人教版八年级数学下册电子书:第十一章 三角形
- 格式:doc
- 大小:6.46 MB
- 文档页数:31
人教版八年级数学第11章三角形章末复习(含答案)一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.104. 如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°5. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米6. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形7. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形8. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或99. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题(本大题共6道小题)11. 如图所示是一幅电动伸缩门的图片,则电动门能伸缩的几何原理是__________________________.12. (2019•怀化)若等腰三角形的一个底角为72 ,则这个等腰三角形的顶角为___ _______.13. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A 处行走的路程是.14. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.16. 如图,在△ABC中,点D在BC的延长线上,∠A=m°,∠ABC和∠ACD 的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=________°.三、解答题(本大题共5道小题)17. 已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18. 等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.19. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.21. 已知:如图11-Z-12,在△ABC中,∠ABC=∠C,D是AC边上一点,∠A =∠ADB,∠DBC=30°.求∠BDC的度数.人教版八年级数学第11章三角形章末复习-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】D3. 【答案】C[解析] 设第三边的长为x,由三角形三边关系可得,4-1<x<4+1,即3<x<5.由于第三边长为整数,因此x=4,所以该三角形的周长为9.4. 【答案】A【解析】由AE∥BD,可得∠DBC=∠E=35°,由BD平分∠ABC 可得∠ABC=2∠DBC=70°,由AB=AC可得∠ABC=∠C=70°,由三角形内角和定理可得∠BAC=180°-70°-70°=40°.5. 【答案】B[解析] 设A,B两地之间的距离为x米.依据题意,得10-8<x <10+8,即2<x<18,所以A,B两地之间的距离可能是15米.6. 【答案】A [解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.7. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.8. 【答案】D[解析] 设内角和为1080°的多边形的边数为n ,则(n -2)×180°=1080°,解得n =8.则原多边形的边数为7或8或9.故选D.9. 【答案】C10. 【答案】C[解析] ∵在△ABC 中,∠ACB =70°,∠1=∠2,∴∠2+∠BCP =∠1+∠BCP =∠ACB =70°. ∴∠BPC =180°-∠2-∠BCP =180°-70°=110°.二、填空题(本大题共6道小题)11. 【答案】四边形具有不稳定性12. 【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.13. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).14. 【答案】75【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.15. 【答案】114[解析] 因为AB ∥CD ,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC =12∠BAB′=22°.在△ABC 中,∠B =180°-(∠BAC +∠2)=114°.16. 【答案】(m22020)三、解答题(本大题共5道小题)17. 【答案】解:设这个多边形的边数是n.依题意,得(n -2)×180°=3×360°-180°, 解得n =7.∴这个多边形的边数是7.18. 【答案】证明:∵BE ,CF 均是△ABC 的中线, ∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.19. 【答案】解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°. ∴∠CBD =130°.∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD =65°. (2)∵∠ACB =90°,∠CBE =65°, ∴∠CEB =90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.20. 【答案】解:∵∠NBC=60°,∠NBA=∠BAS=45°,∴∠ABC=∠NBC-∠NBA=60°-45°=15°.又∵∠BAC=∠BAS+∠SAC=45°+30°=75°,∴在△ABC中,∠C=180°-(75°+15°)=90°.21. 【答案】解:设∠C=x°,则∠ABC=x°,∠ABD=x°-30°.∵∠ADB是△DBC的外角,∴∠ADB=30°+x°,于是∠A=30°+x°.在△ABD中,2(30+x)+(x-30)=180,解得x=50.故∠BDC=180°-(30°+50°)=100°.。
初二数学第十一章第1节全等三角形人教新课标版一、学习目标:1. 通过实例理解全等图形的概念和特征,并能找出全等图形。
2. 能叙述全等三角形的定义及相关概念,并能找出两个全等三角形的对应边和对应角。
3. 掌握全等三角形的性质,会利用全等三角形的性质进行简单的推理和计算,解决一些实际问题。
二、重点、难点:重点是全等三角形的概念,难点是全等三角形的对应顶点要对应写,对应关系要明确。
三、考点分析:本讲所涉及的考点是全等三角形的概念与全等三角形的性质。
在这里,全等三角形的概念属于了解范畴,而全等三角形的性质属于掌握范畴,对其性质还要求会运用。
这两个知识点不会单独出大题,只会以小题的形式出现,或在大题中用到。
所以,大家只要在掌握各概念性质的基础上弄清对应关系即可。
1. 全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。
(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点。
重合的边叫做对应边。
重合的角叫做对应角。
(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12. 全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。
知识点一:全等三角形的基本概念例1. 下列说法正确的有()①用一张底片冲洗出来的10张一寸照片是全等图形②我国国旗上的4颗小五角星是全等图形③所有的正方形是全等图形④全等图形的面积一定相等A. 1个B. 2个C. 3个D. 4个思路分析:1)题意分析:本题主要考查全等图形定义中对“能够完全重合”的理解。
2)解题思路:根据全等图形的定义:“能够完全重合的两个图形叫做全等图形。
”来判断题目中每一句话中所谈到的图形是否能完全重合。
解答过程:用一张底片冲洗出来的10张一寸照片的形状和大小完全相同,它们是全等图形,所以①正确;我国国旗上的四颗小五角星的形状和大小也完全相同,它们也是全等图形;所以②正确;所有的正方形只是形状相同,但大小不一定相同,所以它们不是全等图形,故③不正确;全等图形的形状和大小完全相同,所以面积一定相等,所以④正确。
人教版八年级数学上册第11章《三角形》说课稿一. 教材分析人教版八年级数学上册第11章《三角形》是学生在学习了平面几何基本概念和性质之后,进一步深入研究三角形的相关性质和应用。
本章主要包括三角形的概念、三角形的性质、三角形的判定和三角形的中线、高线、角平分线等知识。
通过本章的学习,使学生掌握三角形的的基本性质和判定方法,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对平面几何的概念和性质有一定的了解。
但学生在学习过程中,对于一些抽象的概念和定理,仍然存在一定的困难。
因此,在教学过程中,需要教师引导学生通过观察、操作、思考、交流等途径,自主探究三角形的性质和判定方法,提高学生的几何素养。
三. 说教学目标1.知识与技能:理解三角形的概念,掌握三角形的性质和判定方法,学会使用三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等途径,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 说教学重难点1.教学重点:三角形的性质和判定方法。
2.教学难点:三角形性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、教具模型等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入三角形的学习。
2.自主学习:让学生通过观察、操作、思考,探究三角形的性质和判定方法。
3.合作交流:学生分组讨论,分享各自的探究成果,解决存在的问题。
4.教师讲解:针对学生的探究结果,进行点评和讲解,引导学生深入理解三角形的性质和判定方法。
5.巩固练习:布置相关的练习题,让学生巩固所学知识。
6.课堂小结:对本节课的主要内容进行总结,强调三角形的性质和判定方法。
七. 说板书设计板书设计要简洁明了,突出三角形的性质和判定方法。