3.2直升机分类1.4直升机空气动力学发展概况1.4.1经典空气动力学理论1.4.2基于CFD技术的旋翼流场模拟1.4.3旋翼计算声学简介1.4.4旋翼/机身等多部件的气动干扰简介1.5旋翼基本参数介绍参考文献第2章旋翼动量理论2.1引言2.2垂直飞行时的动量理论2.2.1垂直上升状态2.2.2悬停状态2.2.3垂直下降状态2.2.4诱导速度普遍规律2.3前飞时的动量理论2.3.1平飞状态2.3.2爬升和下滑状态2.3.3诱导速度普遍规律参考文献第3章旋翼叶素理论3.1引言3.2桨叶翼型3.2.1桨叶翼型几何参数3.2.2桨叶翼型空气动力学特性3.2.3桨叶翼型设计3.3垂直飞行时的叶素理论3.3.1旋翼拉力和功率的微分形式3.3.2旋翼拉力和功率的积分形式3.3.3旋翼拉力的近似解析式3.3.4旋翼功率的近似解析式3.3.5完善系数3.4基于叶素-环量理论的拉力系数3.5基于叶素-动量组合理论的拉力系数3.6前飞时的叶素理论3.6.1旋翼拉力和功率的积分形式3.6.2旋翼拉力和功率的近似解析式3.6.3旋翼功率的一般表达式参考文献第4章旋翼涡流理论4.1引言4.2基本概念4.2.1Kelvin定理4.2.2Helmholtz定律4.2.3Biot-Savart定律4.2.4涡与环量4.3垂直飞行时的涡流理论4.3.1儒氏旋翼涡系模型4.3.2儒氏旋翼诱导速度4.3.3非儒氏旋翼涡系模型4.3.4非儒氏旋翼诱导速度4.4前飞时的涡流理论4.4.1旋翼涡系模型4.4.2旋翼诱导速度4.4.3桨叶附着涡环量的求解参考文献第5章旋翼自由尾流分析技术5.1引言5.2涡动力学基础5.3自由涡系模型5.3.1旋翼桨叶涡系模型5.3.2旋翼尾迹模型5.3.3旋翼桨尖涡模型5.3.4涡核扩散模型5.4桨叶附着涡环量求解5.5远尾迹涡丝控制方程5.6远尾迹涡丝控制方程的求解5.6.1远尾迹周期边界条件5.6.2PIPC松弛迭代法求解过程5.7自由尾迹/面元法的耦合模型算例5.7.1求解方法5.7.2涡/面干扰5.7.3算例分析参考文献第6章旋翼CFD理论基础知识6.1引言6.2适合旋翼的流体力学控制方程组6.2.1连续性方程6.2.2动量方程6.2.3能量方程6.2.4控制方程的选择形式6.3控制方程的离散化6.3.1有限差分法(FDM)6.3.2有限体积法(FVM)6.4网格生成简介6.4.1椭圆网格生成实例6.4.2多区重叠网格(嵌套网格)简介6.5结论参考文献第7章旋翼N-S方程SIMPLE数值模拟方法7.1引言7.2SIMPLE算法7.2.1交错网格技术7.2.2SIMPLE算法基本假设7.2.3SIMPLE算法基本步骤7.2.4SIMPLE算法的简单算例7.3SIMPLER算法简介7.4代数方程组的求解7.5前飞旋翼湍流场的数值模拟算例7.5.1流场控制方程7.5.2动量源项7.5.3算例方案描述7.5.4前飞流场分析7.5.5前飞性能预测7.6垂直下降旋翼湍流场的数值模拟算例7.6.1桨盘压差源项计算7.6.2垂直下降算例方案描述7.6.3模型旋翼悬停算例验证7.6.4垂直下降算例流场分析7.6.5垂直下降性能预测7.7斜下降旋翼湍流场的数值模拟算例7.7.1计算模型及方法7.7.2旋翼升阻气动特性7.7.3单片桨叶压力场随周期的变化7.7.4孤立旋翼流场分析7.7.5旋翼/机身组合流场分析参考文献第8章旋翼TVD数值模拟方法8.1引言8.2TVD格式的概念和性质8.2.1TVD的概念8.2.2TVD的性质8.3TVD格式的构造8.3.1一阶TVD格式8.3.2二阶TVD格式8.3.3高阶TVD格式简介8.4对一维和多维方程组的推广8.4.1一维方程组的推广8.4.2多维方程组的推广8.5算例:旋翼流场Euler方程Jameson/TVD数值模拟8.5.1主控方程8.5.2数值方法8.5.3结果分析参考文献第9章旋翼绕流N-S方程数值计算方法9.1引言9.2Jameson格式9.2.1标量人工粘性的中心差分方法9.2.2各向异性的人工粘性9.2.3矩阵人工粘性模型9.3TVD格式9.3.1TVD的概念9.3.2单调格式、保单调格式和TVD性质的充分条件9.3.3显式一阶TVD格式举例9.4一种Jameson/TVD混合格式9.4.1N-S方程和通量修正法9.4.2旋翼流场N-S方程Jameson/TVD数值模拟方法9.5Jameson格式与其他格式9.5.1积分形式下的旋翼流动控制方程9.5.2空间离散格式9.5.3悬停旋翼流动的数值模拟9.5.4前飞旋翼流动的数值模拟参考文献第10章旋翼洗流和旋翼/机身/发动机耦合流场分析10.1引言10.2旋翼洗流分析10.3旋翼/机身干扰流场10.3.1"作用盘"假设10.3.2N-S方程直接模拟10.4旋翼/机身/发动机耦合流场10.5旋翼/机身/柱体耦合流场10.5.1旋翼/机身耦合流场10.5.2机身/柱体耦合流场参考文献第11章旋翼计算声学基础11.1引言11.2Ffowcs Williams-Hawkings方程和Kirchhoff理论11.2.1Ffowcs Williams-Hawkings方程11.2.2Kirchhoff理论11.3两种方法的比较11.4桨涡干扰噪声的模拟11.5计算流体力学方法参考文献习题与思考题附录彩图页。
第三章 直升机的空气动力学原理旋翼的运动与固定翼飞机机翼的不同,因为 旋翼的桨叶除了随直升机一同作直线或曲线动外, 还要绕旋翼轴旋转,因此桨叶空气动力现象要比 机翼的复杂得多。
旋翼(升力)系统 基本概念:将发动机功率转化为飞行和操纵 所需要的力的机械装置。
通过加速空气产生 推力。
其整体性能可用桨尖速度、翼型特性、 实度和桨盘载荷来描述。
转动惯量影响直升 机自转性能,设计时也必须考虑。
基本组成:桨叶、桨毂、自动倾斜器、尾桨 等。
旋翼(升力)系统(续) 基本参数: 桨盘平面(面积) 桨叶载荷进比 桨叶数目 旋翼实度 旋翼前进比 旋翼诱导速度桨盘载荷 桨尖马赫数和前惯量 旋翼拉力 旋翼下洗 旋翼直径旋翼(升力)系统(续) 旋翼类型: 铰接式、 半铰接式、 无铰式、 无轴承式。
旋翼(升力)系统(续)旋翼(升力)系统(续)旋翼(升力)系统(续)旋翼(升力)系统(续) 铰接式旋翼:具有挥舞铰、摆振铰和变距铰。
桨叶与桨毂若完全刚性连接,则前飞时前行桨 叶和后行桨叶两边的升力差,使直升机出现横 侧倾覆力矩,同时桨叶根部承受很大的静、动 载荷。
为了消除这些现象,在旋翼结构上设置 了挥舞铰;为了消除因桨叶挥舞而产生的哥氏 力的影响,设置了摆振铰;为了改变桨距从而 改变升力而设置了变距铰。
这种型式的旋翼桨 毂构造复杂,重量大,气动阻力大,使用寿命 短,制造成本和维护费用高。
旋翼(升力)系统(续) 半铰接式(半刚性)旋翼:只有变距铰和挥舞 铰,而没有摆振铰。
其构造较简单,但操纵性 差。
无铰式(刚性)旋翼:只有变距铰。
桨叶在挥 舞和摆振方向相对于桨毂是刚性连接的,桨叶 的挥舞和摆振运动由桨叶根部(或桨毂支臂) 的弯曲弹性变形来实现。
无轴承式旋翼:无任何机械铰。
桨叶的挥舞、 摆振和变距运动由桨叶根部(或桨毂支臂)的 弯曲、扭转弹性变形来实现。
最新发展旋翼。
3.1 旋翼的空气动力学特点 完全刚性的直升机旋翼空气动力学非常复杂,不对称气流是 造成直升机旋翼动力学和空气动力学许多问题的原因。
直升机的飞行原理一般认为,直升机技术要比固定翼飞机复杂,其发展也比固定翼飞机慢。
但随着对直升机空气动力学、直升机动力学等学科认识的不断深化和先进航空电子技术、新工艺等的应用,直升机在近年来也有了很大的发展,直升机的直线飞行最大速度的世界纪录为400.87km/h,是英国“山猫”直升机于1986年8月11日创造的。
除了创纪录飞行,直升机的一般巡航速度在250~350km/h之间,实用升限达4000~6000m,航程达400~800km。
与固定翼飞机相比,直升机存在速度小、航程短、飞行高度低、振动和噪声较大,以及由此引起的可靠性较差等问题。
直升机飞行的特点是:它能垂直起降,对起降场地没有太多的特殊要求;它能在空中悬停;能沿任意方向飞行;但飞行速度比较低,航程相对来说也比较短。
当前,直升机在民用和军用的各个领域都得到了广泛的应用。
特别是在军用方面,武装直升机在现代战争中发挥的作用越来越大。
此外,吊运大型装备的起重直升机以及侦察、救护、森林防火、空中摄影、地质勘探等多用途直升机应用也非常广泛。
2.6.1直升机旋翼的工作原理旋翼是直升机的关键部件。
它由数片(至少两片)桨叶和桨毂构成,形状像细长机翼的桨叶连接在桨毂上。
桨毂安装在旋翼轴上,旋翼轴方向接近于铅垂方向,一般由发动机带动旋转。
旋转时,桨叶与周围空气相互作用,产生气动力。
直升机旋翼绕旋翼转轴旋转时,每个叶片的工作都与一个机翼类似。
沿旋翼旋转方向在半径r处切一刀,其剖面形状是一个翼型,如图2—67(a)所示。
翼型弦线与垂直于桨毂旋转轴的桨毂旋转平面之间的夹角称为桨叶的安装角(或桨距),以表示,如图2—67(b)所示。
相对气流与翼弦之间的夹角为该剖面的迎角。
因此,沿半径方向每段叶片上产生的空气动力R可分解为沿桨轴方向上的分量F和在旋转平面上的分量D。
F将提供悬停时需要的拉力;D产生的阻力力矩将由发动机所提供的功率来克服。
图2-67直升机旋翼的工作原理旋翼旋转所产生的拉力和阻力的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。
英文释义中文释义备注说明一、基础词汇1、直升机种类single-rotor helicopter (with tail rotor) 单旋翼带尾桨式直升机tandem rotors helicopter 纵列式双旋翼直升机side-by-side rotors helicopter 横列式双旋翼直升机coaxial rotors helicopter 共轴双旋翼式直升机tip-driven rotors helicopter 叶尖推进式直升机tilt rotors helicopter 倾转旋翼式飞机autogyro 旋翼机compound helicopter 复合式直升机2、常见作用力thrust 推力加上coefficient,即相应系数,例:升力系数lift 升力propulsion 推进力跟发动机有关的profile drag 型阻力aerodynamic drag 气动阻力drag force 阻力centrifugal force 离心力parasite drag 废阻力protuberance drag由于机身突起物所带来的阻力nose-down/nose up moment 低头力矩/抬头力矩对于迎角来说,抬头为正,低头为负3、直升机的一些部件rotor shaft 旋转轴main rotor axis 主旋翼轴aft 尾部fairing 整流装置fuselage 机身机身包括nose-section、corss-section shape、afterbody taper、camber几个部分构成auxiliary components 辅助元件gas turbine engine 燃气涡流发动机piston engine 活塞式发动机hub 桨毂control column 驾驶杆cockpit 驾驶舱undercarriage\landing gear 起落架可以收回的起落架retraction(轮式的是wheel,雪橇式的是skid)engine nacelle 发动机舱deflector 变流装置canopy 座舱罩airframe 机身主要相对气动分析而言的概念propeller 螺旋桨(推进器)相对旋翼机而言articulated rotor 铰接式旋翼铰接articulation hingless rotor 无铰式旋翼4、数学概念equation 等式formula 公式iterative 迭代的non-dimensionalize 无因次化coefficent 系数empirical factor 经验系数dimensionless quantity 无因次量harmonic terms 各阶谐波项second harmonic control 二阶谐波控制numerical method 数值方法linearization of small perturbation 小扰动线性化polynomial 多项式vector sum 矢量和displacement 位移evaluate 求……的值5、直升机的基本参数rotor diameter 桨盘直径rotor radius 桨盘半径disc loading 单位桨盘载荷figure of merit 相对效率twist /negative 扭度/负扭center of gravity 重心angular velocity 角速度chord length 弦长spanwise width 展向宽度solidity factor 实度collective pitch 总距span 叶素全长Lock number 洛克数power-to-weight ration 功重比pitch 俯仰roll 滚转head 偏航sweepback 后掠角stiffness 刚度刚体的:rigidconing angle 锥度角angle fo incidence(attack) 迎角offset 偏置常用在挥舞铰偏置中二、直升机空气动力学1、滑流理论英文释义中文释义备注说明momentum theory滑流理论vertical flight垂直飞行hover悬停in descent/vertical descent/vertical climb下降/上升induced power/velocity诱导功率/速度outflow流出流inflow流入流disc桨盘streamtube流管线flow pattern流型steady/unstead定常/非定常downwash/upwash下洗流/上洗流kinetic energy动能compressibility effect压缩性效应tip loss叶尖损失2、叶素理论Blade Element Theory/Elementary Blade Theory 叶素理论section shape剖面inflow angle来流角airfoil翼型blade incidence桨叶迎角lift slop 升力线斜率blade span翼展(相对于旋翼而言)leading edge前缘trailing edge后缘blade桨叶沿半径从内向外分为三个部分:inboard、mid-span、tip partsnon-uniform flow 非均匀来流ideal twist儒氏旋翼blade mean lift coefficient平均升力系数与升力系数不是同一个概念3、涡流理论部分英文释义中文释义备注说明tip vortex 桨尖涡vortex-ring (state) 涡环(状态)vortex的复数vortices turbulent-wake state 紊流状态wake vortices 尾迹涡vortex cylinder 涡柱面trailing vortex system 尾迹涡系wake vortices 尾迹streamwise vortices 流向涡discrete 分离的三、前飞理论部分英文释义中文释义备注说明advance ratio前进比advancing side前行桨叶retreating side后行桨叶flapping motion挥舞运动flapping hinge挥舞铰flapping coefficient挥舞系数region of reversed flow反流区Equilibrium Equation力平衡方程Coriolis force/moment哥氏力/哥氏力力矩interia force/moments惯性力restraining force约束力gravitational force/moments重力/力矩damping 阻尼mechanical damper机械阻尼器gyroscopic moment陀螺力矩crosscoupling交叉耦合oscillatory bending stress 振荡弯曲应力roll moment滚转力矩resultant force/moment合力/合力矩 A be communicated to B力A传到Blead-lag hinge摆振铰feathering hinge变距铰oncoming stream direction迎流方向reference plane参考面separated flow气流分离全称:retreating blade stallblade stalling桨尖失速全称:advancing blade compressiblity dragriseazimuth angle方位角shock induced flow seperation激波-气流分离stalling characteristic失速特性free stream dynamic pressure自由来流动压boundary layer附面层asymmetry/symmetry不对称/对称flow reversl气流反向horizontal tailplane水平安定面vertical fin垂直安定面lateral/longitudinal cyclic coefficient横向/纵向周期变距headwind逆风tailwind顺风四、性能计算部分:英文释义中文释义备注说明performance assessment性能评估helicopter performance calculation直升机性能计算ground effect地面效应autorotation自转飞行high rate of climb悬停升限wind tunnel test风洞测试patrol/loiter task巡航飞行cruise speed巡航速度weight capability承重能力rate of climb 爬升率absolute ceiling绝对升限service ceiling 实用升限optimum speed 最佳速度minimum rate of descent 最小下降率maximum edurance/loiter time 最大续航时间maximum glide distance最大航行距离maximum range最大航行里程maximum speed最大速度specific range比航程dihedral action上反作用longitudinal/lateral trim equation纵向/横向配平方程shaft power轴功率power requirement需用功率induced requirement诱导功率stability 稳定性static stability静稳定dynamic stability动稳定incidence disturbance动稳定扰动的几种情况forward speed disturbance angular velocity disturbancesideslip disturbance yawing disturbancestability augmentation system增稳系统。
blade incidence桨叶迎角lift slop 升力线斜率blade span翼展(相对于旋翼而言)leading edge前缘trailing edge后缘blade桨叶沿半径从内向外分为三个部分:inboard、mid-span、tip partsnon-uniform flow 非均匀来流ideal twist儒氏旋翼blade mean lift coefficient平均升力系数与升力系数不是同一个概念lead-lag hinge摆振铰feathering hinge变距铰oncoming stream direction迎流方向reference plane参考面separated flow气流分离全称:retreating blade stallblade stalling桨尖失速全称:advancing blade compressiblity dragriseazimuth angle方位角shock induced flow seperation激波-气流分离stalling characteristic失速特性free stream dynamic pressure自由来流动压boundary layer附面层asymmetry/symmetry不对称/对称flow reversl气流反向horizontal tailplane水平安定面vertical fin垂直安定面lateral/longitudinal cyclic coefficient横向/纵向周期变距headwind逆风tailwind顺风四、性能计算部分:英文释义中文释义备注说明performance assessment性能评估helicopter performance calculation直升机性能计算ground effect地面效应autorotation自转飞行high rate of climb悬停升限wind tunnel test风洞测试patrol/loiter task巡航飞行cruise speed巡航速度weight capability承重能力rate of climb 爬升率absolute ceiling绝对升限service ceiling 实用升限optimum speed 最佳速度minimum rate of descent 最小下降率maximum edurance/loiter time 最大续航时间maximum glide distance最大航行距离maximum range最大航行里程maximum speed最大速度specific range比航程dihedral action上反作用longitudinal/lateral trim equation纵向/横向配平方程shaft power轴功率power requirement需用功率induced requirement诱导功率stability 稳定性static stability静稳定dynamic stability动稳定incidence disturbance动稳定扰动的几种情况forward speed disturbance angular velocity disturbancesideslip disturbance yawing disturbancestability augmentation system增稳系统。
直升机空气动力学限制直升机速度的一个重要因素是旋翼桨叶的挥舞,桨叶的惯性在不断地挥舞中增加了机械振动,铰链的磨损(或弹性元件的疲劳)使直升机的可靠性总是不如固定翼飞机。
常规直升机的柔性桨叶虽然是非常规机动成为可能,但柔性的桨叶也限制了直升机的机动性,难于像固定翼飞机一样做迅猛的滚翻、拉起、俯冲、盘旋动作,过于激烈的机动动作可能使桨叶和机体碰撞,严重危害飞行安全。
刚性桨叶的限制要小得多,采用刚性桨叶的直升机或许有这样、那样的问题,但都具有比常规直升机远为出色的机动性。
为此,刚性桨叶一直是直升机研究的一个目标。
洛克希德“夏延”的下马给刚性桨叶的发展蒙上阴影,但刚性桨叶的研究并没有就此偃旗息鼓,近来又柳暗花明的迹象。
为了大幅度提高直升机性能,美国从70 年代开始,进行了一系列直升机研究机项目。
西科斯基的“前行桨叶概念”(Advancing Blade Concept,简称ABC)在较早就获得成功。
如前所述,刚性旋翼的一个大问题是由于前飞的相对速度叠加在旋翼旋转速度引起的非对称升力,但对于刚性的共轴反转双桨来说,两边的非对称升力叠加起来,就对称了,刚性的桨叶和桨轴吸收所有的扭力,这就是ABC 可以免去挥舞铰的基本思路。
由于刚性桨叶没有挥舞,上下旋翼可以离得很近,而没有碰撞的危险。
差动式地加减上下旋翼的桨距以形成扭力差不仅形成水平方向上的转向,还由于刚性旋翼非对称升力造成横滚,进一步加速转弯过程,所以ABC 具有异乎寻常的机动性,大大超过常规直升机。
ABC 直升机有专用的推进发动机,高速平飞时,用气动舵面实现飞行控制。
采用ABC 的S-69(军用代号XH-59A)参加了LHX 竞争,但技术终究不够成熟,在悬停中低头或抬头也比较困难,落选于同出于西科斯基的常规旋翼加涵道尾桨的方案,后者最终成为RAH-66“科曼奇”,现在也下马了。
西科斯基XH-59A“前行桨叶”概念研究机,用共轴反转的刚性旋翼,既抵消扭力,又抵消非对称升力流线型的S-69 蛮俊俏的前行桨叶在无人机的大潮中得到复苏,西科斯基的Mariner/Cypher II 将前行桨叶和涵道风扇结合起来,动力从“碗边”通过传动轴传递,可以分别传递给上下旋翼,而不必用套筒轴驱动,大大简化机械设计和制造。
直升机空气动力学一、引言直升机是一种能够在垂直方向起降、悬停和倾斜飞行的飞行器。
与固定翼飞机不同,直升机的空气动力学特性较为复杂,涉及到旋翼、机身和尾桨等多个部件的相互作用。
本文将探讨直升机的空气动力学原理以及相关的设计和优化问题。
二、直升机的空气动力学原理1. 旋翼的升力和推力直升机主要依靠旋翼产生升力和推力。
旋翼的升力是由旋翼叶片产生的,其工作原理类似于固定翼飞机的机翼。
旋翼通过改变叶片的攻角和旋转速度来调节升力大小。
同时,旋翼的旋转还能够产生推力,使直升机向前飞行。
2. 尾桨的作用直升机的尾桨主要用于平衡旋翼产生的反扭矩,并提供方向稳定力。
尾桨通过改变叶片的攻角和旋转速度来产生力矩,使直升机保持平衡。
3. 机身对空气动力学的影响直升机的机身对其空气动力学性能有着重要影响。
机身的形状和气动特性会影响直升机的阻力、升阻比和操纵性能等。
因此,在直升机设计中,需要对机身进行合理的流线型设计和气动优化。
三、直升机的设计与优化问题1. 旋翼设计与优化直升机旋翼的设计与优化是直升机空气动力学研究中的重要内容。
旋翼的设计要考虑旋翼叶片的几何形状、材料和结构等因素,以及旋翼的气动性能和噪声特性等。
在旋翼的优化中,可以通过改变旋翼的几何参数、调节旋翼叶片的攻角和旋转速度等方式,来提高直升机的升力和推力性能。
2. 尾桨设计与优化尾桨的设计与优化也是直升机空气动力学研究的重要方向。
尾桨的设计要考虑尾桨叶片的几何形状、气动性能和噪声特性等因素。
在尾桨的优化中,可以通过改变尾桨叶片的几何参数、调节尾桨叶片的攻角和旋转速度等方式,来提高直升机的稳定性和操纵性能。
3. 机身优化直升机机身的优化是为了减小阻力、提高升阻比和改善飞行操纵性能等。
机身的优化可以包括减小机身的横截面积、改善机身的流线型、优化机身的表面粗糙度等。
四、直升机空气动力学的应用领域直升机空气动力学的研究不仅对直升机的设计和优化具有重要意义,还对直升机的飞行性能、操纵性能和噪声控制等方面有着广泛的应用。