第6章金属有机物化学气相沉积
- 格式:ppt
- 大小:613.50 KB
- 文档页数:27
金属有机化学气相沉积1 金属有机化学气相沉积简介金属有机化学气相沉积(MOCVD)是一种重要的化学气相沉积(CVD)技术,其主要应用于半导体器件制造中,特别是高性能晶体管制造。
MOCVD技术通过在金属有机化合物和气相反应中沉积金属材料的薄膜。
MOCVD可用于制备各种金属化合物,如III-V族化合物和II-VI族化合物。
2 MOCVD的原理在MOCVD过程中,金属有机化合物被加热并分解成金属和碳(C)。
这些金属离子与气态的反应气体(例如,含有III族元素的化合物,如氨气(NH3))在固体表面上发生反应,并在表面形成金属化合物的薄层沉积。
反应的形式如下:M(CH3)x + NH3 → MxNy + CH4 + H2其中,M表示金属,CH3表示甲基基团,NH3表示氨气,MxNy表示金属化合物,CH4表示甲烷,H2表示氢气。
在反应中,金属有机物和气体通过化学反应形成金属化合物的沉积,同时将副产物产物移除。
3 MOCVD的优点与其他金属沉积技术相比,MOCVD具有以下优点:1.高纯度:MOCVD可在高温下进行,可制备高晶格质量的金属化合物。
2.高精度:由于反应产物在较低的升温速率下形成,MOCVD生长的薄膜具有优异的表面均匀性和精度。
3.适用性广泛:MOCVD可用于制备各种金属化合物,对于不同的薄膜材料可调节金属有机物和氢气相对含量。
4 总结MOCVD是一种基于化学反应的金属化合物薄膜沉积技术,它具有高纯度、高精度和适用性广泛等优点。
MOCVD技术已经成功应用于半导体材料中,如GaAs和InP等。
随着技术的不断发展,MOCVD技术将在更广泛的领域得到应用,例如纳米材料和光电子学。
金属有机化学气相沉积法1金属有机化学气相沉积法概述金属有机化学气相沉积法(MOCVD)是一种重要的材料制备方法,主要是通过热分解金属有机化合物,使金属原子沉积在衬底上,形成薄膜材料。
它广泛应用于半导体、光电子、涂层、生命科学等领域。
这种方法不仅可获得高纯度、高均一度的薄膜材料,而且还能够控制材料的厚度、复合度和组分等。
2MOCVD的工作原理MOCVD的工作原理是在恒流输送(CVD)反应中使用金属有机化合物作为反应原料。
这些原料在高温高压反应器中分解,生成金属原子,并与衬底表面反应,形成薄膜。
这个过程可以通过简单的反应机制来描述,如下所示:M(CH3)n+heat→M+nCH4其中,M(CH3)n为金属有机化合物,M为金属,CH4为副产物。
3MOCVD的实现条件MOCVD的实现需要一定的条件,包括反应原料、反应器、反应气氛和反应参数等。
-反应原料:MOCVD所用的反应原料,主要是金属有机化合物。
对于不同的金属有机化合物,其热分解温度、气相反应性和沉积速率等性质都不相同。
-反应器:反应器是MOCVD的核心部分,通常使用的是平板反应器或石英反应器,其主要作用是在高温下提供足够的反应物质和能量。
-反应气氛:MOCVD反应气氛通常由惰性气体和反应气体组成,如氢气、氩气和甲烷等。
氢气可使反应物分子分解,氩气可保持反应器压力不变,而甲烷则是热分解金属有机化合物的主要副产物之一。
-反应参数:MOCVD反应参数包括温度、压力、反应时间和反应原料比例等。
这些参数的选择和控制将直接影响到薄膜的质量和性能。
4MOCVD的优点和应用MOCVD有多种优点,如反应温度低、反应物质纯度高、沉积速率可控等。
此外,这种方法还能制备各种功能型薄膜,如光电薄膜、氧化物薄膜、纳米薄膜等,因此被广泛应用于微电子、纳米科技、高性能涂层及太阳能电池等领域。
5MOCVD的未来发展方向从未来发展趋势来看,MOCVD将继续向下一代器件、复合薄膜、新型能源材料和高效电子材料等方向发展。
集成电路芯片工艺化学气相沉积(CVD)化学汽相淀积(CVD)化学汽相淀积是指通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程。
CVD膜的结构可以是单晶、多晶或非晶态,淀积单晶硅薄膜的CVD过程通常被称为外延。
CVD技术具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点。
利用CVD方这几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO:、多晶硅、非晶硅、氮化硅、金属(钨、钼)等。
一:化学气相沉积方法常用的CVD方法主要有三种:常压化学汽相淀积(APCVD)、低压化学汽相淀积(LPCVIi~)和等离子增强化学汽相淀积(PECVD).APCVD反应器的结构与氧化炉类似,如图1-1所示,该系统中的压强约为一个大气压,因此被称为常压CVD。
气相外延单晶硅所采用的方法就是APCVD。
图1-1APCVD反应器的结构示意图,LPCVD反应器的结构如图1-2所示,石英管采用三温区管状炉加热,气体由一端引入,另一端抽出,半导体晶片垂直插在石英舟上。
由于石英管壁靠近炉管,温度很高,因此也称它为热壁CVD装置,这与利用射频加热的冷壁反应器如卧式外延炉不同.这种反应器的最大特点就是薄膜厚度的均匀性非常好、装片量大,一炉可以加工几百片,但淀积速度较慢.它与APCVD的最大区别是压强由原来的1X10SPa降低到1X102Pa左右。
图1-2LPCVD反应器的结构示意图图1-3平行板型PECVD反应器的结构示意图PECVD是一种能量增强的CVD方法,这是因为在通常CVD系统中热能的基础上又增加了等离子体的能量.图1-3给出了平行板型等离子体增强CVD反应器,反应室由两块平行的金属电极板组成,射频电压施加在上电极上,下电极接地。
射频电压使平板电极之间的气体发生等离子放电。
工作气体由位于下电极附近的进气口进入,并流过放电区。
半导体片放在下电极上,并被加热到100—400;C左右.这种反应器的最大优点是淀积温度低。
化学气相沉淀法摘要:化学气相沉积Chemical vapor deposition,简称CVD;是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。
CVD技术可以生长高质量的单晶薄膜,能够获得所需的掺杂类型和厚度,易于实现大批量生产,因而在工业上得到广泛的应用。
工业上利用CVD制备的外延片常有一个或多个埋层可用扩散或离子注入的方式控制器件结构和掺杂分布;外延层的氧和碳含量一般很低。
但是CVD外延层容易形成自掺杂,要用一定措施来降低自掺杂。
CVD生长机理很复杂,反应中生成多种成分,也会产生一些中间成分,影响因素有很多,如:先躯体种类:工艺方法Levi,Devi,Pend;反应条件温度,压力,流量;触媒种类:气体浓度;衬基结构;温度梯度;炉内真空度等外延工艺有很多前后相继,彼此连贯的步骤。
关键词:化学气相沉淀积,薄膜,应用,工艺正文:原理:将两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成--种新的材料,沉积到基体表面上。
反应物多为金属氯化物,先被加热到一定温度,达到足够高的蒸汽压,用载气一般为Ar或H2送入反应器。
如果某种金属不能形成高压氯化物蒸汽,就代之以有机金属化合物。
在反应器内,被涂材料或用金属丝悬挂,或放在平面上,或沉没在粉末的流化床中,或本身就是流化床中的颗粒。
化学反应器中发生,产物就会沉积到被涂物表面,废气多为HC1或HF被导向碱性吸收或冷阱。
除了需要得到的固态沉积物外,化学反应的生成物都必须是气态沉积物本身的饱和蒸气压应足够低,以保证它在整个反应、沉积过程中都一直保持在加热的衬底上。
反应过程:1反应气体向衬底表面扩散2反应气体被吸附于衬底表面3在表面进行化学反应、表面移动、成核及膜生长4生成物从表面解吸5生成物在表面扩散。
所选择的化学反应通常应该满足:①反应物质在室温或不太高的温度下最好是气态,或有很高的蒸气压,且有很高的纯度:②通过沉积反应能够形成所需要的材料沉积层:③反应易于控制在沉积温度下,反应物必须有足够高的蒸气压。
金属有机化学气相沉积一、原理:金属有机化学气相沉积(MOCVD )是以川族、n族元素的有机化合物和v、w族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种川-V 族、n-w族化合物半导体以及它们的多元固溶体的薄层单晶材料。
金属有机化学气相沉积系统(MOCVD是利用金属有机化合物作为源物质的一种化学气相淀积(CVD)工艺,其原理为利用有机金属化学气相沉积法metal-orga nic chemical vapor depositio n.MOCVD 是一利用气相反应物,或是前驱物precursor 和川族的有机金属和V族的NH3,在基材substrate 表面进行反应,传到基材衬底表面固态沉积物的工艺。
二、MOCVD勺应用范围MOCVD主要功能在於沉积高介电常数薄膜,可随著precursor的更换,而沉积出不同种类的薄膜.对於LED来说丄ED晶片由不同半导体材料的多层次架构构成,这些材料放在一个装入金属有机化学气相沉积系统的圆形晶片上.这个过程叫做晶体取向附生,对於决定LED的性能特徵并因此影响白光LED的装仓至关重要.MOCVD 应用的范围有:1,钙钛矿氧化物如PZT,SBT,CeMnO2等;2,铁电薄膜;3, ZnO透明导电薄膜,用於蓝光LED的n-ZnO 和p-ZnO,用於TFT的ZnO,ZnO 纳米线;4,表面声波器件SAW(如LiNbO3 等,; 5,三五族化合物如GaN,GaAs基发光二极体(LED),雷射器(LD)和探测器;6, MEMS 薄膜;7, 太阳能电池薄膜;8,锑化物薄膜;9, YBCO 高温超导带;10,用於探测器的SiC,Si3N4等宽频隙光电器件MOCVD对镀膜成分,晶相等品质容易控制,可在形状复杂的基材,衬底,上形成均匀镀膜,结构密致,附著力良好之优点,因此MOCVD已经成为工业界主要的镀膜技术.MOCVD制程依用途不同,制程设备也有相异的构造和型态.MOCVD近来也有触媒制备及改质和其他方面的应用,如制造超细晶体和控制触媒得有效深度等.在可预见的未来裏,MOCVD制程的应用与前景是十分光明的.三、MOCV组件介绍MOCV系统的组件可大致分为:反应腔、气体控制及混合系统、反应源及废气处理系统。
原理:金属有机化学气相沉积系统(MOCVD)是利用金属有机化合物作为源物质的一种化学气相淀积(CVD)工艺,其原理为利用有机金属化学气相沉积法metal-organic chemical vapor deposition.MOCVD是一种利用气相反应物,或是前驱物precursor和Ⅲ族的有机金属和V族的NH3,在基材substrate表面进行反应,传到基材衬底表面固态沉积物的工艺。
优缺点:MOCVD设备将Ⅱ或Ⅲ族金属有机化合物与Ⅳ或Ⅴ族元素的氢化物相混合后通入反应腔,混合气体流经加热的衬底表面时,在衬底表面发生热分解反应,并外延生长成化合物单晶薄膜。
与其他外延生长技术相比,MOCVD技术有着如下优点:(1)用于生长化合物半导体材料的各组分和掺杂剂都是以气态的方式通入反应室,因此,可以通过精确控制气态源的流量和通断时间来控制外延层的组分、掺杂浓度、厚度等。
可以用于生长薄层和超薄层材料。
(2)反应室中气体流速较快。
因此,在需要改变多元化合物的组分和掺杂浓度时,可以迅速进行改变,减小记忆效应发生的可能性。
这有利于获得陡峭的界面,适于进行异质结构和超晶格、量子阱材料的生长。
(3)晶体生长是以热解化学反应的方式进行的,是单温区外延生长。
只要控制好反应源气流和温度分布的均匀性,就可以保证外延材料的均匀性。
因此,适于多片和大片的外延生长,便于工业化大批量生产。
(4)通常情况下,晶体生长速率与Ⅲ族源的流量成正比,因此,生长速率调节范围较广。
较快的生长速率适用于批量生长。
(5)使用较灵活。
原则上只要能够选择合适的原材料就可以进行包含该元素的材料的MOCVD生长。
而可供选择作为反应源的金属有机化合物种类较多,性质也有一定的差别。
(6)由于对真空度的要求较低,反应室的结构较简单。
(7)随着检测技术的发展,可以对MOCVD 的生长过程进行在位监测。
MOCVD技术的主要缺点大部分均与其所采用的反应源有关。
首先是所采用的金属有机化合物和氢化物源价格较为昂贵,其次是由于部分源易燃易爆或者有毒,因此有一定的危险性,并且,反应后产物需要进行无害化处理,以避免造成环境污染。
金属有机化学气相沉积技术
金属有机化学气相沉积技术是一种常用的制备金属薄膜的技术。
该技术具有高效、精准、可重复性好等优点,已广泛应用于电子、信息、光电等领域。
本文将对金属有机化学气相沉积技术进行介绍。
金属有机化学气相沉积技术是利用金属有机配合物向基底表面沉积金属薄膜的一种方法。
该技术的原理是在高真空条件下,将金属有机配合物蒸发,使其分子从气相进入沉积室内,然后在基底表面形成金属薄膜。
金属有机配合物可以通过喷雾、化学气相沉积、溅射等方法获得。
1. 可以在室温下沉积金属薄膜,不需要进行高温烧结,避免了基底热变形和基底表面的化学反应。
2. 沉积速度低,使得沉积薄膜的表面质量和结晶度更高。
3. 沉积过程中,金属有机配合物分子的大小和形状可以根据需要进行调节,以获得更好的沉积效果。
4. 沉积出的金属薄膜具有均匀的厚度和精确的成分,可以满足不同领域的需求。
1. 电子领域:金属有机化学气相沉积技术已经广泛应用于集成电路和薄膜晶体管的制造中。
金属有机化学气相沉积技术不仅可以沉积出高质量的金属薄膜,并且可以通过控制金属有机配合物分子的大小和形状,制备出更高质量的薄膜。
3. 学术研究:金属有机化学气相沉积技术的可控性和精度高,被广泛应用于材料科学、纳米科学等领域的研究。